Schema Refinement and Normalization

Nobody realizes that some people expend tremendous energy merely to be normal.
Albert Camus

Functional Dependencies (Review)
- A functional dependency \(X \rightarrow Y \) holds over relation schema \(R \) if, for every allowable instance \(r \) of \(R \):
 \[t_1 \in r, \ t_2 \in r, \ p_X(t_1) = p_X(t_2) \implies p_Y(t_1) = p_Y(t_2) \]
 (where \(t_1 \) and \(t_2 \) are tuples; \(X \) and \(Y \) are sets of attributes)
- In other words: \(X \rightarrow Y \) means
 Given any two tuples in \(r \), if the \(X \) values are the same, then the \(Y \) values must also be the same. (but not vice versa)
- Can read "\(\rightarrow \)" as "determines"

Normal Forms
- Back to schema refinement...
- Q1: is any refinement is needed??!
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- Role of FDs in detecting redundancy:
 - Consider a relation \(R \) with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given A \(\rightarrow \) B: If A is not a key, then several tuples could have the same A value, and if they all have the same B value!
- 1st Normal Form \(\rightarrow \) all attributes are atomic
- 1st \(\rightarrow \) 2nd (of historical interest) \(\rightarrow \) 3rd Boyce-Codd ...

Boyce-Codd Normal Form (BCNF)
- Reln \(R \) with FDs \(F \) is in BCNF if, for all \(X \rightarrow A \) in \(F^+ \)
 - A \(\rightarrow \) X (called a trivial FD), or
 - X is a superkey for \(R \).
- In other words: "R is in BCNF if the only non-trivial FDs over \(R \) are key constraints."
- If \(R \) in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
 - Say we know FD \(X \rightarrow A \) holds this example relation:
 \[
 \begin{array}{ccc}
 X & Y & A \\
 x & y_1 & a \\
 x & y_2 & a \\
 \end{array}
 \]
 - Can you guess the value of the missing attribute?
 - Yes, so relation is not in BCNF

Decomposition of a Relation Schema
- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.
- Suppose that relation \(R \) contains attributes \(A_1 ... A_n \). A decomposition of \(R \) consists of replacing \(R \) by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of \(R \), and
 - Every attribute of \(R \) appears as an attribute of at least one of the new relations.

Example (same as before)
- SNLRWH has FDs \(S \rightarrow SNLRWH \) and \(R \rightarrow W \)
- Q: Is this relation in BCNF?
 No, The second FD causes a violation; \(W \) values repeatedly associated with \(R \) values.
Decomposing a Relation

- Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>223-23-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Hourly_Emps2

- Q: Are both of these relations now in BCNF?
- Decompositions should be used only when needed.

Problems with Decompositions

- There are three potential problems to consider:
 1. May be impossible to reconstruct the original relation! (Lossiness)
 - Fortunately, not in the SNLRWH example.
 2. Dependency checking may require joins.
 - Fortunately, not in the SNLRWH example.
 3. Some queries become more expensive.
 - e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.

Lossless Decomposition (example)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Lossless Join Decompositions

- Decomposition of R into X and Y is **lossless-join** w.r.t. a set of FDs F if, for every instance r that satisfies F:
 \[
 \Delta_X(r) \Rightarrow \Delta_Y(r) = r
 \]
- It is always true that
 \[
 r \bowtie \Delta_X(r) \Rightarrow \Delta_Y(r)
 \]
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- **It is essential that all decompositions used to deal with redundancy be lossless!** (Avoinds Problem #1)

Lossy Decomposition (example)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

More on Lossless Decomposition

- The decomposition of R into X and Y is **lossless with respect to F** if and only if the closure of F contains:
 \[
 X \bowtie Y \subseteq X, \text{ or } X \bowtie Y \subseteq Y
 \]
 - In example: decomposing ABC into AB and BC is lossy, because intersection (i.e., “B”) is not a key of either resulting relation.
- **Useful result:** If W \(\bowtie Z \) holds over R and W \(\bowtie Z \) is empty, then decomposition of R into R-Z and WZ is lossless.
So, (F

Important to consider preserving decomposition of R into X and Y is dependency preserving if \(F_X \cup F_Y \) = \(F^+ \), i.e., if we consider only dependencies in the closure \(F^+ \) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^+ \).

Important to consider \(F^+ \) in this definition:
- \(ABC, A \Join B, B \Join C, C \Join A \), decomposed into AB and BC.
- Is this dependency preserving? Is \(C \Join A \) preserved?????
 - Note: \(F^+ \) contains \(F^+ \) of \(\{A \Join C, B \Join A, C \Join B\} \), so...
- \(FA_B \) contains \(A \Join B \) and \(B \Join A \); \(FB_C \) contains \(B \Join C \) and \(C \Join B \)
- So, \(\{FA_B, FB_C\}^+ \) contains \(C \Join A \)

Decomposition of R into X and Y is dependency preserving if \(F_X \cup F_Y \) = \(F^+ \).

Decomposition into BCNF
- Consider relation R with FDs F. If \(X \Join Y \) violates BCNF, decompose R into X - Y and XY (guaranteed to be loss-less).
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDQV, key C, JP \(\Join \) C, SD \(\Join \) P, J \(\Join \) S
 - \(\{\text{contractid}, \text{supplierid}, \text{projectid}, \text{deptid}, \text{partid}, \text{qty}, \text{value}\} \)
 - To deal with SD \(\Join \) P, decompose into SDP, CJDQV.
 - To deal with J \(\Join \) S, decompose CSJDQV into JS and CJDQV.
 - So we end up with: SDP, JS, and CJDQV
- Note: several dependencies may cause violation of BCNF. The order in which we deal with them could lead to very different sets of relations!

Third Normal Form (3NF)
- Reln R with FDs F is in 3NF if, for all \(X \Join A \) in \(F^+ \)
 - \(A \Join X \) (called a trivial FD), or
 - X is a superkey of R, or
 - A is part of some candidate key (not superkey!) for R. (sometimes stated as "A is prime")
- **Minimality** of a key is crucial in third condition above!
 - If R is in BCNF, obviously in 3NF.
 - If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no “good” decomps, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.
What Does 3NF Achieve?

- If 3NF violated by X \(\subseteq \) A, one of the following holds:
 - X is a subset of some key K ("partial dependency")
 - We store (X, A) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card) with key SBID and \(S \subseteq C \)
 - X is not a proper subset of any key. ("transitive dep.")
 - There is a chain of FDs K \(\subseteq \) X \(\subseteq \) A
 - So we can’t associate an X value with a K value unless we also associate an A value with an X value (different K’s, same X implies same A!)
- But: even if R is in 3NF, these problems could arise.
 - e.g., Reserves SBDC (note: “C” is for credit card here), S \(\subseteq \) C, C \(\subseteq \) S is in 3NF (why?), but for each reservation of sailor S, ‘same (S, C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.
 - You have to deal with the partial and transitive dependency issues in your application code!

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - If X \(\subseteq \) Y is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to ‘preserve’ JP \(\subseteq \) C. What if we also have J \(\subseteq \) C?
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and \`as small as possible\` in order to get the same closure as F.
- e.g., A \(\subseteq \) B, ABCD \(\subseteq \) E, EF \(\subseteq \) GH, ACDF \(\subseteq \) EG has the following minimal cover:
 - A \(\subseteq \) B, ACD \(\subseteq \) E, EF \(\subseteq \) G and EF \(\subseteq \) H
- M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
 - (in book)

Summary of Schema Refinement

- **BCNF**: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- Not in BCNF? Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!
- **Lossless-join, dependency preserving decomposition into BCNF impossible?** Consider 3NF.
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- Note: even more restrictive Normal Forms exist (we don’t cover them in this course, but some are in the book.)