Implementation of Relational Operations

R&G - Chapter 14

First comes thought; then organization of that thought, into ideas and plans; then transformation of those plans into reality. The beginning, as you will observe, is in your imagination.

Napoleon Hill

Introduction

- We’ve covered the basic underlying storage, buffering, and indexing technology. Now we can move on to query processing.
- Some database operations are EXPENSIVE
- Can greatly improve performance by being "smart"
 - e.g., can speed up 1,000,000x over naive approach
- Main weapons are:
 - clever implementation techniques for operators
 - exploiting “equivalencies” of relational operators
 - using statistics and cost models to choose among these.
- First: basic operators
- Then: join
- After that: optimizing multiple operators

Relational Operations

- We will consider how to implement:
 - Selection (□) Selects a subset of rows from relation.
 - Projection (□) Deletes unwanted columns from relation.
 - Join (□) Allows us to combine two relations.
 - Set-difference (—) Tuples in reln. 1, but not in reln. 2.
 - Union (□) Tuples in reln. 1 and in reln. 2.
 - Aggregation (SUM, MIN, etc.) and GROUP BY
- Since each op returns a relation, ops can be composed! After we cover the operations, we will discuss how to optimize queries formed by composing them.

Schema for Examples

Sailors (sid: integer, rname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

- Similar to old schema; rname added for variations.
- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Simple Selections

- Of the form \(\sigma \text{ attr op value } (R) \)
- Question: how best to perform? Depends on:
 - what indexes/access paths are available
 - what is the expected size of the result (in terms of number of tuples and/or number of pages)
- Size of result (cardinality) approximated as
 \(\text{size of } R \times \text{ reduction factor} \)
 - "reduction factor" is usually called selectivity.
 - estimate of reduction factors is based on statistics – we will discuss later.

Simple Selections (cont)

- With no index, unsorted:
 - Must essentially scan the whole relation
 - \(\text{cost} = \# \text{pages in } R \times \text{selectivity} \times \# \text{pages} \)
- With no index, sorted:
 - \(\text{cost of binary search + number of pages containing results} \)
 - \(\text{cost} = 10 \times \# \text{pages} \times \text{selectivity} \times \# \text{pages} \)
- With an index on selection attribute:
 - Use index to find qualifying data entries,
 - then retrieve corresponding data records,
 - Cost?
Using an Index for Selections

- Cost depends on qualifying tuples, and clustering.
 - Cost:
 - finding qualifying data entries (typically small)
 - plus cost of retrieving records (could be large w/o clustering).
 - In example "reserves" relation, if 10% of tuples qualify (100 pages, 10,000 tuples).
 - With a clustered index, cost is little more than 100 I/Os;
 - If unclustered, could be up to 10000 I/Os!
 - Unless you get fancy...

Selections using Index (cont)

- **Important refinement for unclustered indexes:**
 1. Find qualifying data entries.
 2. Sort the rid's of the data records to be retrieved.
 3. Fetch rid’s in order. This ensures that each data page is looked at just once (though # of such pages likely to be higher than with clustering).

General Selection Conditions

- \((\text{day}<8/9/94 \text{ AND name}='\text{Paul}') \text{ OR bid}=5 \text{ OR sid}=3\)
- Such selection conditions are first converted to conjunctive normal form (CNF):
 - \((\text{day}<8/9/94 \text{ OR bid}=5 \text{ OR sid}=3) \text{ AND (name}='\text{Paul'} \text{ OR bid}=5 \text{ OR sid}=3\)
- We only discuss the case with no ors (a conjunction of terms of the form \(\text{attr} \text{ op} \text{ value}\)).
 - A B-tree index matches (a conjunction of) terms that involve only attributes in a prefix of the search key.
 - Index on \(<a, b, c>\) matches \(a=5 \text{ AND } b=3\), but not \(b=3\).
 - (For Hash index, must have all attrs in search key)

Two Approaches to General Selections

- **First approach:** Find the most selective access path, retrieve tuples using it, and apply any remaining terms that don't match the index:
 - Most selective access path: An index or file scan that we estimate will require the fewest page I/Os.
 - Terms that match this index reduce the number of tuples retrieved; other terms are used to discard some retrieved tuples, but do not affect number of tuples/pages fetched.

Most Selective Index - Example

- Consider \(\text{day}<8/9/94 \text{ AND bid}=5 \text{ AND sid}=3\).
- A B+ tree index on \text{day} can be used;
 - then, \(\text{bid}=5 \text{ AND sid}=3\) must be checked for each retrieved tuple.
- Similarly, a hash index on \(<\text{bid}, \text{sid}>\) could be used;
 - Then, \(\text{day}<8/9/94\) must be checked.
- **How about a B+tree on \(<\text{name}, \text{day}>\)?**
- **How about a B+tree on \(<\text{day}, \text{name}>\)?**
- **How about a Hash index on \(<\text{day}, \text{name}>\)?**

Intersection of Rids

- **Second approach:** if we have 2 or more matching indexes (w/Alternatives (2) or (3) for data entries):
 - Get sets of rid's of data records using each matching index.
 - Then intersect these sets of rid's.
 - Retrieve the records and apply any remaining terms.
 - Consider \(\text{day}<8/9/94 \text{ AND bid}=5 \text{ AND sid}=3\). With a B+ tree index on \text{day} and an index on \text{sid}, we can retrieve rid's of records satisfying \(\text{day}<8/9/94\) using the first, rid's of records satisfying \(\text{sid}=3\) using the second, intersect, retrieve records and check \(\text{bid}=5\).
 - Note: commercial systems use various tricks to do this:
 - bit maps, bloom filters, index joins
Projection (DupElim)

- Issue is removing duplicates.
- Basic approach is to use sorting
 - 1. Scan R, extract only the needed attrs (why do this?)
 - 2. Sort the resulting set
 - 3. Remove adjacent duplicates
- Cost: Reserves with size ratio 0.25 = 250 pages. With 20 buffer pages can sort in 2 passes, so
 \[1000 + 250 + 2 \times 250 + 250 = 2500 \text{ I/Os} \]
- Can improve by modifying external sort algorithm (see chapter 12):
 - Modify Pass 0 of external sort to eliminate unwanted fields.
 - Modify merging passes to eliminate duplicates.
- Cost: for above case: read 1000 pages, write out 250 in runs of 40 pages, merge runs = 1000 + 250 + 250 = 1500.

DupElim Based on Hashing

- Just like our discussion of GROUP BY and aggregation from before!
 - But the aggregation function is missing
 - SELECT DISTINCT R.sid, R.bid FROM Reserves R
 - SELECT R.sid, R.bid FROM Reserves R GROUP BY R.sid, R.bid
- Cost for Hashing? Without "hybrid"
 - Assuming partitions fit in memory (i.e. #bufs >= square root of the #of pages of projected tuples)
 - read 1000 pages and write out partitions of projected tuples (250 pages)
 - Do dup elim on each partition (total 250 page reads)
 - Total: 1500 I/Os.
- With "hybrid hash": subtract the I/O costs of 1st partition

DupElim & Indexes

- If an index on the relation contains all wanted attributes in its search key, can do index-only scan.
 - Apply projection techniques to data entries (much smaller!)
- If an ordered (i.e., tree) index contains all wanted attributes as prefix of search key, can do even better:
 - Retrieve data entries in order (index-only scan), discard unwanted fields, compare adjacent tuples to check for duplicates.
- Same tricks apply to GROUP BY/Aggregation

Joins

- Joins are very common
- Joins are very expensive (worst case: cross product!)
- Many approaches to reduce join cost

Equality Joins With One Join Column

```sql
SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid = S1.sid
```

- In algebra: R \(\cap\) S. Common! Must be carefully optimized. R \(\cap\) S is large; so, R \(\cap\) S followed by a selection is inefficient.
- Note: join is associative and commutative.
- Assume:
 - \(M\) pages in \(R\), \(p_1\) tuples per page
 - \(N\) pages in \(S\), \(p_2\) tuples per page.
 - In our examples, \(R\) is Reserves and \(S\) is Sailors.
- We will consider more complex join conditions later.
- Cost metric: \# of I/Os. We will ignore output costs.

Simple Nested Loops Join

```sql
foreach tuple \(r\) in \(R\) do
  foreach tuple \(s\) in \(S\) do
    if \(r \leq s\) then add \(<r, s>\) to result
```

- For each tuple in the outer relation \(R\), we scan the entire inner relation \(S\).
- How much does this cost?
 \((p_1 \times M) \times N + M = 100 \times 1000 \times 500 + 1000 \text{ I/Os} \)
 - At 10ms/IO, Total: ???
- What if smaller relation \(S\) was outer?
- What assumptions are being made here?

Q: What is cost if one relation can fit entirely in memory?
Page-Oriented Nested Loops Join

foreach page \(b_2 \) in \(R \) do
foreach page \(b_3 \) in \(S \) do
foreach tuple \(r \) in \(b_2 \) do
foreach tuple \(s \) in \(b_3 \) do
 if \(r \equiv s \) then add \(<r, s> \) to result

• For each page \(R \), get each page \(S \), and write out matching pairs of tuples \(<r, s> \), where \(r \) is in \(R \)-page and \(s \) is in \(S \)-page.

• What is the cost of this approach?

<table>
<thead>
<tr>
<th>(M + N)</th>
<th>(M = 1000*500)</th>
<th>(N = 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost =</td>
<td>(500*1000 + 500)</td>
<td></td>
</tr>
</tbody>
</table>

Index Nested Loops Join

foreach tuple \(r \) in \(R \) do
foreach tuple \(s \) in \(S \) where \(r.s = s_j \) do
 add \(<r, s> \) to result

• If there is an index on the join column of one relation (say \(S \)), can make it the inner and exploit the index.

• Cost: \(M + N \) * cost of finding matching \(S \) tuples

• For each \(R \) tuple, cost of probing \(S \) index is about 2-4 \(I/Os \) for B+ tree. Cost of then finding \(S \) tuples (assuming Alt. (2) or (3) for data entries) depends on clustering.

• Clustered index: \(1 \) I/O per page of matching \(S \) tuples.

• Unclustered: up to \(1 \) I/O per matching \(S \) tuple.

Examples of Index Nested Loops

• B+-tree index (Alt. 2) on \(sid \) of Sailors (as inner):

 – Scan Reserves: \(1000 \) page I/Os, \(100*1000 \) tuples.

 – For each Reserves tuple: \(2 \) I/Os to get data entry in index, plus \(1 \) I/O to get (the exactly one) matching Sailors tuple. **Total:**

• B+-Tree index (Alt. 2) on \(sid \) of Reserves (as inner):

 – Scan Sailors: \(500 \) page I/Os, \(80*500 \) tuples.

 – For each Sailors tuple: \(2 \) I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. **Assuming uniform distribution**, \(2.5 \) reservations per sailor (\(100,000 / 40,000 \)). Cost of retrieving them is \(1 \) or \(2.5 \) I/Os depending on whether the index is clustered.

 – **Totals:**

“Block” Nested Loops Join

• Page-oriented NL doesn’t exploit extra buffers.

• Alternative approach: Use one page as an input buffer for scanning the inner \(S \), one page as the output buffer, and use all remaining pages to hold “block” (think “chunk”) of outer \(R \).

• For each matching tuple \(r \) in \(R \)-chunk, \(s \) in \(S \)-page, add \(<r, s> \) to result. Then read next \(R \)-chunk, scan \(S \), etc.

Examples of Block Nested Loops

• Cost: Scan of outer + \#outer chunks * scan of inner

 – \#outer chunks = \(\frac{\# \text { of pages of outer}}{\text {chunksize}} \)

• With Reserves (\(R \)) as outer, and \(100 \) pages of \(R \):

 – Cost of scanning \(R \) is \(1000 \) I/Os; a total of \(10 \) chunks.

 – Per chunk of \(R \), we scan Sailors (\(S \)): \(10*500 \) I/Os.

 – If space for just \(90 \) pages of \(R \), we would scan \(S \) 12 times.

• With 100-page chunk of Sailors as outer:

 – Cost of scanning \(S \) is \(500 \) I/Os; a total of \(5 \) chunks.

 – Per chunk of \(S \), we scan Reserves; \(5*1000 \) I/Os.

• If you consider seeks, it may be best to divide buffers evenly between \(R \) and \(S \).

 – Disk arm “jogs” between read of \(S \) and write of output

 – If output is not going to disk, this is not an issue

Sort-Merge Join (\(R \bowtie_{jog} S \))

• Sort \(R \) and \(S \) on the join column, then scan them to do a “merge” (on join col.), and output result tuples.

• Useful if

 – One or both inputs already sorted on join attribute(s)

 – Output should be sorted on join attribute(s)

• General scheme:

 – Do (Advance scan of \(R \) until current \(R \)-tuple > current \(S \)-tuple; Advance scan of \(S \) until current \(S \)-tuple > current \(R \)-tuple;)

 – Until current \(R \)-tuple = current \(S \)-tuple.

 – At this point, all \(R \) tuples with same value in \(R \) (current \(R \) group) and all \(S \) tuples with same value in \(s_j \) (current \(S \) group) match:

 – output \(<r, s> \) for all pairs of such tuples.

 – Like a mini nested loop

 – Then resume scanning \(R \) and \(S \).

• \(R \) is scanned once; each \(S \) group is scanned once per matching \(R \) tuple. (Multiple scans of an \(S \) group will probably find needed pages in buffer.)
Example of Sort-Merge Join

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>55.0</td>
</tr>
<tr>
<td>58</td>
<td>dusty</td>
<td>10</td>
<td>55.0</td>
</tr>
</tbody>
</table>

- **Cost:** $M \log M + N \log N + (M+N)$
 - The cost of scanning, $M+N$, could be $M*N$ (very unlikely!)
- With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: 7500.

(BNL cost: 2500 to 15000 I/Os)

Refinement of Sort-Merge Join

- We can combine the merging phases in the *sorting* of R and S with the merging required for the join.
 - Allocate 1 page per run of each relation, and 'merge' while checking the join condition
 - With $B > \sqrt{L}$, where L is the size of the larger relation, using the sorting refinement that produces runs of length $2B$ in Pass 0, #runs of each relation is $< B/2$.
 - **Cost:** read+write each relation in Pass 0 + read each relation in (only) merging pass (+ writing of result tuples).
 - In example, cost goes down from 7500 to 4500 I/Os.
- In practice, cost of sort-merge join, like the cost of external sorting, is *linear* (very few passes)

Hash-Join

- Partition both relations using hash h_R: R tuples in partition i will only match S tuples in partition i.
- Read in a partition of R, hash it using h_R ($\rightarrow h_S$). Scan matching partition of S, probe hash table for matches.
- #partitions $k \leq B$, and $B-1 > $ size of largest partition to be held in memory. Assuming uniformly sized partitions, and maximizing k, we get:
 - $k = B-1$, and $M/(B-1) < B-2$, i.e., B must be $> \sqrt{B}$
 - If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed.
 - If the hash function does not partition uniformly, one or more R partitions may not fit in memory. Can apply hash-join technique recursively to do the join of this R-partition with corresponding S-partition.

Observations on Hash-Join

- In partitioning phase, read+write both relations; $2(M+N)$. In matching phase, read both relations; $M+N$ I/Os.
- In our running example, this is a total of 4500 I/Os.
- Sort-Merge Join vs. Hash Join:
 - Given a minimum amount of memory (what is this, for each?) both have a cost of $3(M+N)$ I/Os. Hash Join superior on this count if relation sizes differ greatly. Also, Hash Join shown to be highly parallelizable.
 - Sort-Merge less sensitive to data skew; result is sorted.
 - Question: why is skew more dangerous in join than in unary hashing?!!

Cost of Hash-Join

- In partitioning phase, read+write both relations; $2(M+N)$. In matching phase, read both relations; $M+N$ I/Os.
- In our running example, this is a total of 4500 I/Os.

General Join Conditions

- Equalities over several attributes (e.g., $R.sid=S.sid$ and $R.sname=S.sname$):
 - For Index NL, build index on $<sid, sname>$ (if S is inner); or use existing indexes on sid or $sname$.
 - For Sort-Merge and Hash Join, sort/partition on combination of the two join columns.
- Inequality conditions (e.g., $R.sname < S.sname$):
 - For Index NL, need (clustered!) B+ tree index.
 - Range probes on inner; # matches likely to be much higher than for equality joins.
 - Hash Join, Sort Merge Join not applicable!
 - Block NL quite likely to be the best join method here.
Set Operations

- Intersection and cross-product special cases of join.
- Union (Distinct) and Except similar; we’ll do union.
- Sorting based approach to union:
 - Sort both relations (on combination of all attributes).
 - Scan sorted relations and merge them.
 - Alternative: Merge runs from Pass 0 for both relations.
- Hash based approach to union:
 - Partition R and S using hash function h.
 - For each S-partition, build in-memory hash table (using h2), scan corr. R-partition and add tuples to table while discarding duplicates.

Impact of Buffering

- If several operations are executing concurrently, estimating the number of available buffer pages is guesswork.
- Repeated access patterns interact with buffer replacement policy.
 - e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough buffer pages to hold inner, replacement policy does not matter. Otherwise, pinning a few pages is best, LRU is worst (sequential flooding).
 - Does replacement policy matter for Block Nested Loops?
 - What about Index Nested Loops? Sort-Merge Join?
 - REMEMBER THIS!

Summary

- A virtue of relational DBMSs: queries are composed of a few basic operators; the implementation of these operators can be carefully tuned (and it is important to do this).
- Many alternative implementation techniques for each operator; no universally superior technique for most operators.
- Must consider available alternatives for each operation in a query and choose best one based on system statistics, etc. This is part of the broader task of optimizing a query composed of several ops.