Relational Algebra

R & G, Chapter 4

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race.

-- Alfred North Whitehead (1861 - 1947)

Relational Query Languages

• **Query languages**: Allow manipulation and retrieval of data from a database.
• **Relational model supports simple, powerful QLs**:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
• **Query Languages != programming languages!**
 - QLs not expected to be “Turing complete”.
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for implementation:

Relational Algebra: More operational, very useful for representing execution plans.

Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-procedural, declarative)

→ Understanding Algebra & Calculus is key to understanding SQL, query processing!

Relational Algebra: 5 Basic Operations

- **Selection** () Selects a subset of rows from relation (horizontal).
- **Projection** () Retains only wanted columns from relation (vertical).
- **Cross-product** (X) Allows us to combine two relations.
- **Set-difference** (–) Tuples in r1, but not in r2.
- **Union** (∪) Tuples in r1 and/or in r2.

Since each operation returns a relation, operations can be composed! (Algebra is “closed”.)

Example Instances

<table>
<thead>
<tr>
<th>bid</th>
<th>bname</th>
<th>color</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Interlake</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Interlake</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Clipper</td>
<td>green</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Marine</td>
<td>red</td>
<td></td>
</tr>
</tbody>
</table>

Boats

Preliminaries

• A query is applied to **relation instances**, and the result of a query is also a relation instance.
 - **Schemas of input** relations for a query are fixed (but query will run over any legal instance)
 - The schema for the result of a given query is also fixed. It is determined by the definitions of the query language constructs.
• **Positional vs. named-field notation**:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL
 - Though positional notation is not encouraged
Projection

- Examples: $\cup_{\text{age}(S2)}$, $\cup_{\text{name, rating}(S2)}$
- Retains only attributes that are in the "projection list".

- **Schema** of result:
 - exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates
 - How do they arise? Why remove them?
 - Note: real systems typically don’t do duplicate elimination unless the user explicitly asks for it.
 - Why not?

\[
\begin{array}{cccc}
\text{sid} & \text{name} & \text{rating} & \text{age} \\
28 & \text{yuppy} & 9 & 35.0 \\
31 & \text{lubber} & 8 & 55.5 \\
44 & \text{guppy} & 5 & 35.0 \\
58 & \text{rusty} & 10 & 35.0 \\
\end{array}
\]

Selection (\mathcal{S})

- Selects rows that satisfy *selection condition*.
- Result is a relation.
- **Schema** of result is same as that of the input relation.
- Do we need to do duplicate elimination?

\[
\begin{array}{cccc}
\text{sid} & \text{name} & \text{rating} & \text{age} \\
22 & \text{dustin} & 7 & 45.0 \\
31 & \text{lubber} & 8 & 55.5 \\
58 & \text{rusty} & 10 & 35.0 \\
\end{array}
\]

Union

- All of these operations take two input relations, which must be **union-compatible**:
 - Same number of fields.
 - `Corresponding` fields have the same type.
- For which, if any, is duplicate elimination required?

\[
\begin{array}{cccc}
\text{sid} & \text{name} & \text{rating} & \text{age} \\
22 & \text{dustin} & 7 & 45.0 \\
31 & \text{lubber} & 8 & 55.5 \\
44 & \text{guppy} & 5 & 35.0 \\
58 & \text{rusty} & 10 & 35.0 \\
\end{array}
\]

Set Difference

\[
\begin{array}{cccc}
\text{sid} & \text{name} & \text{rating} & \text{age} \\
28 & \text{yuppy} & 9 & 35.0 \\
31 & \text{lubber} & 8 & 55.5 \\
44 & \text{guppy} & 5 & 35.0 \\
58 & \text{rusty} & 10 & 35.0 \\
\end{array}
\]
Cross-Product

• S1 \(\times\) R1: Each row of S1 paired with each row of R1.
• Q: How many rows in the result?
• Result schema has one field per field of S1 and R1, with field names “inherited” if possible.
 – May have a naming conflict: Both S1 and R1 have a field with the same name.
 – In this case, can use the renaming operator: \(\square(C(1 \times \text{sid}1, 5 \times \text{sid}2), S1 \times R1)\)

Cross Product Example

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

R1 \(\times\) S1 =

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Intersection

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

S1 \(\times\) S2

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Natural Join Example

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

R1 \(\bowtie\) S1 =

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

Compound Operator: Intersection

• In addition to the 5 basic operators, there are several additional “Compound Operators”
 – These add no computational power to the language, but are useful shorthands.
 – Can be expressed solely with the basic ops.

• Intersection takes two input relations, which must be union-compatible.
• Q: How to express it using basic operators?
 \(R \cap S = R \setminus (R \setminus S)\)

Compound Operator: Join

• Joins are compound operators involving cross product, selection, and (sometimes) projection.
• Most common type of join is a “natural join” (often just called “join”). \(R \bowtie S\) conceptually is:
 – Compute \(R \times S\)
 – Select rows where attributes that appear in both relations have equal values
 – Project all unique attributes and one copy of each of the common ones.
• Note: Usually done much more efficiently than this.
• Useful for putting “normalized” relations back together.
Other Types of Joins

- **Condition Join (or "theta-join"):**
 \[R \bowtie_c S = \bigcap_c (R \setminus S) \]

 - **Result schema** same as that of cross-product.
 - May have fewer tuples than cross-product.

- **Equi-Join:** Special case: condition \(c \) contains only conjunction of equalities.

 \[R \bowtie_s \bowtie_t ... \bowtie_k S \]

 - May have fewer tuples than cross-product.

Examples of Division A/B

<table>
<thead>
<tr>
<th>sno</th>
<th>pno</th>
<th>pno</th>
<th>pno</th>
<th>pno</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p1</td>
<td>p2</td>
<td>p2</td>
<td>p2</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
<td>p1</td>
<td>p3</td>
<td>p4</td>
</tr>
<tr>
<td>s1</td>
<td>p3</td>
<td>s1</td>
<td>p4</td>
<td>s4</td>
</tr>
<tr>
<td>s2</td>
<td>s1</td>
<td>s2</td>
<td>s3</td>
<td>s4</td>
</tr>
<tr>
<td>s2</td>
<td>p2</td>
<td>s2</td>
<td>s4</td>
<td>s1</td>
</tr>
<tr>
<td>s3</td>
<td>s4</td>
<td>s2</td>
<td>s3</td>
<td>s4</td>
</tr>
<tr>
<td>s4</td>
<td>p4</td>
<td>s4</td>
<td>s1</td>
<td>s4</td>
</tr>
</tbody>
</table>

\(A \bowtie B1 \bowtie B2 \bowtie B3 \)

Examples

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>45.0</td>
<td>7</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>55.5</td>
<td>8</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>55.5</td>
<td>8</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bid</th>
<th>bname</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Interlake</td>
<td>Blue</td>
</tr>
<tr>
<td>102</td>
<td>Interlake</td>
<td>Red</td>
</tr>
<tr>
<td>103</td>
<td>Clipper</td>
<td>Green</td>
</tr>
<tr>
<td>104</td>
<td>Marine</td>
<td>Red</td>
</tr>
</tbody>
</table>

Compound Operator: Division

- Useful for expressing “for all” queries like: Find units of sailors who have reserved all boats.
- For A/B attributes of B are subset of attrs of A.
 - May need to “project” to make this happen.
- E.g., let A have 2 fields, \(x \) and \(y \); B have only field \(y \):

 \[A/B = \{ (x) | \forall y (B(x, y) \land A) \} \]

 \(A/B \) contains all tuples \((x) \) such that for every \(y \) tuple in \(B \), there is an \(xy \) tuple in \(A \).

Expressing A/B Using Basic Operators

- **Division is not essential op; just a useful shorthand.**
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- **Idea:** For A/B, compute all \(x \) values that are not ‘disqualified’ by some \(y \) value in B.

 - \(x \) value is disqualified if by attaching \(y \) value from B, we obtain an \(xy \) tuple that is not in A.

 \[\{ x \} \setminus \bigcap_{y} B(x, y) \bigcap A \]

 \(A/B \) contains all tuples \((x) \) such that for every \(y \) tuple in \(B \), there is an \(xy \) tuple in \(A \).

Find names of sailors who’ve reserved boat #103

- **Solution 1:** \(\exists_{\text{name}} \left(\bowtie_{\text{bid}=103} \text{Reserves} \right) \bowtie \text{Sailors} \)

- **Solution 2:** \(\exists_{\text{name}} \left(\bowtie_{\text{bid}=103} \left(\text{Reserves} \right) \right) \bowtie \text{Sailors} \)
Find names of sailors who’ve reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
 \[\pi_{\text{color}}(\pi_{\text{red}}(\text{Boats}) \bowtie \text{Reserves}) \bowtie \text{Sailors} \]

 A more efficient solution:
 \[\pi_{\text{color}}(\pi_{\text{red}}(\text{Boats})) \bowtie \text{Reserves} \bowtie \text{Sailors} \]

 A query optimizer can find this given the first solution!

Find sailors who’ve reserved a red or a green boat

- Can identify all red or green boats, then find sailors who’ve reserved one of these boats:
 \[\pi_{\text{color}}(\pi_{\text{red}} \cup \pi_{\text{green}}(\text{Boats})) \bowtie \text{Reserves} \bowtie \text{Sailors} \]

Find sailors who’ve reserved a red and a green boat

- Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):
 \[\pi_{\text{sid}}(\pi_{\text{red}}(\text{Boats}) \bowtie \text{Reserves}) \bowtie \text{Sailors} \]
 \[\pi_{\text{sid}}(\pi_{\text{green}}(\text{Boats}) \bowtie \text{Reserves}) \bowtie \text{Sailors} \]
 \[\pi_{\text{name}}(\text{Tempred} \cap \text{Tempgreen}) \bowtie \text{Sailors} \]

Find the names of sailors who’ve reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:
 \[\pi_{\text{bid}}(\pi_{\text{sid}}(\text{Reserves}) / (\pi_{\text{bid}}(\text{Boats})) \bowtie \text{Sailors} \]

 To find sailors who’ve reserved all ’Interlake’ boats:
 \[\pi_{\text{bid}}(\pi_{\text{name}}=\text{Interlake}(\text{Boats})) \bowtie \text{Sailors} \]

Summary

- Relational Algebra: a small set of operators mapping relations to relations
 - Operational, in the sense that you specify the explicit order of operations
 - A closed set of operators! Can mix and match.
- Basic ops include: \(\bowtie, \cup, \cap, - \)
- Important compound ops: \(\bowtie, \cup, \cap, / \)