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ABSTRACT

The rise of multicore processors and cloud computing is putting
enormous pressure on the software community to find solu-
tions to the difficulty of parallel and distributed programming.
At the same time, there is more—and more varied—interest in
data-centric programming languages than at any time in com-
puting history, in part because these languages parallelize nat-
urally. This juxtaposition raises the possibility that the theory
of declarative database query languages can provide a foun-
dation for the next generation of parallel and distributed pro-
gramming languages.

In this paper I reflect on my group’s experience over seven
years using Datalog extensions to build networking protocols
and distributed systems. Based on that experience, I present
a number of theoretical conjectures that may both interest the
database community, and clarify important practical issues in
distributed computing. Most importantly, I make a case for
database researchers to take a leadership role in addressing the
impending programming crisis.

This is an extended version of an invited lecture at the ACM
PODS 2010 conference [32].

1. INTRODUCTION
This year marks the forty-fifth anniversary of Gordon Moore’s

paper laying down the Law: exponential growth in the density
of transistors on a chip. Of course Moore’s Law has served
more loosely to predict the doubling of computing efficiency
every eighteen months. This year is a watershed: by the loose
accounting, computers should be 1 Billion times faster than
they were when Moore’s paper appeared in 1965.

Technology forecasters appear cautiously optimistic that Moore’s
Law will hold steady over the coming decade, in its strict in-
terpretation. But they also predict a future in which continued
exponentiation in hardware performance will only be avail-
able via parallelism. Given the difficulty of parallel program-
ming, this prediction has led to an unusually gloomy outlook
for computing in the coming years.

At the same time that these storm clouds have been brew-
ing, there has been a budding resurgence of interest across
the software disciplines in data-centric computation, includ-
ing declarative programming and Datalog. There is more—
and more varied—applied activity in these areas than at any
point in memory.

The juxtaposition of these trends presents stark alternatives.
Will the forecasts of doom and gloom materialize in a storm
that drowns out progress in computing? Or is this the long-
delayed catharsis that will wash away today’s thicket of im-
perative languages, preparing the ground for a more fertile
declarative future? And what role might the database com-
munity play in shaping this future, having sowed the seeds of
Datalog over the last quarter century?

Before addressing these issues directly, a few more words
about both crisis and opportunity are in order.

1.1 Urgency: Parallelism

I would be panicked if I were in industry.
— John Hennessy, President, Stanford University [35]

The need for parallelism is visible at micro and macro scales.
In microprocessor development, the connection between the
“strict” and “loose” definitions of Moore’s Law has been sev-
ered: while transistor density is continuing to grow exponen-
tially, it is no longer improving processor speeds. Instead, chip
manufacturers are packing increasing numbers of processor
cores onto each chip, in reaction to challenges of power con-
sumption and heat dissipation. Hence Moore’s Law no longer
predicts the clock speed of a chip, but rather its offered degree
of parallelism. And as a result, traditional sequential programs
will get no faster over time. For the first time since Moore’s
paper was published, the hardware community is at the mercy
of software: only programmers can deliver the benefits of the
Law to the people.

At the same time, Cloud Computing promises to commodi-
tize access to large compute clusters: it is now within the bud-
get of individual developers to rent massive resources in the
worlds’ largest computing centers. But again, this computing
potential will go untapped unless those developers can write
programs that harness parallelism, while managing the hetero-
geneity and component failures endemic to very large clusters
of distributed computers.

Unfortunately, parallel and distributed programming today
is challenging even for the best programmers, and unwork-
able for the majority. In his Turing lecture, Jim Gray pointed
to discouraging trends in the cost of software development,
and presented Automatic Programming as the twelfth of his
dozen grand challenges for computing [26]: develop methods
to build software with orders of magnitude less code and ef-
fort. As presented in the Turing lecture, Gray’s challenge con-
cerned sequential programming. The urgency and difficulty of
his twelfth challenge has grown markedly with the technology
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trends toward parallelism. Hence the spreading cloud of doom
and gloom.

1.2 Resurgency: Springtime for Datalog

In the spring time, the only pretty ring time
When birds do sing, hey ding a ding, ding;
Sweet lovers love the spring.
— Shakespeare

With these storm clouds on the horizon, it should be a matter
of some cheer for database theoreticians that Datalog variants,
like crocuses in the snow, have recently been seen cropping
up outside the walled garden of PODS. Datalog and related
languages have been proposed for use in a wide range of prac-
tical settings including security and privacy protocols [37, 20,
79], program analysis [43, 73, 28], natural language process-
ing [21, 70], probabilistic inference [8, 71], modular robotics
[7], multiplayer games [74], telecom diagnosis [1], network-
ing [46] and distributed systems [3]. The renewed interest ap-
pears not to be the result of a coordinated effort, but rather (to
hybridize metaphors) a grassroots phenomenon arising inde-
pendently in different communities within computer science.

Over the past few years, my group has nurtured a patch
of this activity in the unlikely ground of Berkeley’s systems
projects, with a focus on inherently parallel tasks in network-
ing and distributed systems. The effort has been quite fruit-
ful: we have demonstrated full-featured Datalog-style imple-
mentations of distributed systems that are orders of magni-
tude more compact than popular imperatively implemented
systems, with competitive performance and significantly ac-
celerated software evolution [46, 3]. Evidence is mounting
that Datalog can serve as the rootstock of a much simpler
family of languages for programming serious parallel and dis-
tributed software. Encouraged by these results, we are cul-
tivating a new language in this style for Cloud Computing,
which we call Bloom1.

1.3 Synergy: The Long-Awaited Question

It shall be:
when I becloud the earth with clouds,
and in the clouds my bow is seen,
I will call to mind my covenant
that is between me and you and all living beings—
all flesh: never again shall the waters become a
Deluge, to bring all flesh to ruin!
– Genesis, 8:14-15 [24]

Though Gray speaks only vaguely about “non-procedural”
languages in his Turing lecture, it is hard to imagine he did not
have in mind the success of SQL over COBOL as one model
for progress2 And parallelism has proved quite tractable in the
SQL context. Recently, David Patterson wrote soberly of the
“Dead Computer Society” of parallel hardware vendors in the
1980’s [35], but notably omitted the survivor from that era:
1In tribute to Gray’s twelfth challenge, our research project
is called BOOM: the Berkeley Orders Of Magnitude project.
Bloom is the language of BOOM. We hope BOOM and Bloom
can be an antidote to doom and gloom.
2Butler Lampson filled this gap in his follow-up article in the
50th anniversary issue of J. ACM, though he questioned the
generality of declarative approaches [40].

parallel database pioneer Teradata. It happens that the rela-
tional algebra parallelizes very naturally over large datasets,
and SQL programmers benefit without modifications to their
code. This point has been rediscovered and amplified via the
recent enthusiasm for MapReduce programming and “Big Data,”
which have turned data-parallelism into common culture across
computing. It seems that we are all database people nowadays.

The Parallel Computing literature traditionally pooh-poohs
these examples as “embarrassingly parallel.” But should we
really be embarrassed? Perhaps after a quarter century of fight-
ing the “hard” problems of parallelism, the rational way for-
ward is to start with an “easy” kernel to parallelize—something
like the relational algebra—and then extend that kernel to more
general-purpose computation. As PODS veterans well know,
database languages have natural Turing-complete extensions
(e.g., [11, 68]).

This direction for tackling parallelism and distribution raises
questions that should warm the heart of a database theoreti-
cian. How does the complexity hierarchy of logic languages
relate to parallel models of computation? What are appropri-
ate complexity models for the realities of modern distributed
systems, where computation is cheap and coordination is ex-
pensive? Can the lens of logic provide better focus on what is
“hard” to parallelize, what is “embarrassingly easy,” and what
falls in between? And finally, a question close to the heart
of the PODS conference: if Datalog has been The Answer all
these years, is the crisis in parallel and distributed program-
ming The Question it has been waiting for?

I explore some of these issues below, by way of both expe-
rience and conjecture.

2. BACKGROUND: DEDALUS

We work on the other side of time.
— Sun Ra

It has been seven years since my group began exploring the
use of recursive queries to implement systems, based on lan-
guages including NDlog [47], Overlog [17], and SNLog [15].
But only in the last twelve months have we settled on a Datalog
variant that cleanly captures what we see as the salient seman-
tic issues for parallel and distributed computing. We call the
language Dedalus, and its key contribution is the use of time
as an organizing principle for distributed systems, rather than
distance in physical space3 [5]. The design of Dedalus cap-
tures the main semantic reality of distribution: two comput-
ers are effectively “distributed” if they cannot directly reason
about each other’s perception of time. The time dimension in
Dedalus succinctly captures two important aspects of time in
distributed systems: intra-node atomicity and sequencing of
state transitions, and inter-node temporal relations induced by
the receipt of networked data.

Dedalus clarifies many issues that were semantically am-
biguous in our early work, and I will use it throughout this
3My student Peter Alvaro explains the name as follows:
“Dedalus is intended as a precursor language for Bloom in
the BOOM project. As such, it is derived from the character
Stephen Dedalus in James Joyce’s Ulysses, whose dense and
precise chapters precede those of the novel’s hero, Leopold
Bloom. The character Dedalus, in turn, was partly derived
from Daedalus, the greatest of the Greek engineers and father
of Icarus. Unlike Overlog, which flew too close to the sun,
Dedalus remains firmly grounded.” [5]
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paper, even for examples that predate the language. Before
proceeding, I pause for a casual introduction to Dedalus tar-
geted at database researchers familiar with Datalog.

Dedalus is a simple temporal extension to stratified Datalog
in which each relation schema has a “timestamp” attribute in
its rightmost position. For intuition, this attribute can be con-
sidered to contain sequence numbers from a logical clock. The
use of this attribute will always be clear from context, so we
can omit it from the syntax of Dedalus predicates as we will
see shortly.

There are three kinds of rules in Dedalus:

• Deductive rules, in which all predicates share the same
variable in the timestamp attribute. For such rules, we
omit the timestamps completely, and the result looks
like traditional Datalog. The first two rules of Figure 1
are deductive; all predicates in those rules should be
considered to have a variable T in their missing right-
most position. Intuitively, they express deduction within
each timestep.

• Inductive rules have the same timestamp variable in all
body predicates, but the head’s timestamp variable is
equal to the successor of the body predicates’ times-
tamp variable. In this case we omit the body predicates’
timestamp variable, and mark the head predicate with
the suffix @next. The third rule of Figure 1 is induc-
tive; all the body predicates have an omitted rightmost
variable T, the head has an omitted rightmost variable S,
and there is an implicit body predicate succ(T, S).
Intuitively, this rule says that the state predicate at
timestep T + 1 will contain the contents of toggle
from timestep T.

• Asynchronous rules are like inductive rules, except that
the head’s timestamp variable is chosen non-deterministically
for each binding of the body variables in time, using
Greco and Zaniolo’s choice construct [27]. We no-
tate asynchronous rules with the head suffix @async.
The final rule of Figure 1 is asynchronous. It can be
read akin to the inductive rule case, but with a different
implicit body predicate: choice({X, T}, {S}),
which indicates that for each pair of assignments to vari-
ables {X, T}, a value S is non-deterministically cho-
sen. Intuitively, this syntax says that announce tuples
are copies of toggle tuples, but the
announce tuples contain (or “appear at”) a non-determi-
nistic timestep. Positive infinity is included in the do-
main of timestamps, corresponding to the possibility of
failure in computing or communicating an asynchronous
result. Most useful programs constrain the head times-
tamp to be larger than the body timestamp, but this is not
a requirement of the language. In Section 4.2 I return to
the topic of Dedalus programs that can send messages
into their own past.

Dedalus includes timestamps for three reasons: to capture
state visibility via timestamp unification, to capture sequen-
tial atomic update via inductive rules, and to account for the
unpredictable network delays, failures and machine-clock dis-
crepancies that occur in distributed systems via asynchronous
rules. I return to these issues below, in contexts where the pre-
decessors to Dedalus ran into difficulties.

3. EXPERIENCE

No practical applications of recursive query the-
ory ... have been found to date.
—Michael Stonebraker, 1998
Readings in Database Systems, 3rd Edition
Stonebraker and Hellerstein, eds. [34]

Over the last seven years we have implemented and pub-
lished a wide range of algorithms, protocols and complete sys-
tems specified declaratively in Datalog-like languages. These
include distributed crawlers [18, 49], network routing proto-
cols [50], overlay networks including Chord [48], distributed
Bayesian inference via message passing on junction trees [8],
relational query optimization [17], distributed consensus (Paxos)
and two-phase commit [4], sensornet protocols [15], network
caching and proxying [14, 16], file systems and job sched-
ulers [3].

Many of these efforts were justified in terms of radical re-
ductions in code size, typically orders of magnitude smaller
than competing imperative implementations. In some cases [47,
14, 16], the results also demonstrated the advantages of auto-
matic optimizations for declarative programs.

As a student I had little love for Datalog, and it is tempt-
ing to make amends by documenting my growing apprecia-
tion of the language and its literature. But my learning process
has been slow and disorderly, and remains far from complete;
certainly not a useful organizing structure for sharing the ex-
periences from my group. Instead, this section is organized
thematically. I start by describing some general behaviors and
design patterns we encountered, some deficiencies of the lan-
guages we have struggled with, and implications of these for
parallelism and distribution.

3.1 Recursion (Rewriting The Classics)
Our work on declarative programming began in reaction

to the Web, with its emphasis on large graphs and networks.
As we began working directly on this idea, we found that
Datalog-style recursion had natural applications and advan-
tages in many settings. There is no question in our minds today
that 1980’s-era arguments against the relevance of general re-
cursion were short-sighted. Unfortunately, there has been too
little success connecting the dots between potential and reality
in this domain. Critical Web infrastructure for managing large
graphs is still written in imperative languages. Closer to home,
traditional RDBMS internals such as dynamic programming
are also coded imperatively. Part of our agenda has been to si-
multaneously highlight the importance of recursion to practi-
tioners in the database field, and to highlight the importance of
declarative programming to practitioners in the systems field.

3.1.1 Finding Closure Without the Ancs
Classic discussions of Datalog start with examples of tran-

sitive closure on family trees: the dreaded anc and desc re-
lations that afflicted a generation of graduate students4. My
4The tedium of tiresome table-names (l’ennui de l’entité) goes
back to the founders of Datalog; the original victims can be
identified by a same-generation query. However, victims often
grow into abusers—a form of transitive closure—and I confess
to occasional pedagogical lapses myself. This phenomenon
is of course not limited to Datalog; any student of SQL can
empathize.
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toggle(1) :- state(0).
toggle(0) :- state(1).
state(X)@next :- toggle(X).
announce(X)@async :- toggle(X).

toggle(1, T) :- state(0, T).
toggle(0, T) :- state(1, T).
state(X, S) :- toggle(X, T), succ(T, S).
announce(X, S) :- toggle(X, T), choice({X,T}, {S}).

Figure 1: A simple Dedalus program, written with syntactic sugar (left), and with standard Datalog notation (right).

group’s work with Datalog began with the observation that
more interesting examples were becoming hot topics: Web in-
frastructure such as webcrawlers and PageRank computation
were essentially transitive closure computations, and recur-
sive queries should simplify their implementation. To back
up this claim, we began by building a Deep Web data crawler
using recursive streaming SQL in the Telegraph project [18].
Subsequently we built a distributed crawler for the Gnutella
peer-to-peer network as a cyclic dataflow of relational alge-
bra in the PIER p2p query engine [49]. Both of these exam-
ples were simple monotonic programs that accumulated a list
of the nodes reached from one or more starting points. We
later built more sophisticated distributed programs with tran-
sitive closure at their core, including network routing protocols
for Internet and wireless settings [50, 47, 15], and distributed
versions of Bayesian belief propagation algorithms that pass
weights along the edges [8]. As expected, Datalog was an ex-
cellent language for expressing transitive closures and graph
traversals, and these tasks were almost trivial to code.

Building upon previous experience implementing RDBMS
internals, my group found it relatively easy to build single-
node implementations of the recursive query engines support-
ing these ideas. But to move to a distributed setting, two is-
sues remained to be worked out: specification of distributed
joins, and modifications to recursive query evaluation to allow
asynchronous streaming of derivations across networks. These
issues are discussed in Section 3.2.

3.1.2 DP and Optimization: Datalog in the Mir-
ror

Another recursive design pattern we saw frequently was Dy-
namic Programming (DP). Our first work in this area was mo-
tivated by the Systems community imperative to “sip your own
champagne”5: we wanted to implement a major part of our
Overlog runtime in Overlog. To this end we built a cost-based
query optimizer for Overlog named Evita Raced, itself written
in Overlog as a “metacompiler” allowing for program reflec-
tion6 [17]. Evita Raced is an Overlog program that runs in a
centralized fashion without parallelism, and its DP kernel is
quite similar to Greco and Zaniolo’s general presentation of
greedy search in extended Datalog [27]. Evita Raced makes
the connection between the System R optimizer—a warhorse
of the SIGMOD canon—and the compact implementation of
DP in stratified Datalog. If this had been demonstrated in the
1980’s during the era of extensible query optimizer architec-
tures, it might have alleviated doubts about the utility of gen-
eralized recursion7. In addition to cost-based search via DP,

5This is a more palatable (and self-congratulatory) version of
the phenomenon sometimes called dogfooding [75].
6As Tyson Condie notes in his paper, the name “Evita Raced”
is itself a reflection on our work: the imperfection in the
name’s mirroring captures the imperfect declarativity of Over-
log, subsequently addressed in Dedalus.
7In his influential work on this topic, Guy Lohman makes an

Evita Raced also uses Overlog to implement classic Datalog
optimizations and analyses, including magic sets and stratifi-
cation, which are themselves based on simple transitive clo-
sures. The fact that traversals of Datalog rule/goal graphs are
not described in terms of Datalog is also something of a pity,
both in terms of conceptual elegance and compactness of code.
But as a student of Datalog I am sypathetic to the pragmatics
of exposition: it is asking a lot of one’s readers to learn about
recursive query optimization via metacircular logic program-
ming8!

More recently, we used recursive SQL to implement the
Viterbi DP algorithm for probabilistic inference on Conditional
Random Fields, a technique commonly used in statistical In-
formation Extraction [71, 70]. This connection may be more
surprising to database researchers than to the machine learn-
ing community: at roughly the same time as our work on dis-
tributed systems, researchers in AI have been using logic and
forward chaining to do efficient dynamic programming and
search [21, 22].

Moving to a distributed setting, the main challenge that arises
from Dynamic Programming is the handling of stratified ag-
gregation (minima and maxima, etc.) across machines. I re-
visit this issue in Section 3.4.3.

3.2 Space, Communication and Synchrony
Much of our work has been focused on using Datalog-like

languages for networking and distributed systems. This led us
to a series of designs to address spatial partitioning and net-
work communication in languages such as Overlog. Also in-
herent in these languages was the notion of network delay and
its relationship to asynchronous evaluation.

3.2.1 Distributed State: Network Data Indepen-
dence

One of our first extensions of Datalog was to model the par-
titioning of relations across machines in the style of parallel
databases. As a matter of syntax, we required each relation to
have a distinguished location specifier attribute. This attribute
(marked with the prefix ‘@’) had to be from the domain of net-
work addresses in the system. Using this notation, a traditional
set of network neighbor tables at each node can be represented
by a global relation:

link(@Src, Dest, Weight)}

The location specifier in this declaration states that each tu-
ple is stored at the network address of the source machine,
leading to an interestingly declarative approach to network-
ing. Location specifiers simply denote where data must be

intriguing reference to logic programming, but then steps away
from the idea, contrasting the deduction of “relations” from the
deduction of “operators” [44].
8The NAIL! implementers mention using CProlog to gener-
ate rule/goal graphs for Datalog, but present imperative pseu-
docode for their algorithms [56].
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stored; communication is induced automatically (and flexibly)
to achieve this specification. As one example, consider a sim-
ple version of a multicast protocol that sends messages to des-
ignated groups of recipients:

received(@Node, Src, Content)@async
:- msg(@Src, GroupID, Content),

members(@Src, GroupID, Node).

The simplicity here comes from two features: representing
multicast group lookup as a relational join, and the bulk speci-
fication of message shipping to all recipients via a single head
variable @Node. Note also that this rule must be asynchronous
due to the communication: we cannot say when each message
will be received.

As a richer example, consider the inductive rule in path-
finding:

path(@Src, Dest)@async
:- link(@Src, X), path(@X, Dest).

Here, the unification in the body involves a variable X that is
not a location specifier in the first predicate of the rule body;
as a result, communication of some sort is required to eval-
uate the body. That communication can happen in at least
two ways: (1) link tuples can be passed to the locations in
their X values, and resulting join tuples shipped to the values
in their Src attribute, or (2) the rule can be rewritten to be
“left-recursive”:

path(@Src, Dest)@async
:- path(@Src, X), link(@X, Dest).

In this case path tuples can be sent to the address in their X
attribute, joined with link tuples there, and the results returned
to the address in their Src attribute. As it happens, evaluating
these two programs in the standard left-to-right order corre-
sponds to executing two different well-known routing proto-
cols, one used in Internet infrastructure and another common
in wireless communication [49]. Raising the abstraction of
point-to-point communication to join specification leads to a
wide range of optimizations for rendezvous and proxying [14,
16]. This thrust is reminiscent of the shift from navigational
data models to the relational model, but in the network rout-
ing domain—an increasingly attractive idea as Internet devices
and subnets evolve quickly and heterogeneously [31].

We considered this notion of Network Data Independence
to be one of the key contributions we were able to bring to the
Networking research community. On the other hand, as I dis-
cuss in Section 3.5.2, the global database abstraction inherent
in this syntax caused us difficulty in a more general setting of
distributed systems.

3.2.2 Embracing Time, Evolving State
Prior to the development of Dedalus, we had significant

problems modeling state updates in our languages. For exam-
ple, Overlog provided an operational model of persistent state
with updates, including SQL-like syntax for deletion, and tu-
ple “overwrites” via primary key specifications in head pred-
icates. But, unlike SQL, there was no notion of transactions,
and issues of update visibility were left ambiguous. The lack
of clear update semantics caused us ongoing frustration, and
led to multiple third-party efforts at clarifying our intended
operational semantics by examining our interpreter, P2, more
closely than perhaps it merited [58, 54].

q(V,R)@next :- q(V,R), !del_q(V,R).
qmin(V, min<R>) :- q(V,R).
p(V,R)@next :- q(V,R), qmin(V,R).
del_q(V,R) :- q(V,R), qmin(V,R).

Figure 2: A queue implementation in Dedalus. Predicate

q represents the queue; items are being dequeued into a

predicate p. Throughout, the variable V is a value being

enqueued, and the variable R represents a position (or pri-

ority) in the queue.

An example of the difficulty of state update arose early in
modeling the Symphony distributed hash table [53]. In Sym-
phony, the asymptotic structure of small-world networks is
simulated in practice by constraints: each new node tries to
choose log n neighbors at random, subject to the constraint
that no node can have more than 2 log n neighbors. A sim-
ple protocol ensures this constraint: when a node wishes to
join the network, it ships link establishment requests to log n
randomly chosen nodes. Each recipient responds with either
an agreement (establishing a bidirectional link), or a message
saying it has reached its maximum degree. The recipient logic
for a successful request requires a read-only check (counting
the size of its neighbor table), and two updates (adding a new
edge to the neighbor table, and adding a response tuple to the
network stream). The check and the updates must be done in
one atomic step: if two such requests are handled in an inter-
leaved fashion at a node with 2 log n − 1 neighbors, they can
both pass the check and lead to a violation of the maximum-
degree constraint.

One solution to this “race condition” is to have the language
runtime implement a queue of request messages at each recip-
ient, dequeuing only one request at a time into the “database”
considered in a given Overlog fixpoint computation. We im-
plemented this approach in the P2 Overlog interpreter, and a
similar approach is taken in the recent Reactor programming
language [23]. But the use of an operational feature outside the
logic is unsatisfying, and forces any program-analysis tech-
niques to rely on operational semantics rather than model- or
proof-theoretic arguments.

It is not immediately clear how to express a queue in Data-
log, and our search for a suitably declarative solution to such
update problems led to the design of Dedalus. The problem
can be solved via the Dedalus timestamp convention, as shown
in Figure 2. The first rule of Figure 2 is the Dedalus boilerplate
for “persistence” via induction rather than a storage model.
It asserts persistence of the head predicate q across consecu-
tive timesteps, except in the presence of tuples in a designated
“deletion” predicate del_q. The existence of a deletion tuple
in timestep N breaks the induction, and the tuple no longer
appears in the predicate beginning in timestep N + 1.

The second rule identifies the minimum item in the queue.
The third and fourth rules together atomically dequeue the

minimum item in a single timestep, placing it (ephemerally) in
predicate p. This pair of rules illustrates how multiple updates
are specified to occur atomically in Dedalus. Recall that in all
Dedalus rules there is an implicit but enforced unification of all
body predicates on the (omitted) timestamp attribute: this en-
forcement of simultaneity ensures that exactly one state of the
database (one timestamp) is “visible” for deduction. Inductive
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rules ensure that all modifications to the state at timestep N
are visible atomically in the unique successor timestep N +1.
In Figure 2, the insertion into the relation p via the third rule,
and the breaking of the induction in q via the last and first rules
occur together atomically.

This queue example provides one declarative solution to op-
erational concurrency problems in Overlog. But many other
such solutions can be expressed in Dedalus. The point is that
by reifying time into the language, Dedalus allows program-
mers to declare their desires for concurrency and isolation in
the same logic that they use for other forms of deduction.
Timestamp unification and the infinite successor function serve
as a monotonic, stratifying construct for treating isolation at its
core: as a constraint on data dependencies. We were not the
first to invent this idea (Starlog and Statelog have related con-
structs for time and state modification [51, 42]). But we may
be the most enthusiastic proponents of its utility for reasoning
about parallel and distributed programming, and the role of
time in computation. I return to this topic in the Conjectures
of Section 4 below.

3.3 Events and Dispatch
The crux of our work has been to apply declarative database

metaphors and languages to more general-purpose programs.
This required us to wrestle with program features that have not
traditionally been modeled in databases, including communi-
cation and task management. Both of these features fell out
relatively cleanly as we developed our systems.

3.3.1 Ephemera: Timeouts, Events, and Soft State
A central issue in distributed systems is the inability to es-

tablish the state of a remote machine. To address this limita-
tion, distributed systems maintain evidence of the liveness of
disparate nodes via periodic “heartbeat” messages and “time-
outs” on those messages. This design pattern has been part
of every distributed algorithm and system we have built. To
support it, we needed our languages to capture the notion of
physical clocks at each node.

Early on, we incorporated the notion of physical time as a
relation in our languages. In Overlog we provided a built-in
predicate periodic that could be declared to contain a set
(possibly infinite) of tuples with regularly-spaced wall-clock
times; the P2 runtime for Overlog would cause these tuples
to “appear” in the dataflow of the query engine at the wall-
clock times they contained. We would use this predicate to
drive subsequent tuple derivations, for example the genera-
tion of scheduled heartbeat messages. Tuples in Overlog’s
periodic table were intended to be “ephemeral events”, formed
to kick off a computation once, and then be “forgotten.”

Ephemeral state is often desired in network protocols, where
messages are “handled” and then “consumed.” A related pat-
tern in networking is soft state maintenance, a loosely-coupled
protocol for maintaining caches or views across machines. Con-
sider a situation where a receiver node is caching objects (e.g.,
routing table entries) known at some sender node. The sender
and receiver agree upon a time-to-live (TTL) for this “soft”
state. The sender must try to send “refresh” messages—essentially,
per-object heartbeat messages—to the receiver before the TTL
expires. Upon receipt, the receiver resets the TTL of the rele-
vant object to the agreed-upon maximum; in the absence of a
refresh within the TTL, the receiver deletes the object.

While these are common patterns in networking, their in-

clusion in Overlog complicated our language semantics. We
included persistence properties as an aspect of Overlog’s table
declaration: tables could be marked as persistent, soft-state
(with a fixed TTL) or as event tables (data streams). This fea-
ture introduced various subtleties for rules that mixed persis-
tent predicates with soft state or event predicates [45]. Con-
sider an Overlog rule for logging events: it has a persistent ta-
ble in the head that represents the log, and an ephemeral stream
of events in the body. But for such an Overlog rule, what
does it mean when an ephemeral body tuple “disappears”? We
would like the logged tuple in the head to remain, but it is no
longer supported by an existing body fact.

Dedalus clears up the confusion by treating all tuples as
ephemeral “events.” Persistence of a table is ensured by the
deduction of new (ephemeral) tuples at each timestep from the
same tuples at the preceding timestep, as in the first rule of
Figure 2 above9. Ambiguous “race conditions” are removed
by enforcing the convention of unification on timestamp at-
tributes. Soft state can be achieved by modifying the persis-
tence rules to capture a wall-clock time attribute of tuples in
soft-state tables (via join with a built-in wallclock-time rela-
tion), and by including a TTL-checking clause in the persis-
tence rule as follows:

q(A, TTL, Birth)@next :-
q(A, TTL, Birth),!del_q(A),
now() - Birth < TTL.

In this example, now() returns the current wall-clock time at
the local node, and can be implement as a foreign function in
the spirit of LDL [13].

Having reified time into an attribute in Dedalus, any ambi-
guities about persistence that were inherent in Overlog are re-
quired to be explicit in a programmer’s Dedalus specification.
There is no need to resort to operational semantics to explain
why a tuple “persists,” “disappears,” or is “overwritten” at a
given time: each Dedalus tuple is grounded in its provenance.
All issues of state mutation and persistence are captured within
that logical framework.

3.3.2 Dispatch as Join: A Third Way
At the heart of any long-running service or system is a dis-

patching model for the management of multiple tasks. There
are two foundational design patterns for task dispatch: concur-
rent processes and event loops. In a classic paper, Lauer and
Needham demonstrate a duality between these patterns [41],
but in applied settings in the last decade there has been sig-
nificant back-and-forth on the performance superiority of one
model or the other (e.g., [72, 69]).

We found ourselves handling this issue with a third design
pattern based on dataflow. Our crawlers specified dispatch via
the streaming join of an event table and a persistent system-
state table. To illustrate, consider the simple example of Fig-
ure 3, which handles service request tuples with param-
eter P. At the timestep when a particular request arrives, it
is recorded in the pending requests table, where it persists
until it receives a matching response. The invocation of
service_in is specified to happen at the same atomic timestep
as the request arrival; it is evaluated by an asynchronous ex-
ternal function call that will eventually place its results in the
9An intelligent evaluation strategy for this logic should in most
cases use traditional storage technology rather than re-deriving
tuples each timestep.
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pending(Id, Sender, P) :-
request(Id, Sender, P).

pending(Id, Sender, P)@next :-
pending(Id, Sender, P),
!response(Id, Sender, _).

service_out(P, Out)@async :-
request(Id, Sender, P),
service_in(P, Out).

response(Sender, Id, O) :-
pending(Id, Sender, P),
service_out(P, O).

Figure 3: An asynchronous service

relation service_out. Because this computation is asyn-
chronous, the system need not “wait” for results before begin-
ning the next timestep. This approach follows the common
model of lightweight event handlers. As service_out re-
sults arrive (likely in a different order than their input), they
need to be looked up in the “rendezvous buffer” of pending
requests to be routed back to the caller.

Evaluating this logic requires nothing more than the execu-
tion of a number of pipelined join algorithms such as that of
Wilschut and Apers [76]. The application of pipelining joins
to asynchronous dispatch was first explored in database liter-
ature for querying remote services on the Web [25, 63]. But
the implication is much broader: any server dispatch loop can
be coded as a few simple joins in a high-level language. This
data-centric approach parallelizes beautifully (using a hash of
Id as a location specifier), it does not incur the context-switching
overhead associated with the process model, nor does it re-
quire the programmer to write explicit logic for state loops,
event handling, and request-response rendezvous.

Moreover, by writing even low-level tasks such as request
dispatch in logic, more of the system can enjoy the benefits
of higher level reasoning, including simplicity of specifica-
tion, and automatic query optimization across multiple soft-
ware layers. For example, application logic that filters mes-
sages can be automatically merged into the scheduler via “se-
lection pushdown” or magic sets rewrites, achieving some-
thing akin to kernel packet filters without any programmer in-
tervention. Scheduling can be easily spread across multiple
nodes, with task and data partitioning aligned for locality in a
straightforward manner. It has yet to be demonstrated that the
inner loop of a dispatcher built on a query engine can com-
pete for performance with the best implementations of threads
or events. I believe this is achievable. I also believe that opti-
mization and parallelization opportunities that fall out from the
data-centric approach can make it substantially out-perform
the best thread and event packages.

3.4 Parallel and Distributed Implications
Having discussed our experience with these design patterns

in some detail, I would like to step back and evaluate the impli-
cations for Datalog-like languages in parallel and distributed
settings.

3.4.1 Monotonic? Embarrassing!
The Pipelined Semi-Naive (PSN) evaluation strategy [47]

lies at the heart of our experience running Datalog in parallel

and distributed settings. The intuition for PSN comes from our
crawler experience. The basic idea in the crawlers was to act
immediately on the discovery a new edge in two ways: add its
endpoints to the table of nodes seen so far, and if either end-
point is new, send a request to probe that node for its neighbors
in turn, producing more new edges.

It should be clear that this approach produces a correct traver-
sal of the network graph regardless of the order of node vis-
its. But it is a departure from classical semi-naive evaluation,
which proceeds in strict rounds corresponding to a breadth-
first traversal of the graph. The need to wait for each level
of the traversal to complete before moving on to the next re-
quires undesirable (unacceptable!) coordination overhead in a
distributed or parallel setting. Moreover, it is unnecessary: in
monotonic programs, deductions can only “accumulate,” and
need never be postponed. PSN makes this idea work for gen-
eral monotonic Datalog programs, avoiding redundant work
via a sequencing scheme borrowed from the Urhan-Franklin
Xjoin algorithm [65]. The result is that monotonic (sub)programs
can proceed without any synchronization between individual
deductions, and without any redundant derivations. Simply
put, PSN makes monotonic logic embarrassingly parallel. This
statement is significant: a large class of recursive programs—
all of basic Datalog—can be parallelized without any need for
coordination! This simple point is at the core of the Conjec-
tures in Section 4 below.

As a side note, this insight appears to have eluded the MapRe-
duce community as well, where join is necessarily a blocking
operator. The issue that arises in MapReduce results from
an improper conflation of a physical operation (repartition-
ing data) with a non-monotonic functional operation (Reduce).
In Google’s MapReduce framework, the only way to achieve
physical network repartitioning—a key component to parallel
joins—is to use a Reducer. The framework assumes Reducers
need to see all their inputs at once, so it introduces a paral-
lel barrier: no node in the system may begin Reducing until
all the Map tasks are complete. This defeats the pipelining
approach of Wilschut and Apers, which would otherwise per-
form the monotonic logic of join using physical network parti-
tioning as a primitive. A clean implementation should be able
to choose between the efficiency of pipelining and the simple
fault-tolerance that comes from materialization, without tying
the decision unnecessarily to the programming model.

3.4.2 Monotonic? Eventually Consistent!
A related feature we exploited in our crawlers was to acco-

modate “insertions” to the database via simple ongoing exe-
cution of PSN evaluation. The goal, formalized by Loo [47],
was to have an eventually consistent semantics for the links
and paths in the graph: in a quiescent database without com-
munication failure, the set of derived data across all machines
should eventually reach a consistent state. It is easy to achieve
this consistency for monotonic insertion of edges into a crawler.
When a new edge is added, paths in the graph radiating out
from the new edge can be crawled and added to the transitive
closure. When edges cease to arrive, this process eventually
leads to a consistent transitive closure. This approach can be
seen as a materialized view scheme for transitive closure, but
in effect it is no different than the de novo PSN query evalu-
ation scheme sketched above: updates simply play the role of
edges that “appear very late” in the evaluation strategy.

More generally, “monotonic updates” (i.e. “appends”) to a
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monotonic program guarantee eventual consistency. And this
result can be achieved without any redundant work, by sim-
ply leaving the standard pipelined query-processing algorithm
running indefinitely.

Note that in Dedalus, non-monotonic updates (deletion, over-
writing) are expressed by non-monotonic programs: the negated
del clause in a persistence rule such as the one in Figure 2. A
monotonic Dedalus program can persist appends via a simpler
rule:

p(X)@next :- p(X).

But modeling deletion or overwrite requires negation. Hence
using Dedalus we can simply speak of whether a program is
monotonic or not; this description includes the monotonicity
of its state manipulation. This point informs much of the dis-
cussion in Section 4.

3.4.3 Counting Waits; Waiting Counts
If coordination is not required for monotonic programs, when

is it required? The answer should be clear: at non-monotonic
stratification boundaries. To establish the veracity of a negated
predicate in a distributed setting, an evaluation strategy has to
start “counting to 0” to determine emptiness, and wait until the
distributed counting process has definitely terminated. Aggre-
gation is the generalization of this idea.

It is tricky to compute aggregates in a distributed system
that can include network delays, reordering, and failures. This
problem has been the topic of significant attention in the last
decade [52, 66, 36, 57] etc.) For recursive strata that span
machines, the task is even trickier: no node can establish in
isolation that it has fully “consumed” its input, since recursive
deductions may be in flight from elsewhere.

In order to compute the outcome of an aggregate, nodes
must wait and coordinate. And the logic of the next stratum
of the program must wait until the coordination is complete:
in general, no node may start stratum N +1 until all nodes are
known to have completed stratum N . In parallel programming
parlance, a stratification boundary is a “global barrier.” More
colloquially, we can say that counting requires waiting.

This idea can be seen from the other direction as well. Co-
ordination protocols are themselves aggregations, since they
entail voting: Two-Phase Commit requires unanimous votes,
Paxos consensus requires majority votes, and Byzantine pro-
tocols require a 2/3 majority. Waiting requires counting.

Combining this discussion with the previous two observa-
tions, it should be clear that there is a deep connection between
non-monotonic reasoning and parallel coordination. Mono-
tonic reasoning can be done without any coordination among
nodes; non-monotonic reasoning in general requires global
barriers. This line of thought suggests that non-monotonicity—
a property of logic programs that can sometimes be easily
identified statically—is key to understanding the limits of par-
allelization. I return to this point in the Conjectures section.

3.4.4 Unstratifiable? Spend Some Time.
The Dedalus state-update examples presented earlier show

how the sequentiality of time can be used to capture atomic
updates and persistence. Time can also be used to make sense
of otherwise ambiguous, unstratifiable programs. Consider the
following program, a variation on Figure 1 that toggles the
emptiness of a predicate:

state(X)@next :- state(X), !del_state(X).
state(1) :- !state(X).
del_state(X) :- state(X)

The first rule is boilerplate Dedalus persistence. The last two
rules toggle the emptiness of state. The second rule is clearly
not stratifiable. But if we make the second rule inductive,
things change:

state(1)@next :- !state(X).

In this revised program, the state table only depends negatively
on itself across timesteps, never within a single timestep. The
resulting program has a unique minimal model, which has 1
in the state relation every other timestep.10

If we expand the syntax of this Dedalus program with all
the omitted attributes and clauses, we can see that it provides
what Ross defined as Universal Constraint Stratification [64]
by virtue of the semantics of the successor function used in
time. Universal Constraint Stratification is a technique to es-
tablish the acyclicity of individual derivations by manipulating
constraints on the semantics of functions in a program. In this
program, the successor function ensures that all derivations of
state produce monotonically increasing timesteps, and hence
no derivation can cycle through negation.

Many programs we have written—including the queue ex-
ample above—are meaningful only because time flies like an
arrow: monotonically forward11. Again, this temporal con-
struct hints at a deeper point that I will expand upon in Sec-
tion 4.3: in some cases the meaning of a program can only be
established by “spending time.”

3.5 Gripes and Problems
Datalog-based languages have enabled my students to be

very productive coders. That said, it is not the case that they
have always been happy with the languages at hand. Here I
mention some of the common complaints, with an eye toward
improving them in Bloom.

3.5.1 Syntax and Encapsulation
The first frustration programmers have with Datalog is the

difficulty of unifying predicates “by eyeball,” especially for
predicates of high arity. Off-by-one errors in variable posi-
tions are easy to make, hard to recognize, and harder to debug.
Code becomes burdensome to read and understand because of
the effort involved in visually matching the index of multiple
variables in multiple lists.

Datalog often requires redundant code. Disjunction, in our
Datalog variants, involves writing multiple rules with the same
head predicate. Conditional logic is worse. Consider the fol-
lowing example comparing a view of the number of “yes”
votes to a view of the total number of votes:

outcome(’succeed’)
:- yes(X), total(Y), X > Y/2.

outcome(’fail’)
:- yes(X), total(Y), X < Y/2.

10Technically, the minimal model here is infinitely periodic, but
with a minimal number of distinguished states (two). Captur-
ing this point requires a slightly modified notion of safety and
minimality [42].

11Groucho Marx’s corollary comes to mind: “Time flies like an
arrow. Fruit flies like a banana.”
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outcome(’tie’)
:- yes(X), total(Y), X = Y/2.

Not only is this code irritatingly chatty, but the different “branches”
of this conditional expression are independent, and need not
appear near each other in the program text. Only programmer
discipline can ensure that such branches are easy to read and
maintain over the lifetime of a piece of software.

Finally, Datalog offers none of the common constructs for
modularity: variable scoping, interface specification, encap-
sulation, etc. The absence of these constructs often leads to
disorganized, redundant code that is hard to read and evolve.

Many of these gripes are addressable with syntactic sugar,
and some Datalog variants offer help [6]. One observation
then is that such sugar is very important in practice, and the
academic syntax of Datalog has not improved its odds of adop-
tion.

3.5.2 The Myth of the Global Database
The routing examples discussed above illustrate how com-

munication can be induced via a partitioned global database.
The metaphor of a global database becomes problematic when
we consider programs in which semantics under failure are im-
portant. In practice, individual participating machines may be-
come disconnected from and reconnected to the network over
time, taking their partitions with them. Moreover time (and
hence “state”) may evolve at different rates on different nodes.
Exposing a unified global database abstraction to the program-
mer is therefore a lie. In the context of routing it is a little white
lie, because computation of the true “best” paths in the net-
work at any time is not practically achievable in any language,
and not considered important to the task. But the lie can cause
trouble in cases where assumptions about global state affect
correctness. False abstractions in distributed protocols have
historically been quite problematic [77]. In our recent Overlog
code we have rarely written rules with distributed joins in the
body, in part because it seems like bad programming style, and
in part because we have been focused on distributed systems
protocols where message failure handling needs to be explicit
in the logic. In Dedalus such rules are forbidden.

Note that the myth of the global database can be “made true”
via additional code. We have implemented distributed con-
sensus protocols such as Two-Phase Commit and Paxos that
can ensure consistent, network-global updates. These proto-
cols slow down a distributed system substantially, but in cases
where it is important, distributed joins can be made “real” by
incorporating these protocols [4]. On top of these protocols,
an abstraction of a consistent global database can be made
true (though unavailable in the face of network partitions, as
pointed out in Brewer’s CAP theorem.)

Given that distributed state semantics are fundamental to
parallel programming, it seems important for the language syn-
tax to require programmers to address it, and the language
parser to provide built-in reasoning about the use of different
storage types. For example, the Dedalus boilerplate for persis-
tence can be “sugared” via a persistence modifier to a schema
declaration, as in Overlog. Similarly, the rules for a persis-
tent distributed table protected via two-phase commit updates
could be sugared via a “globally consistent” schema modifier.
While these may seem like syntactic sugar, from a program-
mer’s perspective these are critical metaphors: the choice of

the proper storage semantics can determine the meaning and
efficiency of a distributed system. Meanwhile, the fact that all
these options compile down to Dedalus suggests that program
analysis can be done to capture the stated meaning of the pro-
gram and reflect it to the user. In the other direction, program
analysis can in some cases relax the user’s choice of consis-
tency models without changing program semantics.

4. CONJECTURES

In placid hours well-pleased we dream
Of many a brave unbodied scheme.
— Herman Melville

The experiences described above are offered as lessons of
construction. But a database theory audience may prefer the
construction of more questions. Are there larger theoretical
issues that arise here, and can they inform practice in a funda-
mental way?

I like to think the answer is “yes,” though I am sensitive
to both the hubris and irresponsibility of making up problems
for other people. As a start, I offer some conjectures that
have arisen from discussion in my group. Perhaps the wider
database theory audience will find aspects of them amenable
to formalization, and worthy of deeper investigation.

4.1 Parallelism, Distribution and Monoton-
icity

Earlier I asserted that basic Datalog programs—monotonic
programs without negation or aggregation—can be implemented
in an embarrassingly parallel or eventually consistent manner
without need for any coordination. As a matter of conjecture,
it seems that the other direction should hold as well:

CONJECTURE 1. Consistency And Logical Monotonicity
(CALM). A program has an eventually consistent, coordination-
free execution strategy if and only if it is expressible in (mono-
tonic) Datalog.

The “coordination-free” property is key to the CALM con-
jecture. Clearly one can achieve eventual consistency via a
coordination mechanism such as two-phase commit or Paxos.
But this “instantaneous consistency” approach violates the spirit
of eventual-consistency methods, which typically proceed with-
out coordination and still produce consistent states in periods
of quiescence.

I have yet to argue one direction of this conjecture: that
a non-monotonic program can have no eventually consistent
implementation without coordination. Consider the case of
a two-stratum non-monotonic program and some eventually
consistent implementation. Any node in the system can begin
evaluating the second stratum only when it can prove it has re-
ceived “everything” in the first stratum’s predicates. For global
consistency, “everything” in this context means any data that is
interdependent with what any other node has received. If any
of that data resides on remote nodes, distributed coordination
is required.

A proper treatment of this conjecture requires crisp defini-
tions of eventual consistency, coordination, and relevant data
dependencies. In particular, trivially partitionable programs
with no cross-node interdependencies need to be treated as a
special (easy) case. But I suspect the conjecture holds for most
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practical cases of interest in distributed and parallel comput-
ing.

It is worth recalling here Vardi’s well-known result that (mono-
tonic) Datalog can be evaluated in time polynomial in the size
of the database [67]. If the conjecture above is true, then the
expressive power of “eventually-consistent” implementations
is similarly bounded, where the “database” includes all data
and messages introduced up to the time of quiescence.

This conjecture, if true, would have both analytic and con-
structive uses. On the analytic front, existing systems that offer
eventual consistency can be modeled in Datalog and checked
for monotonicity. In many cases the core logic will be triv-
ially monotonic, but with special-purpose escapes into non-
monotonicity that should either be “protected” by coordina-
tion, or managed via compensatory exception handling (Hel-
land and Campbell’s “apologies” [30].) As a classic example,
general ledger entries (debits and credits) accumulate mono-
tonically, but account balance computation is non-monotonic;
Amazon uses a (mostly) eventually-consistent implementation
for this pattern in their shopping carts [19]. An interesting di-
rection here is to incorporate exception-handling logic into the
program analysis: ideally, a program with proper exception
handlers can be shown to be monotonic even though it would
not b monotonic in the absence of the handlers. Even more in-
teresting is the prospect of automatically generating (perhaps
conservative) exception handlers to enforce a provable notion
of monotonicity.

On the constructive front, implementations in Datalog-style
languages should be amenable to (semi-)automatic rewriting
techniques that expose further monotonicity, expanding the
base of highly-available, eventually-consistent functionality.
As an example, a predicate testing for non-negative account
balances can be evaluated without coordination for accounts
that see only credit entries, since the predicate will eventu-
ally transition to truth at each node as information propagates,
and will never fail thereafter. This example is simplistic, but
the idea can be used in a more fine-grained manner to enable
sets or time periods of safe operation (e.g., a certain number
of “small” debits) to run in an eventually consistent fashion,
only enforcing barriers as special-case logic near monotonicity
thresholds on predicates (e.g., when an account balance is too
low to accomodate worst-case scenarios of in-flight debits).
It would be interesting to enable program annotations, in the
spirit of Universal Constraint Stratification [64], that would al-
low program rewrites to relax initially non-monotonic kernels
in this fashion.

Finally, confirmation of this conjecture would shed some
much-needed light on heated discussions of the day regarding
the utility or necessity of non-transactional but eventually con-
sistent systems, including the so-called “NoSQL” movement.
It is sorely tempting to underscore this conjecture with the slo-
gan “NoSQL is Datalog.” But my student Neil Conway views
this idea as pure mischief-making, so I have refrained from
including the slogan here.

4.2 Asynchrony, Traces, and Trace Equiv-
alence

Expanding on the previous point, consider asynchronous
rules, which introduce non-determinism into Dedalus times-
tamps and hence Dedalus semantics. It is natural to ask under
what conditions this explicit non-determinism affects program

outcomes, and how.
We can say that the timestamps in asynchronous head pred-

icates capture possible traces of a program: each trace is an
assignment of timestamps that describes a non-deterministic
“run” of an evaluation strategy. We can define trace equiva-
lence with respect to a given program: two traces can be con-
sidered equivalent if they lead to the same “final” outcome of
the database modulo timestamp attributes. If all traces of a
program can be shown to be equivalent in this sense, we have
demonstrated the Church-Rosser confluence property. In cases
where this property does not hold, other notions of equivalence
classes may be of interest. Serializability theory provides a
model: we might try to prove that every trace of a program is
in an equivalence class with some “good” trace.

The theory of distributed systems has developed various
techniques to discuss the possible traces of a program. The
seminal work is Lamport’s paper on “Time, Clocks and the Or-
dering of Events” [39], which lays out the notion of causal or-
dering in time that requires logical clocks to respect a happens-
before relation. Based on these observations, he shows that
multiple independent clocks (at different distributed nodes)
can be made to respect the happens-before relation of each
individual node. Coordination protocols have been developed
to enforce this kind of synchrony, and related issues involving
data consistency. We have coded some of these protocols in
Dedalus and its predecessor languages [4], and they can be in-
corporated into programs to constrain the class of traces that
can be produced.

Classical PODC work on casuality tends to assume black-
box state machines at the communication endpoints. With
Dedalus programs at the endpoints, we can extract logical data
dependency and provenance properties of the programs, in-
cluding tests for various forms of stratifiability. Can the com-
bination of causality analysis and logic-programming tests en-
rich our understanding of distributed systems, and perhaps ad-
mit new program-specific cleverness in coordination?

As an extreme example, suppose we ignore causality en-
tirely, and allow asynchronous Dedalus rules to send mes-
sages into the past. Are temporal paradoxes—the absence of a
unique minimal model—an inevitable result? On this front, I
have a simple conjecture:

CONJECTURE 2. Causality Required Only for Non-monotonicity
(CRON). Program semantics require causal message order-
ing if and only if the messages participate in non-monotonic
derivations.

Said differently, temporal paradoxes arise from messages sent
into the past if and only if the messages have non-monotonic
implications.

This conjecture follows the intuition of the CALM Conjec-
ture. Purely monotonic logic does not depend on message or-
dering, but if the facts being “sent into the past” are part of a
non-monotonic cycle of deduction, the program lacks a unique
minimal model: it will either admit multiple possible worlds,
or none.

The idea of sending messages into the past may seem es-
oteric, but it arises in practical techniques like recovery. If a
node fails and is restarted at time T , it may reuse results from
logs that recorded the (partial) output of a run of the same
logic from some earlier time S < T . In effect the derived
messages can “appear” at time S, and be used in the redo exe-
cution beginning at T without causing problems. Speculative
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execution strategies have a similar flavor, a point I return to in
Section 4.4.

Exploiting the monotonic case may be constructive. It should
be possible to relax the scheduling and spatial partitioning of
programs—allow for more asynchrony via a broader class of
traces—by examining the program logic, and enforcing causal
orderings only to control non-monotonic reasoning. This mar-
riage of PODS-style program analysis and PODC-style causal-
ity analysis has many attractions.

4.3 Coordination Complexity, Time and Fate
In recent years, the exponentiation of Moore’s Law has brought

the cost of computational units so low that to infrastructure
services they seem almost free. For example, O’Malley and
Murthy at Yahoo! reported sorting a petabyte of data with
Hadoop using a cluster of 3,800 machines each with 8 proces-
sor cores, 4 disks, and 8GB of RAM each [59]. That means
each core was responsible for sorting only about 32 MB (just
1/64th of their available share of RAM!), while 3799/3800 of
the petabyte was passed through the cluster interconnection
network during repartitioning. In rough terms, they maxi-
mized parallelism while ignoring resource utilization. But if
computation and communication are nearly free in practice,
what kind of complexity model captures the practical con-
straints of modern datacenters?

This anecdote involves an embarrassingly parallel, mono-
tonic binning algorithm, with a focus on bulk data throughput
rather than latency of individual interactions. By contrast, non-
monotonic stratified programs require latency-sensitive distributed
coordination to proceed from one parallel monotonic stratum
to the next. Non-monotonic stratum boundaries are global
barriers: in general, no node can proceed until all tasks in
the lower stratum are guaranteed to be finished. This restric-
tion means that the slowest-performing task in the cluster—the
“weakest link”— slows all nodes down to its speed. Dynamic
load balancing and reassignment can mitigate the worst-case
performance of the weakest link, but even with those tech-
niques in place, coordination is the key remaining bottleneck
in a world of free computation [9].

In this worldview, the running time of a logic program might
be best measured by the number of strata it must proceed through
sequentially; call this the Coordination Complexity of a pro-
gram12. This notion differs from other recent models of par-
allel complexity for MapReduce proposed by Afrati and Ull-
man [2] and Karloff, et al. [38], which still concern themselves
in large part with measuring communication and computation.
It resembles a simplified (“embarrassingly” simplified?) form
of Valiant’s Bulk Synchronous-Parallel (BSP) model, with the
weights for communication and computation time set to zero.
Results for BSP tend to involve complicated analyses of com-
munication and computation metrics that are treated as irrel-
evant here, with good reason. First, the core operations for
bottom-up Dedalus evaluation (join, aggregation) typically re-
quire all-to-all communication that only varies between 1

2
and

1 for any non-trivial degree of parallelism13. Second, at scale,

12In some algorithms it may be worth refining this further to
capture the fraction of nodes involved in each coordination
step; this two-dimensional “depth” and “breadth” might be
called a coordination surface or lattice.

13The exception here is cases where communication can be
“colored away” entirely, due to repeated partitioning by func-

the practical running time of the slowest node in the cluster
is often governed less by computational complexity than by
non-deterministic effects of the environment (heterogeneous
machines and workloads, machine failures, software miscon-
figuration and bugs, etc.)

Conveniently, a narrow focus on Coordination Complexity
fits nicely with logic programming techniques, particularly if
the previous conjectures hold: i.e., if coordination is required
precisely to manage non-monotonic boundaries. In that case,
the Coordination Complexity of a stratified program is the
maximum stratum number in the program, which can be an-
alyzed syntactically. In the more general case of locally strati-
fied [62] or universally constraint-stratified programs [64], the
program’s rule-goal graph may have cycles through negation
or aggregation, which in practice might be traversed many
times. The coordination complexity in these cases depends not
only on the rule syntax but also on the database instance (in the
case of local stratification) and on the semantics of monotonic
predicates and aggregations in the program (in universal con-
straint stratification).

As noted above, many natural Dedalus programs are not
stratified, but are instead universally constraint-stratified by
the monotonicity of timestamps. In those cases, the number
of times around the non-monotonic loops corresponds to the
number of Dedalus timesteps needed to complete the compu-
tation. In essence, Dedalus timesteps become units for mea-
suring the complexity of a parallel algorithm.

This idea is intuitively appealing in the following sense. Re-
call that a Dedalus timestep results in an atomic batch of induc-
tions, corresponding to traditional “state changes.” To lower
the number of Dedalus timesteps for a program, one needs to
find a way to batch together more state modifications within a
single timestep—i.e., shift some rules from inductive to deduc-
tive (by removing the @next suffix). If a program is expressed
to use a minimal number of timesteps, it has reached its inher-
ent limit on “batching up” state changes—or conversely, the
program accurately captures the inherent need for sequential-
ity of its state modifications.

This argument leads to our next conjecture:

CONJECTURE 3. Dedalus Time ⇔ Coordination Complex-
ity. The minimum number of Dedalus timesteps required to
evaluate a program on a given input data set is equivalent to
the program’s Coordination Complexity.

The equivalence posited here is within a constant factor of
the minimum number of sequential coordination steps required,
which accounts for multiple deductive strata within a single
timestep. The stratification depth per timestep is bounded by
the program’s length, and hence is a constant with respect to
data complexity (the appropriate measure for analyzing a spe-
cific program [67]).14

Clearly one can do a poor job writing an algorithm in Dedalus,
e.g., by overuse of the @nextmodifier. So when are timesteps
truly required? We can distinguish two cases. The first is
when the removal of an @next suffix changes the meaning

tionally dependent keys [29].
14David Maier notes that it should be possible convert a fixed
number of timestamps into data and account for these times-
tamps within a single Dedalus timestep, in the manner of loop
unrolling. This conversion of time into space may require re-
fining the complexity measure proposed here.
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(i.e. the minimal model) of the program. The second is when
the removal causes a form of non-monotonicity that leaves the
program with no unique minimal model: either a proliferation
of minimal models, or no models because a contradiction re-
quires some variable to take on multiple values “at once.” The
examples we have seen for the first of these cases seem trivial,
in the spirit of Figure 1: a finite number of possible states are
infinitely repeated. Such programs can be rewritten without
an infinite successor relation: the finite set of possible states
can be distinguished via data-oriented predicates on finite do-
mains, rather than contemporaneity in unbounded (but cyclic)
time15. This leads us to the following more aggressive conjec-
ture:

CONJECTURE 4. Fateful Time. Any Dedalus program P
can be rewritten into an equivalent temporally-minimized pro-
gram P ′ such that each inductive or asynchronous rule of P ′

is necessary: converting that rule to a deductive rule would
result in a program with no unique minimal model.

I call this the “Fateful Time” conjecture because it argues
that the inherent purpose of time is to seal fate. If a program’s
semantics inherently rely upon time as an unbounded source of
monotonicity, then the requirement for simultaneity in unifica-
tion resolves multiple concurrent possible worlds into a series
of irrevocable individual worlds, one at each timestep. If the
conjecture holds, then any other use of temporal induction is
literally a waste of time.16.

This conjecture is an appealing counterpart to CRON. Time
does matter, exactly in those cases where ignoring it would
result in logically ambiguous fate17.

15This observation, by my student William Marczak, is eerily
reminiscent of the philosophy underlying Jorge Luis Borges’
stories of circular ruins, weary immortals, infinite libraries and
labyrinths. In his “New Refutation of Time,” Borges presents
a temporal extension of the idealism of Berkeley and Hume
(which denies the existence of matter) based on the follow-
ing argument: “The denial of time involves two negations: the
negation of the succession of the terms of a series, negation
of the synchronism of the terms in two different series.” The
similarity to a rewriting of Dedalus’ successors and timestamp
unification is striking. More allegorically, Borges puts it this
way: “I suspect, however, that the number of circumstantial
variants is not infinite: we can postulate, in the mind of an in-
dividual (or of two individuals who do not know of each other
but in whom the same process works), two identical moments.
Once this identity is postulated, one may ask: Are not these
identical moments the same? Is not one single repeated term
sufficient to break down and confuse the series of time? Do not
the fervent readers who surrender themselves to Shakespeare
become, literally, Shakespeare?” [10]

16Temporally-minimized Dedalus programs might be called
daidala, Homer’s term for finely crafted basic objects: “The
‘daidala’ in Homer seem to possess mysterious powers. They
are luminous—they reveal the reality that they represent” [61].

17In his Refutation, Borges concludes with a very similar in-
escapable association of time and fate: “And yet, and yet...
Denying temporal succession, denying the self, denying the
astronomical universe are apparent desperations and secret
consolations. Our destiny ... is frightful because it is irre-
versible and iron-clad. Time is the substance I am made of.
Time is a river which sweeps me along, but I am the river; it is
a tiger which destroys me, but I am the tiger; it is a fire which
consumes me, but I am the fire. The world, unfortunately, is
real; I, unfortunately, am Borges” [10]. To close the cycle here,
note that Daedalus was the architect of the Labyrinth of Crete;
labyrinths are a signature metaphor in Borges’ writing.

4.4 Approximation and Speculation
Given the cost of coordination at stratum boundaries, it is

tempting to try and go further: let the evaluation of a Dedalus
program press ahead without waiting for the completion of
a stratum or timestep. In some cases this trick can be done
safely: for example, temporal aggregates such as count and
min can provide “early returns” in the spirit of online aggre-
gation [33], and range predicates on the results of those ag-
gregates can sometimes be evaluated correctly in parallel with
the computation of the final aggregate result [78]. These cases
exploit monotonicity of predicates on monotonic aggregates,
and are in the spirit of the CALM conjecture above.

But what about approximable but non-monotonic aggregates,
such as averages, which can produce early estimates that oscil-
late non-monotonically, but provide probabilistic confidence
intervals? If predicates on the result of those aggregates are
“acted upon” probabilistically, in parallel with the completion
of the lower stratum, what happens to the program outcome?

Two execution strategies come to mind, based on “optimisti-
cally” allowing higher strata to proceed on the basis of tenta-
tive results in lower strata. The first takes the tentative results
and acts upon them directly to compute a fixpoint, which may
or may not be the same as the minimal model of the program.
The challenge then is to characterize the distribution of pos-
sible worlds that can arise from such evaluations, provide a
meaningful probabilistic interpretation on the outcomes of the
computation, and perhaps provide execution strategies to en-
sure that an individual outcome has high likelihood. It would
be interesting to understand how this relates to more traditional
approximation algorithms and complexity, especially with re-
spect to parallel computation.

A second strategy is to ensure the correct minimal model
by “rolling back” any deductions based on false assumptions
using view maintenance techniques [12]. Here the challenge
is not to characterize the answer, but to produce it efficiently
by making good guesses. This requires characterizing the ex-
pected utility of a given optimistic decision, both in terms of its
likely benefit if performance is correct, and its likely recom-
putation cost if incorrect. This is in the spirit of speculation
techniques that are common currency in the Architecture and
Systems communities, but with the benefit of program anal-
yses provided by logic. It also seems feasible to synthesize
logic here, including both speculative moves, and compensat-
ing actions for incorrect speculations.

Practically, these approaches are important for getting around
fundamental latencies in communication. From a theoretical
perspective, speculation on non-monotonic boundaries seems
to be the natural path to bring randomized algorithms into the
evaluation of logic: the previous conjectures suggest that there
is no interesting non-determinism in monotonic programs, so
the power of randomized execution seems to reside at non-
monotonic boundaries. It would be interesting to understand
how to bridge this idea to the complexity structures known for
randomized algorithms.

This line of thinking is not as well developed as the earlier
discussion, so I close this discussion without stating a particu-
lar conjecture.
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5. CARPE DIEM

Gather ye rosebuds while ye may
Old Time is still a-flying,
And this same flower that smiles to-day
To-morrow will be dying.
— Robert Herrick

Like most invited papers, I would have rejected this one had
I been asked to review it18. Its claims are imprecise and un-
substantiated, relying on anecdotes and intuition. It contains
an unseemly number of references to the author’s prior work.
It is too long, and was submitted after the conference deadline.
And as a paper that treads outside the author’s area of exper-
tise, it also undoubtedly overlooks important earlier work by
others. For this last flaw in particular I extend sincere apolo-
gies, and an earnest request to be schooled regarding my omis-
sions and errors.

However, my chief ambition in writing this paper was not
to present a scholarly survey. It was instead to underscore—
in as urgent and ambitious terms as possible—the current op-
portunity for database theory to have broad impact. Under
most circumstances it is very hard to change the way people
program computers [55]. But as noted by Hennessy and oth-
ers, programming is entering an unusually dark period, with
dire implications for computer science in general. “Data folk”
seem to have one of the best sources of light: we have years
of success parallelizing SQL, we have the common culture of
MapReduce as a bridge to colleagues, and we have the well-
tended garden of declarative logic languages to transplant into
practice.

Circumstance has presented a rare opportunity—call it an
imperative—for the database community to take its place in
the sun, and help create a new environment for parallel and
distributed computation to flourish. I hope that the discussion
in this paper will encourage more work in that direction.
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