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Abstract

We report the performance of NOW-Sort, a collection of sort-
ing implementations on a Network of Workstations (NOW).
We find that parallel sorting on a NOW is competitive to sort-
ing on the large-scale SMPs that have traditionally held the
performance records. On a 64-node cluster, we sort 6.0 GB
in just under one minute, while a 32-node cluster finishes the
Datamation benchmark in 2.41 seconds.

Our implementations can be applied to a variety of disk,
memory, and processor configurations; we highlight salient
issues for tuning each component of the system. We evalu-
ate the use of commodity operating systems and hardware for
parallel sorting. We find existing OS primitives for memory
management and file access adequate. Due to aggregate com-
munication and disk bandwidth requirements, the bottleneck
of our system is the workstation I/O bus.

1 Introduction

The past few years have seen dramatic improvements in the
speed of sorting algorithms, largely due to increased atten-
tion to issues of computer architecture. However, the best
sorting results to date have been produced by industrial re-
searchers working on expensive, well-endowed versions of
shared-memory parallel computers (SMPs) produced by their
parent companies [26, 30]. In this paper we describe how we
achieved new records in sorting performance using a relatively
modest "shared-nothing" network of general-purpose UNIX
workstations. We set a new MinuteSort record of 6.0 GB (i.e.,
6 x 230 bytes) on a 64-node cluster of UltraSPARCs, and a new
Datamation Benchmark record of 2.41 seconds on a 32-node
cluster.

Our use of a Network of Workstations (NOW) for sorting
has a number of benefits. First, NOWs provide a high-degree
of performance isolation: that is, they allow analysis of be-
havior on a node-by-node, factor-by-factor basis. By contrast,
in an SMP, resources are pooled together, and hence it is more
difficult to achieve an equivalent fine-grained analysis. For ex-

ample, by tuning single-processor performance carefully, we
are able to deliver roughly 431 MB/s of disk bandwidth to
the 64-processor sorting application. Second, NOWs provide
incremental scalability of hardware resources. Because addi-
tional workstations can always be added to a NOW, well-tuned
programs can be easily scaled to large configurations. By con-
trast, most SMPs have a hard limit on scalability imposed by
the size of their box, and are more expensive and complex to
scale within that limit.

In this paper we note some lessons for the NOW research
community, which is made up largely of researchers in oper-
ating systems and computer architecture [2, 3, 5, 9, 22]. In
principle NOWs are similar to "shared-nothing" architectures
for databases [4, 11, 14, 18, 20, 29, 31, 32] but they have
typically been analyzed and tuned in the context of compute-
intensive applications. We demonstrate that NOWs can be a
state-of-the-art platform for data-intensive applications as well.

The ease of assembling different configurations in a NOW
motivated us to investigate a family of solutions for sorting,
rather than a single algorithm tuned to a particular machine.
Our investigation exposes a range of options for overlapping
steps of the sorting algorithm and their implications. In particu-
lar, we develop tools to characterize existing hardware, explore
the relationship of parallelism and bandwidth constraints, and
characterize a number of tradeoffs between pipelining and as-
sociated costs in memory utilization.

An additional contribution of this work is to evaluate com-
modity software and hardware for sorting and, by extension,
for other database applications. We find that threads and the
current interface for memory management in modern UNIX
operating systems do indeed help in developing efficient im-
plementations; this is a cheering update on some of the well-
known criticisms of earlier versions of UNIX for database ap-
plications [28]. On the other hand, we demonstrate that some
important facilities are missing in modern workstations, such
as handling data striped across heterogeneous disks and deter-
mining available memory. Regarding machine architecture,we
find that our clustered UltraSPARC I workstations are limited
by insufficient I/O bus bandwidth, which, if left unimproved,
would prevent data-intensive applications from enjoying future
gains in CPU, memory, network, or disk speed.

The organization of this paper matches the development of
our sorting implementations. After briefly reviewing related
work in Section 2 and our experimental platform in Section 3,
we cover our four versions of NOW-Sort in the next four sec-
tions. Figure 1 depicts the derivation of our sorting algorithms,
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Figure 1: Development of Sorting Algorithm. The sections
of the paper follow the same development as the progression
of sorting algorithms, from the simplest to our most complex.

where more complex versions build from the simpler ones.
We will show that by first understanding and tuning applica-
tion performance in simple configurations, we are able to build
highly-scalable parallel versions with little effort. Our best
Datamation benchmark time is given for the one-pass parallel
version in Section 5, and the best MinuteSort results for the
two-pass parallel sort in Section 7. We present our conclusions
in Section 8.

2 Related Work

The Datamation sorting benchmark was introduced in 1985
by a group of database experts as a test of a processor’s I/O
subsystem and operating system [17]. The performance metric
of this benchmark is the elapsed time to sort one million records
from disk to disk. The records begin on disk and are each
100-bytes, where the first 10-bytes are the key. Thus, with
one million 100-byte records, 95 MB of data are read and
written from disk. The elapsed time includes the time to launch
the application, open, create, and close all files, ensure the
output resides on disk, and to terminate the program. Price-
performance of the hardware and software is computed by
pro-rating the five-year cost over the time of the sort. The
previous record-holder on this benchmark was a 12 processor
SGI Challenge with 96 disks and 2.25 GB of main memory [30]
at 3.52 seconds; a single processor IBM RS/6000 with 8 disks
and 256 MB of memory has an impressive time of 5.1 seconds
and better price/performance, but uses raw disk, which is not
allowed in the benchmark [1].

Recognizing that the Datamation benchmark is outdated
and is more a test of startup and shutdown time than I/O per-
formance, the authors of AlphaSort introduced MinuteSort in
1994 [26]. The key and record specifications are identical to
that of Datamation; the performance metric is now the amount
of data that can be sorted in one minute of elapsed time. Price-
performance is calculated from the list price of the hardware
and operating system depreciated over three years. The SGI
system was also the previous record-holder on the MinuteSort
benchmark, sorting 1.6 GB. AlphaSort achieved 1.1 GB on
only three processors, 36 disks, and 1.25 GB of memory, for
better price/performance [26].

Over the years, numerous authors have reported the perfor-
mance of their sorting algorithms and implementations [1, 6, 7,
15, 16, 21, 25, 26, 27, 30, 35], and we try to leverage many of
the implementation and algorithmic lessons that they describe.

One difference between most of this work and ours is that we
provide measurements for a range of system configurations,
varying the number of processors, the number of disks per ma-
chine, and amount of memory. Another difference is that our
environment is one of the few parallel configurations where
each node is a complete system, with its own virtual memory
system, disks, and file system.

3 Experimental Environment

3.1 Hardware

Two different cluster environments form our experimental test-
bed. The first consists of 64 commodity UltraSPARC I work-
stations, each with 64 MB of memory (however, most measure-
ments only extend to 32 nodes due to time constraints). Each
workstation houses two internal 5400 RPM Seagate Hawk
disks on a single fast-narrow SCSI bus. Note that with only
two disks per machine, we can not afford to dedicate a spare
disk for paging activity.

Ultra Enterprise I Model 170
(64 MB, 1 5400 RPM Disk) $15,495
Main Memory $16 per MB
Internal 5400 RPM Seagate Hawk $925
External 7200 RPM Seagate Barracuda $1,100
Enclosure for 8 External Disks $2,000
Fast-Wide SCSI Card $750
Myrinet 4.1-M2F Card $1,200
Myrinet M2F-SW8 Switch $2,400
8-node System
(8 x 128 MB, 8 x 2 5400 RPM Disks,
8 x 2 7200 RPM Disks, 8 SCSI Cards,
4 Disk Enclosures, 8 Myrinet Cards,
1 Switch) $183,152
64-node System
(64 x 64 MB, 64 x 2 5400 RPM Disks,
64 Myrinet Cards, 26 Switches) $1,190,080

Table 1: Hardware List Prices. October 1996 list prices.

The second cluster connects eight more fully-equipped Ul-
traSPARC I Model 170 workstations. Each contains 128 MB
of main memory and an extra fast-wide SCSI card, with two
7200 RPM Seagate Barracuda external disks attached. Thus,
while this cluster only contains one eighth of the processors in
the other configuration, it contains one quarter of the number
of disks and amount of memory.

The main lesson taught by the authors of AlphaSort [26]
is that even large sorting problems should be performed in a
single pass, since only half the amount of disk I/O is performed
and the price of memory is relatively low. All previous record-
holders on both the Datamation and MinuteSort benchmarks
were able to sort the records in a single-pass. However, as we
shall see, our NOW configuration is memory-starved, so we
perform the MinuteSort benchmark in two passes.

In addition to the usual connection to the outside world via
10 Mb/s Ethernet, every workstation contains a single Myrinet
network card. Myrinet is a switch-based, high-speed, local-
area network, with links capable of bi-directional transfer rates
of 160 MB/s [10]. Each Myrinet switch has eight ports, and
the 64-node cluster is constructed by connecting 26 of these
switches in a 3-ary tree.



3.2 Software

Each machine in our cluster runs Solaris 2.5.1,a modern, multi-
threaded version of UNIX [24]. The disparate resources in the
cluster are unified under GLUnix, the prototype distributed
operating system for NOW [19]. GLUnix monitors nodes in
the system for load-balancing, can co-schedule parallel pro-
grams, and provides full job control and I/O redirection. In our
experiments, we primarily use GLUnix as a parallel program
launcher.

The parallel versions of NOW-Sort are written in Split-
C [12]. Split-C is a parallel extension to C that supports effi-
cient access to a global address space on distributed memory
machines.

Split-C is built on top of Active Messages [33], a communi-
cation layer designed to take advantage of the low latency and
high bandwidth of switch-based networks. An Active Mes-
sage is essentially a restricted, lightweight version of a remote
procedure call. When a process sends an Active Message, it
specifies a handler to be executed on the remote node. When
the message is received, the handler executes atomically with
respect to other message arrivals. Active Messages over the
Myrinet has the following performance characteristics: the
round-trip latency is roughly 20 �s, and the layer can sus-
tain a uni-directional bandwidth (one node sending, another
receiving) of 35 MB/s [13].

3.3 Input Key Characterization

In this study, we make a number of simplifying assumptions
about the distribution of key values and the layout of records
across processors and disks, allowing us to focus on the OS
and architectural issues involved in sorting. Clearly, imple-
mentations used for sorting data sets in the real world would
need to be more robust.

Following the precedent set by other researchers, we mea-
sure the performance of NOW-Sort only on key values with
uniform distributions. This assumption has implications for
our method of distributing keys into local buckets and across
processing nodes. With a non-uniform distribution, we would
need to modify our implementations to perform a sample
sort [8, 15]. By adding an early phase where we sample the
data to determine the range of keys targeted for each processor,
we could ensure that each processor receives a similar amount
of records; we plan on investigating this further in the future.

We also assume that the initial number of records on each
workstation is equal, although the performance of our parallel
implementations would not be greatly affected by small im-
balances. If records are located on only a subset of the work-
stations, then our current read phase could only utilize the
processors attached to those disks, with severe performance
implications. Restructuring our algorithms to better deal with
this situation is unfortunately beyond the scope of this paper.

4 One-Pass Single-Node Sorting

In this section we describe the basic one-pass version of NOW-
Sort for a single workstation, i.e., when all records fit in main
memory after being read from disk. We discuss the impact of
different interfaces for performing disk I/O and buffer man-
agement, and the in-memory sorting algorithm. As indicated
in Figure 1, the one-pass single-node version forms the basis
of all of our sorting algorithms. Each of the components of
the single-node sort is used again in the other sorts, and so is
worth understanding and tuning in detail.

At the highest level, the one-pass single-node sort contains
three steps (which will be described in more detail shortly):

1. Read: Read theN 100-byte records from disk into main
memory. Keys may be partially sorted by simultaneously
distributing into B = 2b buckets.

2. Sort: Sort the 10-byte keys in memory. If keys have
been placed in buckets, then each bucket is sorted indi-
vidually with either quicksort or a partial-radix sort with
cleanup.

3. Write: Gather and write sorted records to disk.

In an implementation, these three steps may be overlapped
or kept synchronous. For example, we investigate the bene-
fits of overlapping sorting with reading, by copying keys into
bucketswhile reading. Since the majority of the execution time
is spent in the phases performing I/O, we begin by describing
our approach to reading from disk.

4.1 Reading and Writing from Disk

NOW-Sort must work well in a variety of cluster configu-
rations: namely, differing numbers of disks and amounts of
memory. In order for an application to configure itself for best
performance in its environment, it must first gather relevant
information, which the OS does not always provide.

4.1.1 User-Level Striping

Software does not currently exist to stripe files across multiple
local disks with different speeds. To fully utilize the aggregate
bandwidth of multiple disks per machine, we implemented a
user-level library for file striping on top of each local Solaris file
system (i.e., we are not building on top of raw disk). Similar to
the approachdescribed in [26], each striped file is characterized
by a stripe definition file, which specifies the size of the base
stripe in bytes, the names of the files (on different disks) in the
stripe, and a multiplicative factor associatedwith each file/disk.

To determine the proper ratio of stripe sizes across disks,
we developeddiskconf . This tool, given a list of SCSI buses
and a list of disks on those buses, creates a large data file on
each of the disks; it reads first from each file independently, and
then reads simultaneously from all files on the same bus. By
measuring each of the achieved bandwidths and determining
whether or not each bus is saturated, the tool calculates the
multiplicative factor of the base stripe for each disk to achieve
its maximum transfer rate. The tool performs an analogous
chore for writes.

As described in Section 3, we have two disk configurations
to consider: two disks on a fast-narrow SCSI bus, and an
additional two disks on a fast-wide SCSI. We first verified that
the striping library does not degrade the achievable bandwidth
when there is only one disk. Table 2 shows the performance
of the striped file system on the simple and more complex
disk configurations. In the first two rows, we see that the two
5400 RPM disks saturate the fast-narrow SCSI bus. Since
the fast-narrow SCSI bus has a peak bandwidth of 10 MB/s,
we measure only 8.3 MB/s from two disks capable of a total
of 11 MB/s. Thus, 25% of potential performance is lost due
to this architectural oversight. The second two rows indicate
that the fast-wide SCSI bus adequately handles the two faster
disks. Finally, the last three rows show the superiority of
using diskconf to configure the striping library, compared
to naively striping with equal-sized blocks on disks of different



Seagate Disks SCSI Bus Read Write
(MB/s) (MB/s)

1 5400 RPM Hawk Narrow 5.5 5.2
2 5400 RPM Hawk Narrow 8.3 8.0
1 7200 RPM Barracuda Wide 6.5 6.2
2 7200 RPM Barracuda Wide 13.0 12.1
2 of each (naive striping) Both 16.0 15.5
2 of each (with disk tool) Both 20.5 19.1
2 of each (peak aggregate) Both 21.3 20.1

Table 2: Bandwidths of Disk Configurations. The Read and
Write columns show the measuredbandwidth using the striping
library. The last three rows give the performance with naive
striping of same-sized blocks to each disk, with the disk tool,
and the peak aggregate, calculated as the sum of the maximum
bandwidths seen over the two SCSI buses.

speeds. By reading (or writing) two blocks of data from each
slower disk on the fast-narrow SCSI, and three from each on
the fast-wide SCSI, we achieve 20.5 MB/s or 96% of the peak
aggregate bandwidth seen from the four disks.

4.1.2 Bu�er Management

Depending upon the system interface used to read data from
disk, the application may or may not be able to effectively
control its memory usage and prevent double-buffering by the
operating system. In this section, we compare three approaches
to reading records from disk: read, mmap, and mmap with
madvise. For demonstration purposes, we use a very simple
implementation of the sorting algorithm which performs all
steps sequentially and quicksorts the keys when they are in
memory.

The left-most graph of Figure 2 shows that when the appli-
cation uses the read system call to read records into memory
from disk, the total sort time increasesseverely when more than
20 MB of records are sorted, even though 64 MB of physical
memory are available. This performance degradation occurs
due to thrashing in the virtual memory system. With read,
the file system performs its own buffering, and thus the user
program is unable to control the total amount of memory in
use.

To avoid the double-buffering of read while leveraging
the convenience of the file system, we investigate the mmap
interface. Applications use memory mapped files by opening
the desired file, calling mmap to bind the file into a memory
segmentof the addressspace, and accessingthe memory region
as desired. As shown in the middle graph, performance with
mmap also degrades after about 20 MB of records, due to
the page replacement policy of the virtual memory subsystem.
LRU replacement throws away soon-to-be-needed sort-buffers
during the read phase; again, the ensuing thrashing degrades
performance.

Fortunately,mmap has an auxiliary system call, madvise,
which informs the operating system of the intended access
pattern for a particular region of memory. For example, one call
to madvise notifies the kernel that a region will be accessed
sequentially, thus allowing the OS to fetch ahead of the current
page and to throw away pages that have already been accessed.
The right-most graph of Figure 2 shows that with both mmap
and madvise the sorting program has linear performance up
to roughly 40 MB, when it has used all available memory.

4.1.3 Determining Available Memory

The amount of available memory on a workstation determines
the number of records that can be sorted with a one-pass sort,
and the number of records per run in a multi-pass sort. Some
previous work has addressed the issue of adapting sorting al-
gorithms to memory constraints at run-time [34, 36]; however,
we must first know the amount of free memory available to the
sorting application. Because there is no existing Solaris inter-
face that gives an accurate estimate, we developed memconf.

The memory tool allocates a buffer and fetches it into main
memory using one of two methods: by writing an arbitrary
value to the first word on each page or by copying words
from a memory-mapped, sequentially-advised input file. After
prefetching, the tool again touches each page of the buffer,
recording CPU utilization. If the buffer fits in main memory,
then CPU utilization is high (at least 85% by our current def-
inition), and a larger buffer is tried. If the buffer does not fit,
CPU utilization is low due to paging activity, and the tool backs
off to a smaller buffer. A binary search is used to refine our
estimate of usable memory.

Running the basic version of memconf showed us that
on machines with 64, 128, and 256 MB of real memory, only
47, 104, and 224 MB, respectively, are available to user appli-
cations after the operating system and daemon processes are
factored out. Applications using mmap and madvise, such
as NOW-Sort, have approximately 10% less available memory
(42, 93, and 195 MB).

Finally, we verified that our predictions of available mem-
ory matched the number of records we were able to sort without
memory thrashing. Since a sharp increase in sort time occurs
when we sort just a few more records than fit in available mem-
ory, we must be conservative; thus, we scale our estimate of
available memory by 95%. Our predictions are a comfortable
distance from the “memory wall”, while not wasting available
memory.

4.2 In-Core Sorting

This section quantifies the performance of various main-memory
sorting techniques. If performed correctly, the in-core sort
within the disk-to-disk single-node sort comprises only a small
portion of the total execution time. For example, the in-core
sort consumes only 0.6 of the 5.1 seconds required to sort one
million records on an IBM RS/6000 with 8 disks [1], i.e., 12%
of the total time. In this section we investigate the program-
ming complexity needed to achieve this range of performance
by measuring three different in-core sorting algorithms.

Quicksort: The first in-core sort is a simple quicksort over
all of the keys in memory [23]. Previous work has indicated
that swapping only the key and a pointer to the full record is
faster than swapping the entire 100-byte record, even though
extra memory and work is required to set up the pointers [26].
Comparisons between keys begin with the most-significant
word, and only examine the remaining words if the previous
ones are identical.

The top line in the left-side graph of Figure 3 shows the
time for the incore quicksort as a function of the number of
keys. For reference, in a system with four disks, approximately
12 seconds are required to read and write one million records;
thus, with quicksort, 20% of the execution time is spent in the
in-core sort.

Bucket + Quicksort: The second in-core sort performs
a quicksort after the keys have been distributed into buckets;
keys are placed in one of B = 2b buckets based on the high-
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Figure 2: Read() versus Mmap(). All three graphs show cumulative numbers for an UltraSPARC I with 64 MB of memory and
one Seagate 5400 RPM disk. The first two graphs show that when read or mmap is used, the total sort time increases super-linearly
before nearing the memory limits of the machine. The right-most graph shows that with memory mapping and advising, available
memory can be used more effectively.

order b bits of the key. Placing keys into the appropriate
bucket is easily overlapped with the read phase due to the
simple interface provided by mmap. We see no degradation
in read bandwidth when overlapping, since the CPU is under-
utilized. In our implementation, each bucket contains the most
significant 32-bits of the key after removing the top b-bits, and
a pointer to the full record. In the common case, only these
32-bits of the key are examined; only when ties between keys
occur are random accesses to memory necessary.

The number of buckets is determined at run-time such that
the average number of keys per bucket fits into the second-level
cache, which is 512 KB on the UltraSPARC. Since quicksort is
performed in-place and each partial key plus pointer requires
8 bytes, there should be 64K keys per bucket. Note that this
approach is highly dependenton a uniform distribution of keys;
with a skewed distribution, certain buckets may contain more
keys than fit in cache, degrading performance.

As shown by the middle line of Figure 3, performing quick-
sort on buckets that fit in the second-level cache is faster than
using quicksort on all of memory; with this approach only
14% of the total time to sort one million records is spent in the
in-core sort.

Bucket + Partial-Radix: The third in-core sort performs a
partial-radix sort with clean-up on the keys within each bucket,
as suggested in [1]. Once again, the most-significant 32-bits
of the key (after removing the top b-bits) and a pointer to the
full record are kept in the bucket.

Radix sort relies on the representation of keys as n-bit
numbers. We perform two passes over the keys and use a radix
size of 11, examining a total of 22-bits. We refer to this as
a partial-radix sort since we do not radix sort on all 80 � b
bits. On each pass over the keys, a histogram is constructed
that contains the count of each of the 211 digits. Then, the
histogram is scanned from the lowest entry to the highest to
calculate the rank of each key in the sorted-order. Finally, the
keys are permuted to their destinations according to their rank
in the histogram. After the partial radix sort, a clean-up phase
is performed, where keys with ties in the top 22+b bits are
bubble-sorted.

As with quicksort, the number of buckets is selected such
that the average number of keys per bucket fits in the second-
level cache. However, since radix sort requires a source and
a destination buffer, only half as many keys fit in cache as
compared to quicksort, i.e., 32K keys.

The bottom line in the left-side graph of Figure 3 shows that
radix sort on each bucket is greatly superior to quicksort. Only
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Figure 3: Comparison of In-Core Sorting Algorithms. The
graph compares the sorting time using quicksort over all keys in
memory, quicksort independently on each bucket, and a radix
sort on each bucket. The graph is not cumulative.

4% of the total time to sort one million records is now spent in
the in-core sort. Clearly, the combination of distributing keys
into buckets and performing a radix sort on the keys within
each bucket is worth the added complexity. We should note
that we implemented some of the optimizations found in [1],
including restricting the number of buckets to be less than the
number of TLB entries, overlapping of sorting and writing, and
a small optimization on the clean-up phase; however, we did
not see a significant gain from these methods.

4.3 Discussion

To summarize, Figure 4 shows the total time as returned by the
UNIX time command for the one-pass single-node version
of NOW-Sort on systems with two and four disks. Before
timing each run, we flush the file cache by unmounting and
re-mounting each of the striped disks. As expected, the in-
core sorting time is negligible in both configurations compared
to the time for reading and writing the records from disk.
Furthermore, the read bandwidth is roughly balanced with the
write bandwidth and matches the transfer times found with the
disk configuration tool within 5-10%. Finally, the performance
is linear in the number of records when the records fit in main
memory.
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Figure 4: Single-Node, Single-Pass Sort Time. Both graphs are cumulative. The time for the sort is shown as a function of the
number of records. The graph on the left depicts a system using two disks connected to a fast-narrow SCSI bus; the graph on the
right is for a system that uses an additional two disks on a fast-wide SCSI. Both systems contain 256 MB of real memory.

Optimizing the single-node, single-pass sort has shed light
on a number of machine architecture and operating system
issues. First, our disk configuration tool has shown that the
UltraSPARC internal fast-narrow SCSI bus saturates with more
than one 5400 RPM disk. A fast-wide SCSI bus would have
enabled us to achieve 11 MB/s from our two internal disks
instead of 8.3 MB/s, a 25% loss in performance. We also
found that striping to disks with different bandwidths requires
different stripe sizes across disks.

Second, our evaluation of file system interfaces has shown
that mmap provides simple and efficient fine-grained access to
files. With the mmap and madvise interfaces, copying keys
into buckets is completely hidden under the disk transfer time.
Obtaining this same performance with the read system call
would require more programming complexity: because the
cost of issuing each read is high, users must use threads to
prefetch data in large chunks. Further, the file system buffering
that occurs withreadwastes an inordinate amount of memory,
which is not acceptable for data-intensive applications.

Third, we have seen that with a simple memory configura-
tion tool, an application can effectively determine and use most
of available memory. The memory tool discovered the buffer
requirements ofmmap, roughly a 10% tax applied to free mem-
ory. However, an OS interface that gave programs an accurate
run-time estimate of free memory would be preferable.

5 One-Pass Parallel Sorting

We have detailed the intricacies of single-node sorting when
the records fit into memory, specifically disk striping, memory
management, and the in-core sorting algorithm. We now ex-
amine the one-pass parallel sort and the issues that arise when
communication is added. We also present our best performance
on the Datamation benchmark.

Assuming that the records begin evenly distributed across
P workstations, numbered 0 through P � 1, the three steps
of the single-node sort extend very naturally into the four-step
parallel algorithm:

1. Read: Each processor reads records from its local disk
into main memory.

2. Communicate: Key values are examined and the records
are sent to one of P � B local or remote buckets.

3. Sort: Each processor sorts its local keys.

4. Write: Each processor gathers and writes its records to
local disk.

Each of the workstations memory-maps its input files and
calculates the processor containing the remote bucket for each
key. Our current implementation determines the destination
processor with a simple bucket function (i.e., the top lg2 P bits
of each key) and copies the key from the input file to a send-
buffer allocated for each destination processor. Once again,
this approach for bucketizing assumes that the key values are
from a uniform distribution. The specifics of when the records
in a send-buffer are sent vary across our implementations and
are described in more detail below.

When a message containing records arrives at a processor,
an Active Message handler is executed. The handler moves
the records into a sort-buffer and copies the partial keys and
pointers into the correct local buckets; these operations are
directly analogous to distributing partial keys into buckets in
the single-node sort. The most significant difference from the
single-node version is that rather than distributing records into
local buckets, each processor distributes records into remote
buckets. This computation is naturally decoupled with Active
Messages: the sending processor determines the destination
processor owning a range of buckets; the receiving processor
determines the final bucket, performing calculations identical
to the single-node version within the message handler.

After synchronizing across all processors to ensure that all
records have been sent and received, each node performs an in-
core sort on its records and writes out its local portion to local
disk. The sort and write steps are identical to the single-node
version. At the end, the data is sorted across the disks of the
processors, with the lowest-valued valued keys on processor
0 and highest-valued keys on processor P � 1. Note that the
number of records per node will only be approximately equal,
and currently depends on the distribution of key values.

5.1 Exploiting Overlap

Simultaneously reading records from local disk while sending
records to other processors has the potential to overlap disk-
wait time and network latency. However, overlapping these
operations is only useful if shared resources, such as the CPU
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Figure 5: Comparison of Algorithms. The left-most bar
of each group shows the performance breakdown of the syn-
chronous implementation, the middle-bar the interleaved im-
plementation, and the right-most bar the threaded version.
For the interleaved and threaded versions, read and distri-
bution time is collapsed into the read category. The Hybrid
implementation reads from two fast-wide disks, and writes to
all four disks.

and the I/O bus, are under-utilized. In this subsection, we
evaluate three versions of the one-pass parallel sort that vary
the degree to which they overlap disk I/O and communication.

Synchronous: In the synchronous version each processor
reads, communicates, sorts, and then writes, with no overlap
across the four steps. Each buffer contains � � N=P records,
where � is an expansion factor related to the distribution of key
values. The drawback of a straight-forward implementation
is that it requires twice as much memory as the records to
be sorted: one buffer is needed for the records read and sent
by a processor and another buffer is needed for the records
received. Our implementation reserves only one extra buffer
for communication (i.e., P + 1 buffers), but requires extra
synchronization across processors. On iteration i, processor
p sends to processor (p+ i) mod P , to minimize contention.
After sending the complete buffer to the first processor, the
processors synchronize, waiting until the records have been
received. These steps continue until all records have been
distributed.

Interleaved: The second implementation alternates read-
ing and communicating, using one thread. As before, there is
a send-buffer for each destination, but now it is relatively small
(4 KB in the current implementation). Rather than waiting
until all records have been read, records are sent after the send-
buffer is full. Alternating reading and sending not only has
the advantage of overlapping both, but also uses less memory
and is more robust to the distribution of key values than the
synchronousversion. This algorithm only synchronizes across
processors once, ensuring that all records have been sent and
received, before beginning the in-core sort.

Threaded: The final implementation also overlaps read-
ing and sending, but uses two threads. A reader-thread reads
the records and moves them into local send-buffers and a
communicator-thread sends and receives messages. Two sets
of send-buffers now exist for each destination; when the reader
finishes filling any of the buffers in the set, it signals the com-
municator which sends all of the records in the current set.

Our measurements, shown in Figure 5, found that with
only one or two disks per node, the interleaved versions (both
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Figure 6: Scalability of the One-PassParallel Sort. 360,000
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two disks and 64 MB of memory per machine. 800,000 records
per processor (78 MB) are sorted with four disks and 128 MB
of memory per machine.

single and dual threaded) outperform the synchronous version
by roughly 10 %. Two threads perform slightly better than one
because they are better able to stagger read and send requests
smoothly over time. With more disks, the difference between
the synchronous and overlapped versions diminishes. With
four disks in the system, all three algorithms perform nearly
identically.

Interestingly, the interleaved versions actually read at a
slower rate with four disks than with only two 7200 RPM disks.
The reduction occurs because the UltraSPARC I/O Bus, the S-
Bus, is saturated long before its theoretical peak of 80 MB/s.
We find that we are able to read only about 13 MB/s from
the four disks, while simultaneously sending and receiving at
approximately 11.5 MB/s, for an aggregate of 36 MB/s over the
S-Bus. To make good use of four disks capable of transferring
20 MB/s, the S-Bus would need to be able to sustain roughly
60 MB/s aggregate.

Due to the limited bandwidth of the S-Bus, we found that
a hybrid system has the best performance when interleaving
reading and communication. The hybrid system reads from the
two disks on the fast-wide bus, and writes to all four. The write
phase still profits from four disks since there is no concurrent
communication, and hence the I/O bus is devoted solely to disk
activity. Since the threaded parallel sort equals or outperforms
the other implementations, we focus on it exclusively for the
remainder of our experiments.

5.2 Discussion

Our one-pass parallel NOW-Sort is almost perfectly scalable
as the number of processors is increased and the number of
records per processor is kept constant, as shown in Figure 6. In
other words, we can sort twice as many keys in about the same
amount of time by simply doubling the number of processors.
The slight increase in time with the P is mostly due to the
overhead of GLUnix, our distributed operation system. Re-
mote process start-up increases with more processors, taking
approximately 0.6 seconds on eight nodes and 1.1 seconds on
32.

Our performance on the Datamation benchmark is shown
in Figure 7. Each processor sorts an equal portion of the
one million records, so as more processors are added, each
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node sorts fewer records. With the resulting small problem
sizes, remote process start-up is a significant portion of our
total sorting time. In fact, on 32 processors, the total time
is almost equally divided between process start-up and our
application. However, this is probably more a function of the
lack of maturity of our own cluster OS, than the fundamental
costs of a distributed operating system, and is currently the
focus of optimization.

Interestingly, process start-up can also be time-consuming
on SMPs: both [26] and [30] indicate that bzero’ing the
address-space is a significant, if not dominant, cost for one-
pass external sorts, most likely because the SMP OS does
not parallelize the process. On NOWs, this aspect of process
creation is not a problem, since each local address space is
initialized in parallel.

The parallel single-pass sort revealed another I/O-system
bottleneck in the UltraSPARC I architecture: the S-Bus. Be-
cause the S-Bus can achieve only about 36 MB/s, a workstation
can not effectively use more than two disks when simultane-
ously communicating over the network. To remain a viable
alternative to SMPs, UltraSPARC I/O bandwidth must im-
prove dramatically or, more radically, provide communication
over the memory bus without coherence. The corollary to this
suggests that a system with two disks on a fast-wide SCSI bus
is the sweet-spot in the cost/performance curve.

In conclusion,we found developing the parallel single-pass
sort to be a natural extension from the single-node version:
the lessons described in the previous section regarding disk
striping, memory management, and in-core sorting were all
directly applicable. In the NOW environment, we were able
to isolate performance effects on a per-processor basis; the
only difference from the single-node version was additional
communication traffic over the S-Bus. In contrast, we believe
that in an SMP system the pooling of resources obscures this
type of analysis. Finally, the Active Message interface not only
provided high bandwidth and low overhead communication,
but also facilitated an algorithm which differed only slightly
from the single-nodeversion; instead of copyingkeys into local
buckets, each processor now copies keys into buckets spread
across processors.

6 Two-Pass Single-Node Sorting

Having described the one-pass versions of NOW-Sort, we now
detail the extensions needed for a single-node when there is
insufficient memory and two passes must be made over the
records. As described in Section 4.1.3, we use our memory
configuration tool to determine the amount of available mem-
ory so that we can choose between the one-pass and two-pass
algorithms.

1. Create Runs: The one-pass sort (Read, Sort, and
Write) is repeated to create multiple sorted runs on disk.

2. Merge: In this new phase, the sorted runs are merged
into a single sorted file.

Create Sorted Runs: In the first phase, two threads are
created: a reader-thread and a writer-thread. Available mem-
ory (M ) is divided into Bc buffers, where Bc equals one or
two, depending upon whether the reader and writer are syn-
chronous or overlapped, as discussed in the next section. Each
run containsM=Bc records, requiringR = N

M=Bc

runs, where
N is the number of records. The reader copies the records from
disk and moves keys and pointers into buckets, and then signals
that the buffer is full. The reader is then free to fill the next
empty buffer with the next run. The writer waits for a buffer
to be filled, sorts each bucket, writes the records to disk, and
then signals that the buffer is empty. This process is repeated
until the R runs are sorted and written to disk as separate files.

Merge Sorted Runs. In the second phase,multiple runs are
merged into a single output file. Our implementation contains
three threads: a reader, a merger , and a writer. The reader-
thread memory-maps theR run files and reads the first chunk of
records from each run into one of Bm sets ofR merge buffers;
Bm may be one or two, depending upon whether or not reading
and merging are synchronous or overlapped, also discussed in
the next section. Prefetching records in large chunks (currently
about 512 KB) amortizes the seek time across runs, and thus
obtains nearly the same read bandwidths as sequential accesses.
After reading theR buffers, the reader signals to the merger that
these buffers are full, and continues to prefetch into the next set
of empty merge buffers. The merger selects the lowest-valued
key from the top of each run, and copies the record into a write
buffer. When the write buffer is full, the writer it signaled,
which writes the records to disk.

Note that the merge phase is an instance where we found
that a simple implementation using mmap and madvise does
not attain sequential disk performance. When accessing mul-
tiple read streams from the same disk, mmap does not prefetch
data in sufficiently large blocks to amortize the seek costs.
Thus, our merge phase must explicitly manage prefetching
with multiple threads and buffers.

6.1 Exploiting Overlap

In both phases, reading from disk may be overlapped with
writing and with computation. As in the one-pass parallel
sort, overlapping phases by pipelining is only beneficial when
resources, such as the CPU and I/O bus, are under-utilized;
Overlapping now has additional implications for the layout of
records across disks and for memory usage, and pipelining one
phase implies pipelining both phases, since the output from the
first phase is the input of the second. Therefore, we investigate
the impact of run length and the layout of records across disks
on both phases.
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Run Length: The synchronous version of phase one uses
all of memory to create each run; thus, it generates half as
many runs as the pipelined version. More runs may adversely
affect the performance of the merge phase, since reading from
more disk streams may raise the seek time beyond that which
we hide by prefetching large chunks. The number of runs
is also constrained such that there exists sufficient memory
for the prefetch buffers of each run in the merge phase (i.e.,
512kb �R �Bm < M ).

Disk Layout: The synchronous and pipelined versions
must manage the layout of records across disks differently.
To maintain sequential access, each disk must be dedicated to
either reading or writing at any given time. Since the pipelined
implementations are both reading and writing at nearly all
times, half of the disks must be used for reading, and the other
half for writing. The synchronous implementations can utilize
all the disks for reading and then all of the disks for writing.
Thus, when both phases are synchronous, the input file, the
temporary sorted runs, and the output file are striped across
all disks; when both phases are pipelined, each file is striped
across only half the disks. When one phase is synchronous
but the other is not, the synchronous phase suffers because it
can only use that half of the disks employed by the pipelined
phase.

Measurements on both two-disk and four-disk systems re-
veal that the best two-pass single-node version occurs when
both phases are pipelined. The pipelined merge phase ex-
hibits a dramatic improvement over the synchronous version
because it effectively prefetches large chunks of each merge
run and hides the cost of seeking. The pipelined merge im-
proves slightly when the first phase is synchronous, since it
has fewer runs to merge; however, the penalty to the first phase
of executing synchronously while only writing to half of the
disks outweighs this improvement.

6.2 Determining Run Size

Within the pipelined algorithm, the length of each run impacts
the performance of the first phase, while the number of runs
impacts the second phase. In this section, we determine a
compromise in the number of runs and their lengths that results

in good performance for both phases. The tension between the
two phases when sorting a fixed amount of data and changing
the number of runs is shown in Figure 8.

When few runs are created (four or less), the time for the
first phase is large since the size of each run is greater than
the amount of available memory (M=Bc); thus, the memory
manager pages data to and from disk. Beyond the point where
each run fits in memory, the time for the first phase continues
to drop slightly as the run size decreases, due to the lower cost
of filling and draining the read/write pipeline. That is, with
less data per run, the time the writer must wait for the reader to
read the first run decreases, and the time for the writer to write
the last run decreases.

Conversely, as the number of runs increases up through
17, the time for the second phase increases. The merge phase
reads records from disk in 512 KB chunks to amortize the cost
of seeking across independent runs, creating a similar start-
up effect. The start-up time increases with the number of runs
becausethe reader prefetches a fixed chunk for each of the runs.
The net result between the “memory wall” and 17 runs is that
increasing the number of runs for a given problem set has no
overall effect on performance, slightly decreasing the time to
generate the runs, while increasing the time to merge the runs.
After 17 runs, performance degrades rather sharply again, with
merge time increasing by 30 to 50 percent. Currently, we are
not sure of the cause of this behavior, but suspect that it is
related to cache performance, since the performance drop-off
is mirrored by an increase in user-CPU time, and not disk-wait
time.

6.3 Discussion

We conclude by summarizing the MinuteSort performance of
the two-pass single-node sort with two and four disks in Table 3.
The time for the merge phase is slightly larger than the time
to create the runs because the records are divided into twelve
runs, which concurs with the data in Figure 8. We use these
results as a comparison case for the two-pass parallel sort in
the next section.

2 Disks, 110 MB 4 Disks, 229 MB

Create 28.6 s (7.7 MB/s) 26.7 s (17.2 MB/s)
Merge 29.4 s (7.5 MB/s) 32.5 s (14.1 MB/s)
Total 58.4 s 60.4 s

Table 3: Single-node MinuteSort Results. The amount of
data that can be sorted in one minute on a single node is shown
for a UltraSPARC I with 2 disks and 64 MB of memory versus
one with 4 disks and 128 MB of memory. 110 MB corresponds
to 1,150,000 records; 229 MB to 2,400,000 records.

In this section, we again saw that NOW-Sort must have an
accurate estimate of available memory: to choose between the
one-pass or two-pass algorithm for a given number of records,
and to determine the maximum run size in the two-pass algo-
rithm.

Examining the two-pass single-node sort, we found that
pipelined versions of both phases performed better than syn-
chronous implementations, regardless of the number of disks.
We found that mmap with madvise does not prefetch suf-
ficiently large blocks to amortize seek costs across multiple
streams, forcing us to explicitly use a prefetching thread in the



merge phase. By prefetching large blocks, sequential perfor-
mance is maintained even when the merge phase must read
from R runs, where R is greater than the number of disks in
the system.

Finally, we have observed the importance of carefully man-
aging the layout of records across disks; by dedicating half the
disks for reading and half for writing, we do not disrupt the
sequential access pattern generated by each stream.

7 Two-Pass Parallel Sorting

In this section we describe our two-pass parallel algorithm and
our results on the MinuteSort benchmark. This final sorting
algorithm extendsnaturally from the one-passparallel and two-
pass single-node algorithms.

1. Create Runs: Processors create sorted runs across all of
the nodes of the cluster. Runs are created by repeating
the Read, Send, Sort, and Write steps of the one-pass
parallel sort.

2. Merge: Each processor merges its local sorted runs into
a single local file. This phase is identical to the merge
on a single-node described in the previous section and is
not discussed further.

7.1 Exploiting Overlap

Creating multiple sorted runs across processors in the first
phase contains several opportunities for overlap. In the one-
pass parallel algorithm, reading and sending could be over-
lapped; in the two-pass single-node sort, reading and writing
could be overlapped. In the two-pass parallel sort, we may
overlap none, one, or both of these pairs of operations. To
understand the tradeoffs, we describe the actions of the three
threads in more detail: the reader, the communicator, and the
writer.

The read thread is responsible for mapping the input file
and copyingkeys and records into per-destination send-buffers.
When any of the send-buffers fill, the reader signals the com-
municator. As in the one-pass parallel sort, the reader and com-
municator can be overlapped (using two sets of send buffers)
or synchronous (with one set).

When signaled, the communicator-thread picks up the en-
tire set of send-buffers and sends each to the appropriate desti-
nation processor. When a message arrives, the Active Message
handler is invoked,which copies the records into the sort-buffer
and the partial keys into the appropriate bucket. After the com-
municator has sent all of the records in the current run, the
processors synchronize and wait to receive the records.

After a run has been sent and received, the writer-thread is
signaled. The writer sorts the keys within each bucketand then
gathers and writes the records to disk. Similar to the two-pass
single-node sort, the reading of one run may be overlapped
with the writing of the previous run. Overlapping implies that
two sets of sort-buffers and buckets exist, each set consuming
approximately half of memory.

Our measurements indicate that the number of disks in
the system determine which operations should be overlapped.
With two disks, the best implementation overlaps all four oper-
ations. With four disks, the best overlaps reading and sending,
but performs reading and writing synchronously. When all
operations are overlapped, the CPU is saturated at nearly 95%
utilization. Performing the read and write operations syn-
chronously not only minimizes CPU and I/O bus contention,

but by creating only one run at a time, stripes the input file
across all four disks and creates less runs to merge in phase
two.

7.2 Discussion
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Figure 9: Parallel MinuteSort Results. This graph shows
MinuteSort results on two different cluster configurations: an
8-node cluster with 4 disks and 128 MB per processor and a
64-node cluster with 2 disks and 64 MB per processor. Perfect
scaling is relative to single-node performance.

The performance of the two-pass parallel NOW-Sort on the
MinuteSort benchmark is shown in Figure 9. With eight ma-
chines and four disks per machine, our implementation sorts
1.4 GB in a minute. We experience a large drop in the number
of keys that can be sorted when we move from the single-node
sort to the parallel version running on one processor because
reading and writing are now performed synchronously instead
of overlapped; however, compared to the parallel version on
one processor, the algorithm scales perfectly linearly with more
processors.

On the cluster with two disks per machine, the parallel
version of the sort on one machine sorts as many keys as the
single-node algorithm, since both implementations overlap all
phases. With 16 processors, we sort 1.6 GB of data, which
ties the previous MinuteSort record by the more fully-loaded
SGI system: 12 processors, 96 disks, and 2.25 GB of memory.
With 32 processors, we sort 3.0 GB in 57.9 seconds, and on 64
nodes, we sort 6.0 GB in 59.3 seconds. The algorithm does not
scale quite linearly with the number of processors; the drop is
largely due to start-up bottlenecks, costing us 3 seconds on 64
nodes.

Unfortunately, due to the relative dearth of memory on our
workstations, the MinuteSort is a two-pass algorithm on our
cluster; on previous record-holding systems, MinuteSort was
performed in a single pass. For example, to sort 1.6 GB of
data, we are performing twice the I/O of the SGI XFS system
in the same amount of time.

8 Conclusions

In this paper we presented NOW-Sort, a collection of config-
urable sorting algorithms for networks of workstations. We
have shown that NOWs are well-suited to I/O-intensive ap-
plications such as sorting. The cluster environment is ideal
for the development of efficient parallel applications because



System Year Procs Disks Mem Datamation MinuteSort
(GB) Time (s) Price/Perf (cents) Data (GB) Price/Perf ($/GB)

DEC Alpha AXP 3000 1993 1 10 0.256 13.7 0.9 – –
DEC Alpha AXP 7000 1993 3 28 0.256 7.0 1.4 – –
DEC Alpha AXP 7000 1993 3 36 1.25 – – 1.1 0.47
SGI Challenge XL 1995 12 96 2.25 3.5 0.4 1.6 0.61
IBM RS/6000 39H 1996 1 8 0.256 5.1 0.2 – –
NOW UltraSPARC 1996 8 32 1.00 2.92 0.32 1.4 0.13
NOW UltraSPARC 1996 16 32 1.00 3.01 0.57 1.6 0.19
NOW UltraSPARC 1996 32 64 2.00 2.41 0.91 3.0 0.20
NOW UltraSPARC 1996 64 128 4.00 – – 6.0 0.20
Ideal NOW UltraSPARC 1996 28 56 8.76 – – 6.2 0.10

Table 4: Summary of Datamation and MinuteSort Results. Note that the price of the SGI Challenge is estimated and the IBM
RS/6000 uses raw disk, which is not allowed in the Datamation specification. Note that 1 GB is 230 bytes.

it provides performance isolation: by monitoring the behavior
of the application on each node, the program-developer can
isolate performance bottlenecks. Clusters also enable incre-
mental scalability: hardware, whether it be processors, disks,
or memory, can be added to the system and used in an effective
manner.

This work was enabled by two key pieces of software on
the NOW cluster. The first of these is Active Messages, a
high-speed communication layer providing low latency and
high throughput to parallel programs [13, 33]. The second key
software component is GLUnix, a distributed operating system
for NOWs [19].

By studying disk-to-disk sorting,we qualitatively and quan-
titatively assessed the workstation operating system and ma-
chine architecture. One of the underlying goals of the NOW
project is to utilize existing commodity software and hardware;
the assumption is that general-purpose workstations form solid
building blocks for clusters connected via a high-speed net-
work. In this paper, we demonstrated some of the strengths
and weaknesses of this assumption.

For NOW-Sort, the most important function of the op-
erating system is to support efficient file access. We find
that mmap with madvise in Solaris 2.5.1 provides fast, fine-
grained access to files, with the file system usually providing
adequate prefetching and buffer management; however, it con-
sumes 10% of available memory. The older read interface
still incurs the double-buffering problem, and should not be
used by programs with large memory requirements. We did
find that mmap with madvise was not sufficient when read-
ing from multiple independent streams in the merge phase of
the two-pass sort; there, we needed to use multiple threads to
manage prefetching ourselves.

We found the existing Solaris support for I/O- and memory-
intensive applications to be lacking in two key areas. First,
efficiently employing multiple disks of differing speeds on a
single workstation is not straight-forward. Second, there is
no reasonable way to determine available memory, so that an
application does not over-extend resources and thrash. To solve
these problems, we developed two small configuration tools.
The first of these evaluates the speed of the disks in the system
and feeds this information into our striping library, allowing
us to get maximal performance from our disks. The second
tool measures available memory on each node of the cluster.
These two tools combine to enable the sorting application to
tune itself to the available cluster and attain peak efficiency.

We found that the I/O bus structure of the UltraSPARC

I workstation provides inadequate support for the disk and
communication needs of sorting. For example, we found that
with four disks, an implementation with synchronous reading
and writing was sometimes superior to a pipelined version.
Indeed, we were surprised to find that a machine with just two
disks and a connection to a high-speed network is the most
effective building block, as adding more disks leads to little
benefit. There are two solutions to this pending problem: an
improved I/O infrastructure, with enough bandwidth to support
disks and network, or communication facilities that function
over the memory bus (perhaps without coherence), leaving
only the disks to consume precious I/O bus bandwidth. We
also found that the internal fast-narrow SCSI bus prevents full
utilization of the bandwidth of the two internal disks, a 25%
performance loss.

The performance of our system relative to previous record-
holders on both the Datamation and MinuteSort benchmarks
is shown in Table 4. Our best-performing configuration of
32 processors sorts one million records in one-pass in 2.41
seconds, but at a relatively high cost. The 8 processor system
with four disks per node is slightly slower, at 2.92 seconds, but
has significantly better cost/performance. The IBM RS/6000
still achieves the best cost/performance of all known results,
but uses raw disk, which is not allowed by the benchmark
specification.

Our MinuteSort results were obtained on machine configu-
rations with little memory, and thus required two-pass external
algorithms. The previous record-holders contained enough
main memory to hold the data. Even performing twice the
amount of I/O, we were able to sort 6.0 GB (6 x 230 bytes)
in one minute on 64 processors. In this configuration, with
only 128 disks, we are able to deliver roughly 431 MB/s to
the sorting application. The previous MinutesSort record-
holder needed 96-disks to deliver only 54 MB/s. For the best
price/performance, we project that if we had 28 processorswith
two disks and 320 MB of memory each, we could fit 6.2 GB of
records in memory; thus, by sorting in only one-pass, we could
use much less hardware to obtain slightly better performance.

Visit our home page to find out more about NOW-Sort and
the NOW Project: http://now.cs.berkeley.edu.
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