A Functional View of Data Independence

by

Michael Stonebraker
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California,

ABSTRACT

Many researchers have used the term '"data independence" with-
out indicating a precise meaning. One common. definition is --
the isolation of a program from considerations of the data which
it processes [1,2]. Another is -- the ability of an applications
program to execute correctly regardless of the actual storage of
its data [3,4]. Although these suggest the general concept, a
precise framework is clearly needed. The current paper provides
such a framework and explores its ramifications.

63

A Functional View of Data Independence

I. Introduction

It is evident that ''data independence" involves the ability
of an applications program to run correctly even after changes
have been made in its data storage, as suggested by Date and
Hopewell [3,4]. However, they do not precisely define the con-
cept and deal only with relational data bases. Moreover, they
suggest that data independence is an absolute term, i.e. that
applications programs should execute correctly regardless of
their data storage. We, on the other hand, claim that a range of
changes to a data base is possible from the more trivial to the
more complex. Consequently, there can be a corresponding range
of data independence. Thus, the concern will be for classifying
relative degrees of data independence instead of defining an
absolute term.

In the next section, we define precisely the concept of "a
change in data storage.' This will be: done in terms of functions
on physical files. Also, we suggest two definitions of data in-
dependence for such functions.

Then we classify possible transformations to a data base in-
to seven categories and demonstrate a hierarchical relationship
among the classes. In addition, we present examples of transfor-
mations in each class which existing and proposed data base man-
agement systems can support data-independently. We argue that
the degree of data independence possessed by a data base manage-
ment system should be defined in terms of the sets of functions
from the various categories that obey either of our functional
definitions of data independence. As a result, the notion of
data independence will not be synonymous with either definition
mentioned in the abstract.

It is theoretically possible for a data base management sys-
tem to insure that an applications program runs correctly after
any change in any category. This hypothetical system, of course,
would be hopelessly complex. As a result, we introduce a small
set of primitive transformations to physical files. Implementa-
tion of compositions of these functions data-independently is
shown to provide independence for most normally used storage
structures.

Lastly, three software packages are examined for their abi-
lity to support transformations in the various classes without
impacting applications programs. Moreover, their levels are com-
pared to the one provided by the above primitives and found to
be far inferior. It is suggested that systems move toward sup-
port of the suggested primitives.

II. Physical and Logical Files

A set of users (computations, job steps, proccesses) [5]
Ul’UZ"" are assumed to interact with a data base. These users

64

A Functional View of Data Independence

do so by making calss on a data base management system, D, As
noted in Figure 1, D can be assumed to interact directly with the
data base. In order to define this data base precisely, we first
define a physical file.

Let A be the set of valid addresses in secondary storage of
a given computer system. Let CA be the set of all binary bit
strings of length K or less which are possible contents of these
addresses. Here, K is a system determined maximum record length.
Let aieA be an address in A and let CA(ai)eCA be the contents of
address a.. Consequently, the two-tuple (ai,CA(ai)) is an ele-

i
ment of AXCA. Denote by Pn the product space

(AXCAXAXCAf"'XAxCA‘

- n
An element pePn could be a 2n-tuple corresponding to n addresses

and their contents, i.e. p=(a1,CA(a1),...,an,CA(an)). For such
an element, p, denote by A(p) the set of n addresses {al,...,an}.
Lastly, denote by

the union of all Pi where i is less than or equal to the number
of address, w, in A. Hence, the following definition is appro-
priate:

Definition 1: A physical file, p, is an element peP such

that A(p)={al,...,an} for some n has the
property that ai#aj for i#j.

A physical file is an ordered sét of addresses and their
contents. This set must be smaller than the maximum number of
secondary storage addresses and each address must be distinct.

Definition 2: A data base, b, is a set Pps---sPy of physi-

cal files pieP such that A(pl)f1A(p2) Nn,..
nA(p,) = ¢.

. Consequently, a data base is a set of distinct physical
files. There is no requirement that

n
u

A(p.)=A .
i=1 1

65

Uz

| Data

Base

System Structure

Figure 1

key 1

data 1

key 2

data 2

key n

data n

ISAM Logical File

Figure 2

66

A Functional View of Data Independence

Hence, extra secondary storage space may exist which is unused
or used for files not in the given data base.

The program, D, however, umsually does not let users see
Ppse--Py OT even 2 subset of these files., If it did, no soft-
ware assistance would be available to users and they would physi-
cally interact with the data base. Rather, D usually presents
users with a set of different spaces {hl,...,hm} in which to pro-
gram interactions with the data base. These will be termed logi-
cal files. let E be a set of addresses (often {1,2,3,...,T})
and CE be the set of valid contents of an address. Again, let

.,
H_=ExC.x...xEx(H= VU H
"BxCpx. XBxCg , H= O Hn

n
and for heH let E(h) be the set of addresses. Here, v is the sys-
tem determined maximum number of addresses in a logical file.
Hence, the following notions of a logical file and a logical data
base sre appropriate.?l

Pefinition 3: A logical file, h, is an element heH such
E(h)={e1,...,en} for some n has the property
that eifej for i#j.

Definition 4: A logical data base, &, is a set hl""’hn
of logical files hieﬂ.

Note that for logical files theme is mo requirement .that address-
es in the wvarious files be distinct as was the case for physical
files. Note also that specific systems may have additional con-
straints on & logical file. In [6}, for example, logical ad-
dresses for a file h,E(h), must be the set {1,2,...,s} for some
positive integer s < 220, Lastly, note that interactions with
logical files may be restricted. In fact, if wsers interact with
D through a non-procedural language, then they may not even be
able to retrieve the contents of & given address in h.

In order to further illuminate the concepts of physical and
logical files, we offer an example. Here, we suggest the two

1Mostzdata"base management systems provide logical files with
considerably mbTe structure than suggested here. This definition
could be expanded to include any given system without affecting
the remainder of the paper.

67

A Functional View of Data Independence

views p and h for a single ISAM file [7].

The ISAM user perceives h as shown in Figure 2. Here, in
each of n locations, the first m bits are a key [7] and the re-
maining t are other data. A logical file is arranged in collat-
ing sequence such that key 1 < key 2 <...%< key n. The user has
a set of commands on this spaCe including reading or writing the
contents of the address corresponding to a given key and reading
or writing the address after the current one.

0f course, ISAM maps this logical file into a physical one
including a track index, a cylinder index and overflow areas
which are transparent to the user.

Now we are in a position to precisely define a data base
management system, D,

q m
Let '@ = U ‘ﬂi where Bi = PxPx...xP, and = U X’l
i=1 i i=1

where 5{; = HxHx...xH .
——
i

Here, q and m are upper bounds on the possible number of
physical and logical files respectively. Moreover, let BchB
and L € be subsets of ¥3 and &, respectively. Note that a
logical data base, %, is an element of) and a physical data
base, b, an element of 8.

Definition 5: A data base management system, D, is a set of

functions X = (xl,...,xs} and Y= {yl,...,yr}
such that for all i,

xi:Bxi+;f

yi=L),i*“3

where B C‘?g and L Cf
X5 Y1

A data base management system is a set of functions which map
collections of logical files into collections of physical files
and vice versa. Unlike ISAM which supports only one physical to
logical transformation, many systems allow a set of such func-
tions. By varying the physical to logical transformation, this
feature will allow different logicdl data bases to correspond to
a given physical data base. At any given moment, however, only
one member of X is used. This is one portion of the state of
the data base management system defined as follows.

68

A Functional View of Data Independence

Definition 6: The state, S, of a data base management sys-
tem, D, is the four tuple (b,l,xi,yj) where

b is a set of physical files
L is a set of logical files
Xy € X 1is the current physical to logical
transformation
y. € Y is the current logical to physical
J transformation

User interactions with £ must be mapped into interactions with

b and any result (as in a retrieval request) must be mapped from
b back to . Hence, the data base management system is com-
pletely specified by the current sets of logical and physical
files and by the two transformations currently in use to map
between them.

Definition 7: A state S=(b,£,xi,yj) is consistent if

beBxi,zsLyj and xi(b)=2, yj(£)=b .
Note that a state is consistent if the two transformations cur-
rently in effect successfully map back and forth between the
current sets of physical and logical files. Maintaining consis-
tency is one goal of all data base management systems.

There are two basic ways that a change in the state of data
base management systems can be instituted.

1. A state change can be caused by a user making a change
to the logical data base. 1In this case, fe is changed to
2'e £ by an update, insertion or deletion. The addition and
deletion of logical files also fall in this category.

2. The physical data base may'be changed (for efficiency
reasons, for example). In this case, be)@ is altered to b'e)S.

After either type of change, ;he state of the system may be
consistent or inconsistent. In case 1, a consistent state may
be created in three ways:

a) by chang1ng the physical data base i.e.
S=(b,%, xl,y .) + S'=(b',% ,xl,y) where S' is consistent. This
approach w111 work, in general, only if x. =y 1
b) by changing the data base transformations i.e.
S=(b,£,xi,yj) + S'=(b,£',xm,yn) where S' is consistent.

c) by changing both the physical data base and the
transformations i.e. S=(b,%,x. ,yj) > S'=(b',£',xm,yn) where S'
is consistent.

69

A Functional View of Data Independence

In all cases we note that & changes to &' and that a user
program U may or may not execute correctly on &' given that it
executes correctly on %. Little can be said further concerning
insertions, deletions and updates except that U should be made to
survive as many such changes as possible and that there exist 2!
on which U will execute incorrectly.

Consider for example the situation of Figure.3. Here, two
logical files exist each with one address and 5 and 4 byte con-
tents, respectively. Moreover, h1 and Py have the same contents
while h2 deletes the first byte of py- In particular, h1 and h2
might be 5 and 4 character representations respectively of a data
item stored in Py- The transformations X3 and y. can be appro-
priately defined. If the first byte of P is blank, then users
interacting with h1 can run correctly. On the other hand, if Py
is updated by a user interacting with h1 to have a non-blank
first byte, then the resulting data base can be made consistent
yet user programs interacting with h2 will in all probability
execute incorrectly.

In the case where a logical file, h*, is added by a user,
one can guarantee that other users are not affected by simply
creating a separate physical file, p*, for that logical file with
its separate xg and y?. This can either be a separate data base
i.e. S=(b,£,xi,yj) - S=(b,E,xi,yj)+S'=(p*,h*,x;,y$) or an
addition to S, i.e. S=(b,1,xi,yj) -+ S'=((b,p*),(l,h*),(xi,x;),
(yj,yg)). For efficiency reasons, one might wish to perform a
change of case 2 to the resulting data base.

In case two, a consistent data base may be maintained three
ways:
a) by changing £ to &' i.e. S=(b,2,xi,yj) . S'=(b',£',xi,yj)
and 8' is consistent. As before, user programs may or

may not survive such changes.

b) by changing X3 and yj, i.e. S=(b,£,xi,yj)+ S'=(b',l,xm,yn)
and 8' is consistent. If S' is made consistent in this
fashion, then user programs will assuredly survive the
change from b to b'.

70

1
X, Y.
<z +)
AY P
hz
A Trivial Data Base
Figure 3
g
£fJ-f
£ fgj P
Be p——>| R(DEP > Fley)

The Transformations of Interest

Figure 4

71

A Functional View of Data Independence

c) by changing £, X4

L',xm,yn) and S' is consistent.

and yj, i.e. S=(b,2,xi,yj) + S'=(b',

Cases la, 1b, 1lc, 2a and 2c all involve changes to the logi-
cal data base. Whether user programs survive such changes depends
entirely on their internal characteristics. Data independence
for such changes does not involve the data base management sys-
tems, D. As a result, we shall henceforth be concerned with
changes to physical data bases which leave the logical data base
unaltered (i.e. case 2b).

Let f:Bf-+7g be a function mapping a physical data base into
another physical data base. We now propose two definitions of
data independence over such a storage transformation.

Definition 8: A data base management system, D, provides

data independence for a function f:Bf > and

state S = (b,z,xi,yj) if there exist X and

Yn such that (f(b),l,xm,yn) is consistent.

Definition 9: A data base management system, D, provides
data independence for function f:Bf-+23 and

functions X;,Ys if for each ber there exists
an X, and Yn such that the consistency of
(b,z,xi,yj) implies the consistency of

(E(B),2,%,7,) .

Note that definitions 8 and 9 require functions whose domain
is all physical files. Clearly, a function f whose domain is
less than all physical files can be uniquely expanded to a func-
tion on all physical files by applying the identity mapping to
the remaining files. Consequently, these definitions can be
trivially modified to allow functions on smaller domains. Such
functions will appear in the next section.

We now examine seven classes of functions over which exist-
ing proposed and possible systems can be made data independent
according to one or both of the above definitions.

The first three classes of transformations map B.CP-+P,
Consequently, they alter the storage of a single physfcal file.

III. Data Independence Classes

Class 1 - the set of one-to-one functions f:Bf+ P such that
if p'=£f(p), then

1) p and p' have the same number of addresses

72

A Functional View of Data Independence

2) for each address, a;, in p there exists one
address aj in p' such that CA(ai)=CA(a3)

Functions in this class allow physical files to be relocated and
their addresses to be permuted. Data base management systems
usually provide independence over many of the functions in this
class. Some systems, however, require addresses in a physical
file to be contiguous. Hence, functions which can create a p'
violating this constraint would not be supported data-indepen-
dently. At least one file system [6] partly relaxes this con-
straint. This first class of data independence might appropriate-
ly be called '"device independence."

In order to introduce class 2, we require the concept of a
non-redundant transformation. Consider a function f:BfC PP

and let R(f) be the range of f. Let P(gj)C P be the following
set.

P(gj)={p—(aj,gj)lpsR(f)/\ P, for i>jMUJ{p|peR(£)A P, for i<j}

Here, g. is all or any portion of the contents of CA(aj) and
P(g.) results from R(f) by deleting this information. Define
£BjR(£) P(gj) to be the obvious restriction of R(f) to P(gJ).
Denote by fgj~f:Bf + P(gj) the composition of fgj and £. Figure
4 diagrams these transformations.

Definition 10: A function f:Bf + P is non-redundant if f
is one-to-one but fgj-f is not one-to-one
for any £5j.

Non-redundant transformations have the property that noth-
ing can be discarded from their range without destroying the
one-to-one property. Consequently, they create files with exact-
ly the same information in them as the original ones. A situa-
tion not satisfying this property is the transformation made to
a sorted file to create an ISAM file. Here, the ISAM cylinder
index may be entirely discarded without affecting the possibility
of recreating the original sorted file.

Class 2 - the set of non-redundant functions f:BfC P+P
such that if p'=£f(p) then
1) p and p' have the same number -of addresses
2) for each address, ay in p there exists one
address aj in p' such that (ai’CA(ai))'

73

A Functional View of Data Independence
(aj.CA(aj)er and f(ai,CA(ai))=(a§,CA(aj))

Functions in class 2, like those in class 1, require that there
be a one-to-one correspondence between addresses in p and those
in p'. However, the contents of a location in p' can be a
non-redundantly recoded version of its counterpart in p. A me-
chanism to support a restricted subset of such coding functions
in a data independent way was suggested in MacAIMS [8].

One can easily note that class 1 functions are a special
case of class 2 functions. In Figure 5, this inclusion property
is noted by an arrow from class 2 to class 1. Both classes 1 and
2 have the requirement that p and p' must have the same number
of locations. Class 3 allows more general transformations, as
follows.

Class 3 - Non-redundant functions, f:BfC P~+P

Three examples of such transformations are:

1) Storage of a relation changed from row-by-row to
column-by-column.

2) A coding scheme whereby each location stores not CA(ai)
but the difference between CA(ai) and CA(ai-l) (which may
require less space).

3) Blocking of records together to form larger physical
records. Each of these three transformations is
non-redundant and hence belongs in class 3. Other
examples of class 3 transformations are the following:

If p contains pointers as data items which allow a logical
tree to be constructed, then a class 3 function is a non-redun-
dant transformation from one representation of a tree to another.
See [9] for the various implementations. Note that normalizing
a tree structure {10] is also a transformation of class 3.

Transformations in classes 1-3 are all non-redundant. More-
over, each maps a single file into another one. Initially, if
there is a one-to-one correspondence between physical files and
logical files, then transformations in these classes preserve
that property.

. We now turn to transformations which may violate these con-
ditions. Class 4 will contain those transformations which
create extra indices.

In general terms, an index for peP is a collection of sub-
sets of addresses in p, each subset of which shares some common
property. For example, for each value of a given data item, one
could store addresses of all locations in p with the data item
having the required value. Alternately, for each location of p,

74

(=}

The Hierarchy of Data Independence

Figure 5

75

A Functional View of Data Independence

one could store the location of the one other element having the
next value in the collating sequence for a given data item.
Hence, an index shall be precisely defined as follows for BfC P.
Definition 11: An index is a function f:Bf + P such that if
p'=f(p) then p' differs only by a class 3

function from a file each of whose addresses
contains a subset of addresses in p and a
subset of the contents of those addresses,

Class 4 functions map ch P into BZ(Pl,Pz) as follows.

Class 4 - the set of functiomns f:Bfﬂ-(Pl,Pz) such that
f=(fl,f2); fl:Bf+Pl and fZ:R(fl)‘+P2 such that
1) f1 is a class 3 function
2) fz is an index
Note that a trivial modification of the above definition would
allow the possibility of plePl and pzaP2 to be subsets of the

same physical file as is the case when multilist structures are
created.

Of course, if there are no subsets in an index and Py=¢,
then class 4 reduces to class 3, as noted in Figure 5. Class 5
transformations are an obvious extension of class 4 functions.

Class 5 - the set of functions f:Bf(ZP-+(P1,PZ) such that
f=[f1,f2); flzBf-+P and fZ:BfXR(fl)-+P2 such that
1) fl is a class 3 function
2) fz is a function

Note in class 5 that fz is not restricted to be an index.

One class 5 transformation is the duplication of an entire
file. Another is any transformation which creates redundant
pointers in a tree structure for faster access (assuming the
trivial modification to class 5 which would allow P1 and P2 to
be subsets of the same physical file). Clearly, Class 4 is a
special case of class 5 as noted in Figure 5.

Transformations exist in classes 4 and 5 which introduce

redundancy. However, after a sequence of class 4 and 5 transfor-
mations each file in the set of files created can be uniquely

76

A Functional View of Data Independence

associated with a file in the original set. Class6 and 7 func-
tions do not require this condition. (lass 6 functions

map Bf c BB into “# as follows.

Class 6 - the set of one-to-one functions f:Bf +~8 such
that if beB. N B, then £(b)e&,,.

Here, i+l physical files are created from i original ones. How-
ever, it is possible that none of the original files can be re-
created from a single resulting file. Hence, more general map-
pings are allowed than can be formed by i class 5 functionms.
This fact is noted in Figure 5. Two examples of class 6 trans-
formations are the following.

1) Replacing the stored representation of a relation by two
of its projections (Under certain conditions this
operation is one-to-one.)

2) For a file of variable length records, reducing the re-
cord length to less than the maximum required and chain-
ing overflows into a separate file.

The final class of transformatigns allows physical files to
be combined. Here, f will map Bg C % into 9.

Class 7 - the set of one-to-one functions f:Bf-+15 such
that if beBr N “Gythen £(b)e - AR

It is easily seen that class 7 contains class 3. A class 3
function occurs if Bf=(P1,¢), (i.e., the second physical fil; is

empty), and f is a non redundant function on Pl’ Examples of

class 7 transformations are the inverses of the two class 6
example transformations. (The inverse for example 1 is the na-
tural join operation.)

Figure 5 illustrates the 7 classes of transformations. When
one class contains another class as a subset, this has been indi-
cated by a directed arc from the class to its subset. Note that
the classes form a natural hierarchy.

. As a general rule, it is claimed by the author that the
directed graph of Figure 5 is also indicative of the difficulty
in supporting transformations in the various classes data-inde-
pendently. Usually, for example, class 7 transformations are
harder to support than class 3 transformations.

It is also claimed that the data independence provided by
any data base management system can be precisely specified in
terms of the set of transformations from the various classes
which satisfy definition 8 or 9 for that system.

77

A Functiopal View of Data Independence

IV. A Primitive Set of Transformations

We turn now to suggesting a primitive set of transformations
which appear to provide data independence over most commonly used
storage structures. We deal with the situation where users have
a relational view of data and suppose that each logical file con-
tains one relation. We also suppose that each physical file con-
tains a storage representation of one relation. The data base
management system, D, supports a class of transformations between
physical relations and logical relations. We denote by y* the
transformation which maps each logical relation into a corres-
ponding physical file containing a tabular representation of the
logical relation as if it were the only relation to be stored.

We also denote by x*, the inverse of y* and by peP, the tabular
representation of some relation.

We now propose a set of functions, T, which D can be made to
support according to Definition 8 for x*, y* and &. 1 will be
meaningful compositions of the following sets of functions.

1. the set of functions relocating a contiguous physical file to
another contiguous set of locations. (class 1)

2. application of a coding scheme such as described in [8] to
all or some portion of the contents of addresses in a physi-
cal file. (class 2)

3. transformation from p to a particular representation of a
tree structure., (class 3 or 5)

4. the inverse of 3. (class 3)

5. transformation from p to a particular representation of a
hash table. (class 3)

6. the inverse of 5. (class 3)
7. addition of a redundant index for any set of domains in a
relation. (class 4)

The following example indicates one implementation. Consi-
der the relation R{Supplier, Part#, Job, QOH) and suppose a re-
presentation of the following table is stored.

Supplier Part # Job QOH
1 2 3 4
1 2 2)
2 2 1 3
2 2 2 2

An index for (QOH, Job) could be the storage representation
of the following.

78

A Functional View of Data Independence

QCH Part # Pointer

2 2 e——> to 4th tuple of R
3 1 o——> to 3rd tuple of R
4 3 o——> to 1lst tuple of R
S 2

»——> to 2nd tuple of R

The 8th and 9th operations require the following motivation.
At least one relational query language, QUEL [15], allows any le-
gal query to be a class 6 function. Here, a new relation satis-
fying the query is created. More precisely, let q be an element
of QZ the set of legal queries for the existing logical data base.

Hence, q:Bq-+19 such that if bqu then q(b)=(b,p) where p is a

physical file containing the answer to q. Note that q is a
one-to-one function.

8. the set Q for a complete query language [11]. (class 6)
9. the inverses of those functions in 8. (class 7)

It is claimed that T can be supported without undue diffi-
culty. In fact, one system being implemented [15] will support
a somewhat larger class than T.

V. Examples

We now present examples of the data independence provided
by three systems. In all cases we deal with existing systems so
that the difference between wishful thinking (sinceevery level of
data independence we have talked about is theoretically possible)
and actuality does not affect us.

We choose RDMS [12}, ISAM [7] and IMS [13,14] for our exanm-
ples. The following table indicates the transformations provided
by the various systems data independently.

Note the limited data independence provided by all systems
compared to that suggested in the preceding example. It is hoped

that existing systems will move in the direction suggested by
that example.

79

A Functional View of Data Independence

RDMS ISAM IMS
class to limits to limits to limits
provided by provided by provided by
STAR operating 0S/360 0S/360
system
class none none none
class storage of a various various
relation by row blocking blocking
or by column factors factors
class none master index none
cylinder
index
class 5 none none various redundant
pointers can
be created for
hierarc ical
structures
class 6 none none *
class 7 none none *

* IMS supports the following multifile to multifile transformations

1) transformations among HSAM, HISAM, HDAM, and HIDAM.

2) transformations which map the storage representation of an
IMS graph structure into another graph structure for which
all logical trees can be obtained by deleting nodes.

Table 1

80

A Functional View of Data Independence

REFERENCES

1.

2.

10.

11,

1z.

13,

14,

15.

Sibley, E. and Taylor, R., "A Data Definition and Mapping Lan-
guage,” CACM, Vol. 16, No. 12, December 1973.

Collmeyer, A., "Implications of Data Independence on the Archi-
tecture of Data Base Management Systems,' Proceedings of the
1972 ACM-SIGFIDET Workshop on Data Description, Access and
Control, Denver, Col., November, 1972.

Date, C. and Hopewell, P., "File Definition and Logical Data
Independence,” Proceedings of the 1971 ACM-SIGFIDET Workshop
on Data Definition, Access and Control, San Diego, Ca. Novem-
ber 1971.

Date, C. and Hopewell, P., "Storage Structure and Physical
Data Independence,'" Proceedings of the 1971 ACM-SIGFIDET Work-
shop on Data Description, Access and Control, San Diego, Ca.,
November 1971.

Brinch Hansen, P., "The Nucleus of a Multiprogramming System,"
CACM, Vol. 13, No. 4, April 1970.

. Richie, D. and Thompson, K., "The UNIX Time Sharing System"

Proceedings of the 5th Operating System Symposium, Yorktown
Heights, N.Y., October 1973.

"0S ISAM Logic"; IBM Corp., No. GY 28-6618,

Goldstein, R. and Strnad, A., "The MacAIMS Data Management
System,' Proceedings of the 1970 ACM-SIGFIDET Workshop on
Data Description and Access, Houston, Texas, November, 1970.

Knuth, D., The Art of Computer Programming, Vel 1, Addison
Wesley, Reading, Mass. 1960.

Codd, E., “A Relational View of Data for Large Shared Data
Banks,'" CACM, Vol. 13, No. 6, June 1970.

Codd, E., "Relational Completeness of Data Base Sublanguages,"
Report RJ 987, IBM Research, San Jose, Ca., March 1972.

Whitney, V., "RDMS: A Relational Data Management System,"

?gggrt CS 80, General Motors Research, Warren, Mich. December

“"Information Management System/360, Version 2 System/Applica-
tion Design Guide," IBM Corp., No. SH20-0910.

"Information Management System/360, Version 2 Utilities Refe-
Trence Manual," IBM Corp., No. SH 20-0915.

HacDgngld,_M., Stonebraker, M., and Wong, E., "Preliminary
Specification of INGRES," Electronics Research Laboratory,

University of California, Berkeley, Technical Report No. 7490,
May, 1974

81

