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Abstract
Many new database applications require very large vol-
umes of data. Mariposa is a data base system under con-
struction at Berkeley responding to this need. Mariposa
objects can be stored over thousands of autonomous sites
and on memory hierarchies with very large capacity. This
scale of the system leads to complex query execution and
storage management issues, unsolvable in practice with
traditional techniques. We propose an economic
paradigm as the solution. A query receives a budget
which it spends to obtain the answers. Each site attempts
to maximize income by buying and selling storage
objects, and processing queries for locally stored objects.
We present the protocols which underlie the Mariposa
economy.

1. INTRODUCTION
[STON94a] presents the design of a new distributed

database and storage system, calledMariposa. This sys-
tem combines the best features of traditional distributed
database systems, object-oriented DBMSs, tertiary mem-
ory file systems and distributed file systems.

The goals of Mariposa are manifold:
(1) Support a very large number of sites. Mariposa
must be capable of dealing with several hundredsites
(logical hosts) in a co-operating environment, and in a
scalable manner. We consider the possibility of dis-
tributed databases with as many as 10,000 sites (eg. a
group of retailers sharing sales data).
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(2) Support data mobility. Previous distributed database
systems (e.g., [WILL81, BERN81, LITW82, STON86])
and distributed storage managers (e.g., [HOWA88]) have
all assumed that each storage object had a fixedhome to
which it is returned upon system quiescence. Changing
the home of an an object is a heavyweight operation that
entails, for example, destroying and recreating all the
indexes for that object.

In Mariposa, we expect data objects, which we call
fragments, to move freely between sites in a computer
network in order to optimize the location of an object
with respect to current access requirements. Fragments
are collections of records that belong to a common
DBMS class, using the object model of the POSTGRES
DBMS [STON91].
(3) No differentiation between distributed storage and
deep storage.Storage hierarchies will be used to man-
age very large databases in the future. In Mariposa, we
treat movement between the storage hierarchies concep-
tually as moving objects between sites in a computer net-
work. There is onelogical Mariposa site per storage
device.
(4) No global synchronization. It must be possible for a
site to create or delete an object or for two sites to agree
to move anobject from one to the other without notifying
anybody. In addition, a site may decide to split or coa-
lesce fragments without external notification.
(5) Support for moving the query to the data or the
data to the query. Traditional distributed database sys-
tems operate by moving the query from a client site to the
site where the object resides, and then moving the result
of the query back to the client [EPST78, LOHM86]. This
implements a “move the query to the data” processing
scenario. Alternately, distributed file systems and object-
oriented database systems move the data a storage block
at a time from a server to a client. As such, they imple-
ment a “move the data to the query” processing scenario.
In Mariposa, we insist on supporting both tactics, the
choice should be made by the query optimizer (depending



on the locality of reference).
(6) Flexible support for copy management.When an
object-oriented database system moves data from a server
to a client, it keeps a redundantcopy of the affected stor-
age object in the client cache, yieldingtransient copies
of storage objects. Alternately, traditional distributed
database systems implemented (or at least specified) sup-
port for permanent copies of database relations [WILL81,
BERN83, ELAB85]. Our goal is to support both tran-
sient and permanent copies of storage fragments within a
single framework.
(7) Autonomous site decisions.In a very large network,
it is unreasonable to assume that any central entity has
control over policy decisions at the local sites. Hence,
sites must belocally autonomousand able to implement
any local policies they please.
(8) Easily modified policy decisions.In Mariposa, dif-
ferent sites might want to implement different policies for
evicting fragments to tertiary memory. It must be possible
in Mariposa to easily accommodate such diversity. We
expect policies to vary according to local conditions and
our own experimental purposes.

To support this degree of flexibility, the Mariposa stor-
age manager isrule-driven , i.e., it accepts rules of the
form: on ev entdo action. Events are predicates in a high
performance, high level language we are developing,
while actions are statements in the same language.

1.1. Resource Management with Microeconomic
Rules

To deal with the complexity of these issues, the Mari-
posa team has elected to reformulate all issues relating to
shared resources (query optimization and processing,
storage management and naming services) into a microe-
conomic framework. There are several advantages to this
approach over traditional solutions to resource manage-
ment. First, there is no need for a central coordinator,
because in an economy, every agent makes individual
decisions, selfishly trying to maximize its utility. In other
words, the decision process is inherently decentralized,
which is a prerequisite for achieving scalability and
avoiding a single point of failure. Second, prices in a
market system fluctuate in accordance with the demand
and supply of resources, allowing the system to dynami-
cally adapt to resource contention. Third, everything can
be traded in a computer economy, including CPU cycles,
disk capacity and I/O bandwidth, making it possible to
integrate queries, storage managers and name servers into
a single market-based economy. The uniform treatment
of these subsystems will simplify resource management
algorithms. In addition, this will result in an efficient allo-
cation of every available resource.

Using the economic paradigm, a query receives abud-
get in an artificial currency. The goal of the query pro-
cessing system is tosolve the query within the budget
allotted, bycontracting with various processing sites to
perform portions of the query. Lastly, each processing
site makes storage decisions to buy and sell fragments
and copies of fragments, based on optimizing the revenue
it collects. Our model is similar to [FERG93, WALD92,
MALO88] which take similar economic approaches to
other computer resource allocation problems.

In the next section, we describe the three kinds of enti-
ties in our economic system. Section 3 develops the bid-
ding process by which a broker contracts for service with
processing sites, the mechanisms to make the bidding
system efficient, and demonstrates how our economic
model applies to storage management. Section 4 details
the pricing effect on fragmentation. Section 5 describes
how naming and name service work in Mariposa. Previ-
ous work on using the economic model in computing is
examined in Section 6.

2. DISTRIBUTED ENTITIES
In the Mariposa economic system, there are three

kinds of entities:clients, brokers andservers. The enti-
ties, as shown in Figure 1, can reside at the same site or
may be distributed across multiple sites. This section
defines the roles that each entity plays in the Mariposa
economy. In the process of defining each entity, we also
give an overview of how query processing works in an
economic framework. The next section will explain this
framework in more detail.

Clients.
Queries are submitted by user applications at aclient site.
Each query starts with a budget,B(t), which pays for
executing the query; query budgets form the basis for the
Mariposa economy. Once a budget has been assigned
(through administrative means not discussed here), the
client software hands the query to a broker.

Brokers.
The broker ’s job is to get the query performed on the
behalf of the client. A central goal of this paper is to
describe how the broker expends the client’s budget in a
way that balances resource usage with query response
time.

As shown in Figure 1, the broker consists of aquery
preparationmodule and abid managermodule that oper-
ate under the control of arule engine. The query prepara-
tion module parses the incoming query, performing any
necessary checking of names or authorization, and then
prepares alocation insensitive query processing plan.
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Figure 1. Mariposa entities.

The bid manager coordinates the distributed execution of
the query plan.

In order to parse the query, the query preparation mod-
ule first requestsmetadata for each class referenced in
the query from a set ofname servers. This metadata
contains the information usually required for query opti-
mization, such as the name and type of each attribute in
the class and any relevant statistics. It also contains the
location of each fragment in the class. We do not guaran-
tee that this information, particularly fragment location,
will be up-to-date. Metadata is itself part of the economy
and has a price; the parser’s choice of name server is
determined by the desired quality of metadata, the prices
offered by the name servers, the available budget, and any
local rules defined to prioritize these factors.

After successful parsing, the broker prepares a query
execution plan. This is a two-step process. First, a con-
ventional query optimizer along the lines of [SELI79]
generates asingle sitequery execution plan by assuming
that all the fragments are merged together and reside at a
single server site. Second, a plan fragmentation module
uses the metadata to decompose the single site plan into a

fragmented query plan, in which each restriction node
of a single site plan is decomposed intoK subqueries,
one per fragment in the referenced class. This paral-
lelizes the single site plan produced from the first step.
The details of this fragmentation process are described in
[STON94a].

Finally, the broker’s bid manager attempts to solve the
resulting collection of subqueries,Q1, . . . ,QK , by finding
a processing site for each one such that the summation of
the subquery costs ofC and a total delay ofT fit the bud-
get for the entire query. If sites cannot be found to solve
the query within the specified budget, it will be aborted.
Locally defined rules may affect how the subqueries are
assigned to sites.

Decomposing query plans in the manner just described
greatly reduces optimizer complexity. Signs that the
resulting plans may not be significantly suboptimal
appear in [HONG91], where a similar decomposition is
studied. Decomposing the plan before distributing it also
makes it easier to assign portions of the budget to sub-
queries.

Servers.
Server sitesprovide a processor with varying amounts of
persistent storage. Individual server sitesbid on individ-
ual subqueries in a fashion to be described in Section 3.
Each server responds to queries issued by a broker for
data or metadata. Server sites can join the economy, by
advertising their presence, bidding on queries and buying
objects. They can also leave the economy by selling all
their data and ceasing to bid.

Storage management, the second focus of the Mari-
posa economic model, is directed by each server site in
response to events spawned by executing client’s queries
and by interaction with other servers.

3. THE BIDDING PROCESS
Mariposa uses an economic bidding process to regu-

late name service, storage management, and query execu-
tion. In general, clients find likely contractors, solicit
bids for a given piece of work, and then select the win-
ning bid. In Mariposa, brokers manage the bidding and
query execution on behalf of clients, and clients direct
brokers using budgets.

Each query,Q, has abudget, B(t), which can be used
to solve the query. The budget is a non-increasing (possi-
bly non-linear) function of time, which represents the
value that the user gives to the answer to his query at a
particular time,t. Constant functions represent a willing-
ness to pay the same amount of money for a slow answer
as for a quick one, while steeply declining functions indi-
cate the contrary. Cumulative user budgets are controlled



by administrative means that are beyond the scope of this
paper.

The broker handling a query,Q, receives a query plan
containing a collection of subqueries,Q1, . . . ,Qn, and
B(t). Each subquery is a one-variable restriction on a
fragment,F , of a class, or a join between two fragments
of two classes. The broker tries to solve each subquery,
Qi , using either an expensivebid order protocol, or a
purchase order. If possible, the broker will choose a set
of winning bidsBi , j , such that the aggregate costC and
aggregate delayD is less than the bid curveB(D).

Every contract has apenalty clause,which the con-
tractor must abide by if he does not deliver the result of
the subquery within the time allotted. The exact form of
this penalty is not important in the model.

Using the bid protocol, the broker conducts a bidding
process for each subquery by soliciting bids for the sub-
query (or a data structure representing it) from possible
contractors and then selecting a winning bid. Eachbid
consists of a triple: (Ci , Di , Ei ) which is a proposal to
solve the subquery,Qi , for a cost,Ci , within a delay,Di ,
after receipt of the subquery, noting the fact that the bid is
only valid until a specified expiration date,Ei .

The bidding process is fundamentally a two-phase pro-
tocol. In the first phase, the broker sends out a request for
bids, to which processing sites respond. During the sec-
ond phase, the broker notifies processing sites whether
they won or lost the bid. This protocol requires many
(expensive) messages. Most queries will not be computa-
tionally demanding enough to justify this level of over-
head.

The purchase order protocol simply sends each sub-
query to one processing site. This site would be the one
thought most likely to win the bidding process, assuming
there were one. This site simply receives the query and
processes it, returning the answer with abill for services.
If the site refuses the subquery, it can either return it to
the broker or pass it on to a third processing site. Using
the cheap protocol, there is some danger of failing to
solve the query within the allotted budget. As will be
seen in the next section, the broker does not always know
the cost and delay that the chosen processing site will bill
him for. Howev er, this is the risk which must be taken to
get a faster protocol.

3.1. Bid Acceptance
When using the bidding protocol, brokers must choose

a winning bid for each subquery with aggregate costC
and aggregate delayD such that the aggregate cost is less
than or equal to the cost requirementB(D). There are
two problems which make finding the best bid collection
difficult: subquery parallelism and the combinatorial

search space. The aggregate delay is not necessarily the
sum of the delaysDi for each subqueryQi , since there is
often parallelism within the query plan. For example, a
subquery can be run for each fragment of a class in paral-
lel, or certain nodes in the query plan can bepipelined.
Also, the number of possible bid collections grows expo-
nentially with the number of processing steps in the query
plan. For example, if there are 10 processing stages and 3
viable bids for each one, then the broker can evaluate
each of the 310 bid possibilities.

Given a collection of parallel subqueries, the estimated
delay to process the entire collection is equal to the high-
est bid time in the collection. The number of different
delay values can be no more than the total number of bids
on subqueries in the collection. For each delay value,
there is an optimal bid collection: the least expensive bid
for each subquery that can be processed within the given
delay. By “coalescing” parallel bid collections and con-
sidering them as a single (aggregate) bid, the broker may
reduce the bid acceptance problem to a simpler problem
of choosing one bid (from among a set of aggregated
bids) for each sequential step.

We assume that the query can be decomposed into dis-
joint processing steps. All the subqueries in each pro-
cessing step are processed in parallel, and a processing
step cannot begin until the previous one has been com-
pleted. Rather than consider bids for individual sub-
queries, we consider collections of bids for each process-
ing step.

With the full bidding protocol, the broker receives a
collection of zero or more bids for each subquery. If
there is no bid for some query or no collection of bids
meets the client’s minimum price performance require-
ments (B(D)), then the broker must solicit additional
bids, agree to perform the subquery itself, or notify the
user that the query cannot be run. It is possible that sev-
eral collections of bids meet the minimum requirements,
so the broker must choose the best collection of bids. In
order to compare the bid collections, we define a differ-
ence function on the collection of bids:
difference= B(D) − C. Note that this can have a neg-
ative value, if the cost is above the bid curve.

For all but the simplest queries referencing classes
with a minimal number of fragments, exhaustive search
for the best bid collection will be combinatorially pro-
hibitive. The crux of the problem is in determining the
relative amounts of the time and cost resources that
should be allocated to each subquery. We offer two
heuristic algorithms that determine how to do this.
Although they cannot be shown to be optimal, we believe
in practice they will demonstrate good results. A detailed
evaluation and comparison against more complex



algorithms is planned to test this hypothesis.
The first algorithm is agreedyone. It produces a trial

solution in which the total delay is the smallest possible,
and then makes the greediest substitution until there are
no more profitable ones to make. Thus a series of solu-
tions are proposed with steadily increasing delay values
for each processing step. On any iteration of the algo-
rithm, the proposed solution contains a collection of bids
with a certain delay for each processing step. For every
collection of bids with greater delay acost gradient is
computed. This cost gradient is the cost decrease that
would result for the processing step by replacing the col-
lection in the solution by the collection being considered,
divided by the time increase that would result from the
substitution.

Begin by considering the bid collection with the small-
est delay for each processing step. Compute the cost gra-
dient for each unused bid. A trial solution with total cost
C and total costD is generated. Now, consider the pro-
cessing step for the unused bid with the maximum cost
gradient. If this bid replaces the current one used in the
processing step, then cost will becomeC′ and delayD′.
If the resultingdifferenceis greater atD′ than atD, then
make the bid substitution. Recalculate all the cost gradi-
ents for the processing step involved in the substitution,
and continue making substitutions until there are none
which increase thedifference.

The second algorithm takes the budget of the entire
query and the structure of the query plan to produce a
subbudget for each subquery. This algorithm is pre-
sented in more detail in [STON94b].

3.2. Finding Contractors
Using either the expensive or the cheap protocol from

the previous section, a broker must be able to effectively
identify one (or more) sites who may process a subquery.
There are several mechanisms whereby a broker can
obtain the needed information, including: yellow pages,
posted prices, advertisements, coupons, and bulk pur-
chase contracts.

Usingyellow pages. a server advertises that it offers a
specific service, such as that it desires transactions which
reference a specific fragment. The date of the advertise-
ment helps a broker decide how timely the yellow pages
entry is, and therefore how much faith to put in the result-
ing information. A server can issue a new yellow pages
advertisement at any time without explicitly revoking a
previous one. In keeping with the characteristics of cur-
rent yellow page advertisements, no prices are allowed.
A server advertises in the yellow pages style by promul-
gating the following data structure: class-name, server-
identifier, date, and server-specific field(s).

A server is allowed to post the prices on specific kinds
of transactions, analogous to a supermarket which posts
the prices of specific goods in its window. This construct
requires the notion of aquery template, which is a query
with parameters left unspecified, for example:

SELECT param-1
FROM EMP
WHERE NAME = param-2

A server can post the current price by specifying the
query-template, server-identifier, price, delay, and server-
specific-field(s). Of course, the server does not need to
guarantee that these terms will be in effect when a broker
later tries to make use of the server.

Advertisements are similar to current price mecha-
nism, except that the server must guarantee the terms
until a specified expiration-date. Obviously, a server
takes some risk when it places an advertisement which
generates more demand than the server can meet, forcing
it to pay heavy penalties.

Coupons are advertisements that include a limit on the
number of queries that can be executed under the terms of
the advertisement, similar to supermarket coupons.
Coupons may also limit the brokers who are eligible to
redeem them, similar to the coupons issued by the
Nevada gambling establishments, which require the client
to be over 21 and possess a valid California driver’s
license.

Bulk purchase contracts are renewable coupons which
allow a broker to negotiate cheaper prices with a server in
exchange for guaranteed (pre-paid) service. This is anal-
ogous to a travel agent which books 10 seats on each sail-
ing of a cruise ship. We allow bulk purchases to option-
ally be guaranteed, in which case the broker must pay
for the specified queries whether it uses them or not.
Bulk purchases are especially advantageous in transaction
processing environments, where the workload is pre-
dictable, and brokers solve large numbers of similar
queries.

A broker will decide potential bidders by using some
or all of the above mechanisms. In addition, we also
expect a broker to remember sites who have bid success-
fully for previous queries. Presumably the broker will
include such sites in the bidding process, thereby generat-
ing a system which learns over time what processing sites
are appropriate to which queries. Lastly, the broker also
knows the likely location of each fragment, which was
returned previously to the query preparation module by
the name server. The site most likely to have the data is
automatically a likely bidder.



3.3. Storage Management
Each site manages a certain amount of storage, which

it can fill with fragments or copies of fragments. The
basic objective of a site is to allocate its CPU, I/O and
storage resource so as to maximize its revenue income
per unit time.

In order for sites to trade fragments, they hav e to have
some means of calculating the (expected) value of the
fragment for each site. Some access history is kept with
each fragment so sites may predict future activity based
on the history.

For each fragment which the site stores, it maintains
the size of the fragment plus itsre venue history. Each
record of the history contains the query, number of
records which qualified, time-since-last-query, rev enue,
delay, I/O-used, and CPU-used. The CPU and I/O infor-
mation is normalized and stored in site-independent units.

To estimate the revenue that a site would receive if it
owned a particular fragment, the site must assume that
access rates are stable and that the revenue history is
therefore a good predictor of future revenue. Moreover, it
must convert site-independent resource usage numbers
into ones specific to its site through a weighting function,
as in [LOHM86]. In addition, it must assume that it
would have successfully bid on the same set of queries as
appeared in the revenue history. Since it will be faster or
slower than the site from which the revenue history was
collected, it must adjust the revenue collected for each
query. This calculation requires the site to assume a
shape for the average bid curve. Lastly, it must convert
the adjusted revenue stream into a cash value, by comput-
ing the net present value of the stream.

If a site wants to bid on a subquery, then it mustbuy
any fragment(s) referenced by the subquery, either when
the query comes in (on demand) or in advance (prefetch).
To purchase a fragment, a buyer locates the owner of the
fragment and requests the revenue history of the frag-
ment, and then places a value on the fragment. Moreover,
if it buys the fragment, then it will have to evict a collec-
tion of fragments to free up space, adding to the size of
the fragment to be purchased. To the extent that storage
is not full, then lesser (or no) evictions will be required.
In any case, this collection is called the alternate frag-
ments in the formula below.

Hence, the buyer will be willing to bid the following
price for the fragment:

offer price = value of fragment -
value of alternate fragments + price received

In this calculation, the buyer will obtain the value of the
new fragment but lose the value of the fragments which it
must evict. Moreover, it willsell the evicted fragments,
and receive some price for them. The latter item is

problematic to compute. A plausible assumption is that
the price received is equal to the value of the alternate
fragments. A more conservative assumption is that the
price obtained is zero. Note that in this case the offer
price need not be positive.

The potential seller of the fragment performs the fol-
lowing calculation. The site will receive the offered price
and will lose the value of the fragment which is being
evicted. However, if the fragment is not evicted, then a
collection of alternate fragments summing in size to the
indicated fragment must be evicted. In this case, the site
will lose the value of these (more desirable) fragments,
but will receive the expected received price. Hence, it
will be willing to sell if:

offer price > value of fragment -
value of alternate fragments + price received

Again, price received is problematic, and subject to the
same plausible assumptions noted above.

In any case, if the inequality is true, then the seller will
transfer the fragment to the buyer, who assumes owner-
ship of the fragment. If the inequality is not true, then the
buyer might be willing to make acopy of the fragment,
with ownership remaining with the seller.

If a copy is made, then several economic considera-
tions must take place. First, only read transactions con-
tribute to the revenue collected by a copy since update
transactions are always directly to the owner of a frag-
ment. The buyer of a copy has to estimate the copy’s
expected revenue solely from the owner’s rev enue history.
If there areN − 1 secondary copies already and the owner
currently has1

N
th of the read operations, the new copy

could plausibly assume that it will get1
N + 1

of each of the
read revenue streams, or equivalently,N

N + 1
of the owner’s

read revenue stream. The buyer has to compute acopy
offer pricefrom this value. Second, the copies will have
to perform updates but will receive no rev enue for their
effort. These updates consume extra network resources
and the price has to reflect that. Lastly, the buyer must
also pay a “tax” to the owner to compensate him for the
extra trouble of propagating updates onward. Hence, the
seller will allow the buyer to make a copy if:

copy offer price > update tax + network tax

The selling site can calculate the update tax from the rev-
enue history and the network tax from the revenue history
and the copy consistency algorithm.

Sites may sell fragments at any time, for any reason.
For example, decommisioning a server implies that the
server will sell all of its fragments.

To sell a fragment, the site conducts a bidding process,
essentially identical to the one used for subqueries above.
Specifically, it sends the revenue history to a collection of



potential bidders and asks them what they will offer for
the fragment. The seller considers the highest bid and
will accept the bid under the same considerations that
applied when selling fragments on request, namely if:

offered price > value of fragment -
value of alternate fragments + received price

If no bid is acceptable, then the seller must try to evict
another (higher value) fragment until one is found that
can be sold. If no fragments are sellable, then the site
must lower the value of its fragments until a sale can be
made. In fact, if a site wishes to go out of business, then
it must find a site to accept its fragments, and must lower
their internal value until a buyer can be found for all of
them.

3.4. Splitting and Coalescing
Mariposa sites must also decide when to split and coa-

lesce fragments. Clearly, if there are too few fragments
in a class, then parallel execution of Mariposa queries
will be hindered. On the other hand, if there are too
many fragments, then the overhead of dealing with all the
fragments will increase and response time will suffer, as
noted in [COPE88]. The algorithms for splitting and coa-
lescing fragments must strike the correct balance between
these two effects.

One strategy is to simply let market pressure correct
for inappropriate fragment sizes. Large fragments have
high revenue and attract many bidders for copies, thereby
diverting some of the revenue away from the owner. If
the owner site wants to keep the number of copies low, it
has to break up the fragment into smaller fragments,
which have less revenue and are less attractive for copies.
On the other hand, small fragments have high processing
overhead for queries, and economies of scale would result
by coalescing it with another fragment in the same class
into a single larger fragment.

If a more direct intervention is required, then Mariposa
might resort to the following tactic. Consider the execu-
tion of queries referencing only a single class. The bro-
ker can fetch the number of fragments,NUMC, in that
class from a name server, and, assuming that all frag-
ments are equal-sized, can compute the expected delay of
a giv en query on the class if run on all fragments in paral-
lel. The budget function tells the broker the total amount
that is available for the entire query under that delay; the
amount of the expected feasible bid per site in this situa-
tion is:

expected feasible site bid=
B(ED)

NUMC

The broker can repeat those calculations for a variable
number of fragments to arrive atNUM *, the number of

fragments to maximize the expected revenue per site.
This value,NUM *, can be published by the broker

along with its request for bids. If a site has a fragment
which is too large (or too small), then in steady state it
will be able to obtain a larger revenue per query if it splits
(coalesces) the fragment. Hence, if a site keeps track of
the average value ofNUM * for each class for which it
stores a fragment, then it can decide whether its frag-
ments should be split or coalesced.

Of course, a site must honor any outstanding contracts
that it has previously made. If it discards or splits a frag-
ment for which there is an outstanding contract, then the
site must endure the consequences of its actions. This
entails either subcontracting to some other site a portion
of the previously committed work or buying back the
missing data. In either case, there are revenue conse-
quences, and a site should take its outstanding contracts
into account when it make fragment allocation decisions.
Moreover, a site should carefully consider the desirable
expiration time for contracts. Shorter times will allow the
site greater flexibility in allocation decisions.

3.5. Setting The Bid Price For Subqueries
When a site is asked to bid on a subquery, it must

respond with a triple (C, D, E) as noted in an earlier sec-
tion. Each site maintains abilling rate for each frag-
ment, which is the revenue per unit of resources expended
which it expects to charge to perform a query. If the site
possesses all the referenced fragments, the quoted price is
simply the billing rate multiplied by the expected
resources to perform the query. If the site does not pos-
sess all the referenced fragments, then it must buy miss-
ing ones, and should only bid if it wishes to acquire the
missing fragments using the process of the previous sec-
tion. The bid might also be adjusted to take into account
of amount of recent business and currentload.

The delay it will promise to process the query is calcu-
lated with an estimate of the resources required. Under
zero load, it is an estimate of the elapsed time to perform
the query. After adjusting for the current load, it can then
estimate the expected delay (theD in the bid).

The expiration date on a bid should be assigned by a
site after considering how much risk it is willing to take.
A long expiration date incurs the risk of honoring lower
out-of-date prices while a too early one runs the risk of
the broker not being able to use the bid because of inher-
ent delays in the processing engine.

A site might also consider declining to bid on queries
referencing low value fragments. The query will then
have to be processed elsewhere, and another site will
have to copy or buy the indicated fragment in order to
solve the user query. Hence, this tactic will hasten the



sale of low value fragments to somebody else.
Lastly, the site can refuse to process queries for a frag-

ment and can refuse to sell the fragment. In this case,
unless a second site is willing to make a copy of the frag-
ment, then “livelock” will result for the fragment. In a
system with total local autonomy, there is no way to pre-
vent such an occurrence.

4. NAMES AND NAME SERVICE
Current distributed systems use a rigid naming

approach, assume that all changes are globally synchro-
nized, and often have a structure that limits the scalability
of the system. Mariposa goals of mobile fragments and
avoidance of global synchronization require that a more
flexible naming service be used. We dev elop a decentral-
ized naming facility that does not depend on a centralized
authority for name registration or binding.

4.1. Names
Three types of names are used in Mariposa. First,

internal names are the location-dependent names that
are used to physically locate the fragment. Because these
are low-level names that are defined by the implementa-
tion, no more description will be given in this section.
Next, full names are the completely specified names that
uniquely identify an object. A full name can be tied to
any object regardless of location. Full names are not user
specific and are location transparent so that when a frag-
ment moves, the name does not have to converted. A full
name can be used equally well from anywhere; this
allows a query to move to a different site but still request
the same object.

In contrast,common namesare names that are sensi-
ble to a user. Using them avoids the tedium of using a
full name. Simple rules permit the translation of com-
mon names into full names by supplying the missing
name components. The binding operation gathers the
missing parts from either parameters directly supplied by
the user or from something in the user’s environment.
There exists an ambiguity in common names because dif-
ferent users can refer to different objects using the same
name. Because common names are context dependent,
they may even refer to different objects at different times.

Onename spaceexists for all sites in a system. It is a
single rooted tree of names. All full names are globally
unique within the name space however the policy for
selecting names is locally defined. So as not to constrain
the later growth of the name space from the amalgama-
tion of other name spaces, a non-fixed-root name space as
suggested in [LAMP86] can be used to support upwards
growth beyond the current root.

Finally, a name context is a set of names that are
affiliated. This grouping is of names that are expected to
share some feature such as they are often used together in
an application (i.e., directory) or the names construct a
more complex object (i.e., class definition). A program-
mer can define a name context for global use that every-
one can access or a private context that is visible only to a
single application. The advantage of a name context is
that names do not have to be globally registered nor are
the names tied to a physical resources to make them
unique such as birth site as in [WILL81].

Like other objects, a name context can also be named.
In addition, like data fragments, it can be migrated
between name servers and there can be multiple copies
residing on different servers for better load balancing and
availability.

This scheme differs from another proposed decentral-
ized name service [CHER89] that avoided a centralized
name authority by relying upon each type of server to
manage their own names without relying on a dedicated
name service.

4.2. Name Resolution
A name must be resolved to discover which object is

bound to the name. Every client and server has a name
cache at the site to support the local translation of com-
mon names to full names and of full names to internal
names. When a broker wants to resolve a name, it first
looks in the local name cache to see if a translation exists.
If the cache does not yield a match, the broker uses a rule
driven search to locate the name among other sites. If a
broker fails to resolve a name using its local cache, it
must ask one or more name servers.

In addition to the case of untranslatable names, there is
a possibility of ambiguous resolutions when resolving a
common name. For example, a common name of “EMP”
may in multiple name contexts that a program is using
such as “RESEARCH.EMP” and “DEVELOP-
MENT.EMP”. When the broker discovers that there are
multiple matches to the same common name, it tries to
pick one according to the policy specified in the rules.
Some possible policies are “first match,” as exemplified
by theUNIX shell command search (path), or a policy of
“best match” that seeks to choose more intelligently.
Considerable information may exist that the broker can
apply to choose the best match, such as data types, own-
ership, and protection permissions.

4.3. Name Discovery
In Mariposa, a name service responds to metadata

queries in the same way as data servers execute regular
queries. Consequently, the name service process uses the



bidding protocol of Section 3 to interact with a collection
of potential bidders. Mariposa expects there to be some
number of name servers, and this collection may be
dynamic as name servers are added to and subtracted
from a Mariposa environment. The broker decides which
name server to use based on economic considerations of
cost and quality of service. A name server translates a
common name into a full name by using a list of possible
name contexts that the client passes. The context list can
be like a UNIX path or the name server can use any
default name contexts as defined with the rule system.
These name servers are expected to use the advertising
capabilities to find clients for their services.

Each name server must make arrangements to read the
local system catalogs at each site periodically and build a
composite set of metadata. Since there is no requirement
for a processing site to notify a name server when frag-
ments move sites or are split or coalesced, the name
server metadata may be substantially out of date.

As a result, name servers are differentiated on their
quality of service regarding their price and the correct-
ness of their information. For example, a name server
which is less than one minute out of date generally has
better quality information than one which can be up to
one day out of date. We propose that name servers use
theserver-specific-fieldin the various advertising mecha-
nisms in the previous section to indicate the quality of
their answers to queries. Quality is best measured by the
maximum staleness of the answer to any name service
query. Using this information a broker can make an
appropriate tradeoff between price, delay and quality of
answer among the various name services, and select the
one which it wishes to deal with.

Quality may be based on more than the name server’s
polling rate. An estimate of the real quality of the meta-
data may be based on the observed rate of update. From
this we predict the chance that an invalidating update will
occur for a time period after fetching a copy of the data
into the local cache. The benefit is that the calculation
can be made without probing the actual metadata to see if
it has changed. The quality of service is then a measure-
ment of the metadata’s rate of update as well as the name
server’s rate of update.

5. RELATED WORK
So far there are only a few systems documented in the

literature which incorporate microeconomic approaches
to deal with resource sharing problems. [HUBE88] con-
tains a collection of articles that cover the underlying
principles and explore the behavior of those systems.

[KURO89] present a solution to the file allocation
problem that makes use of microeconomic principles, but

is based on a cooperative, not competitive environment.
[MALO88] describes the implementation of a process

migration facility for a pool of workstations connected
through a LAN. In this system, a client broadcasts a
request for bids that includes a task description. The
servers bid a completion time, which they estimate on the
basis of processor speed, current system load, a normal-
ized runtime of the task and the number and length of
files to be loaded. The client then sends that task to the
server with the lowest completion time.

Another distributed process scheduling system is pre-
sented in [WALD92]. Here, CPU time on remote
machines is auctioned off by the processing sites and
applications hand in bids for time slices. This is is con-
trast to our system, where processing sites make bids for
servicing requests.

A model similar to ours is proposed in [FERG93],
where fragments can be moved and replicated between
the nodes of a network of computers, although they are
not allowed to be split or coalesced. Transactions are
given a budget when entering the system. Accesses to
fragments are purchased from the sites offering them at
the desired price/quality ratio. Sites are trying to maxi-
mize their revenue and therefore lease fragments or their
copies if the access history for that fragment suggests that
this will be profitable. A major difference to our model is
that every site needs to have perfect information about the
prices of fragment accesses at every other site, requiring
global updates of pricing information. We expect that
global updates of metadata will suffer from a scalability
problem, sacrificing the advantages of the decentralized
nature of microeconomic decisions.

More detailed comparisons of Mariposa with other
systems can be found in [STON94b].

6. CONCLUSIONS
We present a distributed microeconomic approach to

deal with query execution and storage management. The
difficulty in scheduling distributed actions in a large sys-
tem stems from the combinatorially large number of pos-
sible choices for each action, expense of global synchro-
nization, and requirement for supporting heterogeneous
systems. Complexity is further increased by the presence
of a dynamically changing environment, including time
varying load levels for each site and the possibility of
sites entering and leaving the system.

The economic model is a well studied model that can
reduce scheduling complexity of distributed interactions
by not seeking perfect globally optimal solutions.
Instead, the forces of the market provide an “invisible
hand” to guiding reasonably equitable trading of
resources.



At the present time the query preparation module is
nearly complete and the Mariposa rule engine is begin-
ning to work. We are now focused on implementing the
low lev el support code, the complete broker and the site
manager, and expect to have a functioning initial system
by the end of 1994.
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