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Abstract

We investigate resource usage while performing streaming I/O by con-
trasting three architectures, a single workstation, a cluster, and an SMP,
under various I/O benchmarks. We derive analytical and empirically-
based models of resource usage during data transfer, examining the
I/O bus, memory bus, network, and processor of each system. By
investigating each resource in detail, we assess what comprises a well-
balanced system for these workloads.

We find that the architectures we study are not well balanced for
streaming I/O applications. Across the platforms, the main limitation
to attaining peak performance is the CPU, due to lack of data locality.
Increasing processorperformance (especially with improved block op-
eration performance) will be of great aid for these workloads in the
future. For a cluster workstation, the I/O bus is a major system bot-
tleneck, because of the increased load placed on it from network com-
munication. A well-balanced cluster workstation should have copious
I/O bus bandwidth, perhaps via multiple I/O busses. The SMP suffers
from poor memory-system performance; even when there is true par-
allelism in the benchmark, contention in the shared-memory system
leads to reduced performance. As a result, the clustered workstations
provide higher absolute performance for streaming I/O workloads.
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1 Introduction

A balanced computer system needs 1 MB
of main memory capacity and 1 Mbit per
second of I/O bandwidth per MIPS of CPU
performance.

-Amdahl/Case rule of thumb

A well-known tenet of computer architecture suggests that
systems should be balanced in terms of memory capacity, disk
bandwidth, and processing power. This design principle re-
minds architects not to focus all engineering effort on any small
subset of the system, for performance gains in one sub-system
may be obviated by the lack of similar gains in another.

The Amdahl/Case rule of thumb provides a guideline for
building such balanced systems [2]. However, since this rule
originated, performance has increased by many orders of mag-
nitude. Considering the fact that Amdahl made his balanced-
system estimations from experience with an IBM 360, a time-
shared, single-processor mainframe from 1964, does this rule
of thumb still apply to today’s vastly altered environment?

Of course, the term “balance” can have different interpreta-
tions in different contexts. For example, in the realm of scien-
tific computing, balance is sometimes defined as the number of
peak floating-point operations per cycle divided by sustained
memory operations per cycle [13]. However, for I/O-based

workloads, there is not a clear definition. What constitutes a
well-balanced architecture for applications with large demands
for streaming I/O?

For I/O-intensive workloads, we define a well-balanced
system as one where all resources simultaneously reach near-
peak utilization during input and output phases. To assess a
particular architecture, we analyze the resource demands of a
set of streaming (mostly sequential) I/O workloads, beginning
at the disks, and moving up through the memory system and
processor. We develop models of resource usage for the given
applications, and compare the models with measured usage.

In the course of our study, we keep two questions in mind:
first, when data is moving at its peak rate, what demand is
placed on the various resources of the system? Second, how
efficient are specific architectures at moving data? We ap-
proach these two questions via the technique of disk scaling.
By adding disks to the system and monitoring resource usage,
we not only understand how resources are taxed per byte trans-
ferred from disk, but also discover when a resource is likely to
become a bottleneck.

Given the range of hardware platforms that are prevalent
today, we do not wish to restrict ourselves to a particular class
of machine. Therefore, we examine the costs of data movement
on three diverse architectures. The first platform is the simplest
and most common: the desktop workstation. We focus on the
Sun Ultra 1 workstation, which forms a basis for comparison
with the other two systems.

The second platform is a cluster of Ultra 1 workstations,
an instance of larger-scale systems comprised of commod-
ity workstations and high-speed networks such as ATM and
Myrinet [3, 5, 10, 20]. By providing a low-latency, high-
bandwidth interconnection, these switches have the potential
of fusing workstations into a cohesive whole. Implicitly, we
evaluate an underlying assumption of clustered systems: that
the workstation in its current form is a good building block [3].
This assumption may be optimistic, as a machine that is well-
balanced for the stand-alone case may not be properly archi-
tected for a tightly-integrated cluster environment.

The third platform is a small-scale symmetric multiproces-
sor (SMP), specifically, the Ultra Enterprise 5000. Built out
of many of the same components as the Ultra 1 workstation,
the SMP lends itself to direct comparison with the cluster ar-
chitecture. The main difference between the two systems is
the processor-to-processor interconnect: in the cluster archi-
tecture, a local-area network (Myrinet) connects the machines
together, whereas in the SMP, the main memory bus (Giga-
Plane) provides a high-bandwidth, cache-coherent channel for
communication between processors.



In order to drive the three architectures, we employ a set of
I/O kernels. The first is a simple scan, which reads data from
disk sequentially, selects matching records, and writes those
records to disk. The second benchmark is an external sort.
Sorting is a longtime database-industry standard benchmark,
and has recently garnered much interest [1, 4, 15]. In addition
to being useful in a classical database environment, sorting
is also typical of the workload placed on systems perform-
ing decision support [9]. In this paper, we use the single-node
and cluster versions of NOW-Sort, currently the world’s fastest
disk-to-disk sorting program [4]. The third benchmark is an
external transpose. Whereas the first two benchmarks fit into
the database domain, transpose is often found in external sci-
entific codes. All benchmarks have been hand optimized for
each platform.

For the set of benchmarks, we find that none of the systems
are well balanced. Specifically, as we introduce more I/O into
the system, the processor is likely to become the bottleneck
before any other system resource. This is due to the lack of
locality in streaming I/O workloads, which spend much time
moving data, not operating upon it. Increasing the ability of
the processor to move data in and out of the memory system
(with increased support for block operations) will greatly aid
these types of workloads.

Across all platforms, we find that memory traffic is quite
high, often much higher than what is inherent in the applica-
tions. Part of this discrepancy is attributed to OS behavior
(extra copies to the buffer cache and zeroing heap pages), part
to the mismatch between the grain size of some benchmarks
and the block size of the cache, and, in the cluster scenario,
part to the communication layer. Despite the large amount of
memory traffic, the memory interconnect for the stand-alone
and clustered workstation is more than capable of handling the
bandwidth demands.

For clustered workstations, I/O bus bandwidth is crucial;
nearly three times the bus bandwidth is needed, when com-
pared to a stand-alone workstation, due to the aggregation of
network and disk traffic. An ideal clustered workstation would
provide enough bandwidth for both network and disk I/O, per-
haps via multiple I/O busses. Without sufficient I/O bus band-
width, clusters can only improve aggregate disk performance
by increasing the number of workstations in the system.

The SMP is perhaps the most well-balanced of the three
architectures, but at the cost of lower absolute performance.
This is partly attributed to an extra copy to avoid lock con-
tention and false sharing. The other factor is a memory system
that must be filled one bank at a time; thus, with less than the
full memory configuration, the memory system performance
of the SMP in the study is significantly decreased.

The rest of the paper is outlined as follows. We begin
by explaining our methodology in Section 2. The hardware
environment is described in Section 3, and the benchmarks are
described and modeled in Section 4. Section 5 presents the
experimental results, and in Section 6, we conclude.

2 Methodology

2.1 Methodological Approach

This study has two main objectives. The first is to provide
a general characterization of the resource usage of the set of
benchmarks. We believe the benchmarks are representative of
applications that perform large amounts of streaming I/O, and
thus the models can show us the resources an architecture must
provide to efficiently execute such programs. The models

are based on an understanding of the program code and are
confirmed empirically on the range of machines.

The second objective is to evaluate the architectures at
hand. We study a stand-alone workstation, a small cluster of
workstations, and a small-scale SMP. How well do the different
architectures execute the given benchmarks? How “balanced”
is each of the systems for these types of applications?

We approach these dual objectives with a unified method:
disk scaling. Each system begins with a single disk per proces-
sor. We run the benchmark on this configuration and monitor
resources with various hardware and software counters (de-
scribed below). We add disks to the system, introducing more
“potential” I/O, and again run the benchmarks. By measuring
resource usage during this process, we empirically determine
how each benchmark behaves. We compare experimental re-
sults with the application models to separate their inherent data
movement demands from the actual realization upon the given
hardware. By measuring application behavior on the systems,
we are able to recognize system bottlenecks, and can criticize
the particular architectures.

Thus, the data is presented in two forms. The first form
presents general relationships of resource usage for each bench-
mark on the different platforms. For example, on the cluster
architecture, we find that the amount of I/O crossing the I/O
bus during the read phase of the sort is roughly three times
the amount of data read from disk. This is an algorithmic
property of the sort, derived via model in Section 4, and con-
firmed empirically in Section 5.2. Comparing modeled versus
actual usage also aids in understanding where the parameters
of the architecture affect resource usage. For example, the
cache block size does not match the natural grain size in some
benchmarks, leading to extra memory traffic.

The second form presents the actual utilization of the re-
source in question. For example, how utilized was the I/O bus
during the read phase of the sort, as disks were added to the
system? This data can be used to gauge the effectiveness of
the system under test, and to estimate when the resource in
question would reach maximum utilization.

2.2 Experimental Apparatus

To measure resource utilization on our three platforms, we
use a combination of software and hardware counters. While
all UltraSPARCs have on-chip counters that track first- and
second-level cache access statistics, the SMP in this study,
the Enterprise 5000, also contains counters that track memory
and I/O bus traffic. To obtain this information for the single
workstation and cluster environments, we configure the Enter-
prise 5000 to emulate a single-processor system, by shutting
down all but one of the processors on board. The resulting
machine is quite similar to a single workstation, except for a
memory system with an interconnect capable of much higher
data transfer rates. For the cluster measurements, we attach a
single network card to the SMP and connect it to seven Ultra-
SPARC workstations. It should be noted that this configuration
is not used to evaluate the memory bus of a workstation; rather,
it is employed to gather information on program behavior, such
as the amount of I/O traffic generated by the benchmark.

Small modifications were made to the Solaris kernel to
enable counters only during non-idle periods, crucial when
tracing kernel activity. For all counter-based measurements,
we run the benchmarks 10 or more times. Our graphs present
the mean results from those runs; the standard deviations are
all less than 5%.
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Figure 1: Hardware Diagram. This figure depicts the internals of an Ultra 1 workstation and the Ultra Enterprise 5000.
Workstation: Inside the workstation on the left, the BMX crossbar chips and SS UP ASIC controller provide switched-based
access to memory. SMP: On the right is the Enterprise 5000. Each CPU board houses two CPUs, which share an address and a
data bus. Each I/O board consists of two S-Bus I/O busses. All boards are connected to the main memory interconnect (GigaPlane).
Though memory is physically distributed, access time is uniform.

3 Systems Overview

In this study we compare three platforms which represent im-
portant and distinct data interconnection architectures, yet hold
most other hardware characteristics in common. All three plat-
forms are based on the UltraSPARC processor and have the
same CPU, caches, memory, I/O bus, peripheral busses, and
disks. One platform is a single processor, the second is a cluster
of eight workstations, and the third is an eight-way SMP.

3.1 Single Workstation

Our simplest platform is a single processor Ultra 1 Model 170
workstation, shown in Figure 1. Each machine contains a
single 167 MHz UltraSPARC processor and off-chip second-
level cache. The UPA provides a crossbar-like connection from
the processor and caches to main memory for UltraSPARC
systems, and can sustain bandwidths up to 1 GB/s, though a
single processor can not drive it at that rate.

The main I/O bus of the Ultra 1 is the S-Bus1. Ethernet
and a single fast-narrow SCSI bus connect to the S-Bus from
the motherboard, and three S-Bus slots allow for additional
devices. In our experimental setup, the Ultra 1 workstation
has a single internal Seagate Hawk 2.1 GB, 5400-RPM disk
attached to the narrow SCSI bus, used for paging activity. We
extend the disk capacity of the system with one or more fast-
wide SCSI controllers, each connected to two external disks.

Each of our three platforms runs Solaris 2.5.1, a modern,
multi-threaded operating system [11]. Though we are present-
ing a study of architectural characteristics, operating system
behavior often dictates usage patterns of the underlying hard-
ware, as shown in [6, 16, 19]. Therefore, care must be taken
to use the appropriate operating system interfaces.

Much of the data movement on the UltraSPARC is per-
formed with special block copy hardware that is available as a
part of the VIS instruction set. These block loads and stores
move data directly into and out of the double-precision float-
ing point registers, without polluting any of the caches. This
hardware feature is accessible through library routines such
as memcpy. Copy rates are roughly 170 MB/s (moving 340
MB/s of traffic over the memory bus).

1While the S-Bus is 64-bits wide, many devices are only available in 32-bit
mode (including our network interface cards), reducing the potential bandwidth.
In this study, we only examine 32-bit S-Bus products.

3.2 Cluster of Workstations

Our cluster consists of eight Ultra 1 workstations, identical to
that described above. The workstations are connected with
Myrinet, a 1280 MB/s switched-based network. Each machine
has a single Myrinet card on the S-Bus, which is attached via
cable to an eight-port switch; multiple switches can be linked
together to form large, arbitrary topologies.

Parallel applications in our cluster communicate with Ac-
tive Messages [21], a high-performance communication layer
designed for low latency and high bandwidth switch-based
networks. An Active Message is a restricted, lightweight re-
mote procedure call, and is thus an appropriate communication
layer for studying the base architectural costs of data move-
ment, because unnecessary copying and buffering of data is
avoided. In this paper, we use Active Messages 1.0 (GAM)
over Myrinet, which has a round-trip latency of roughly 20 �s
and a bi-directional sustained bandwidth of 40 MB/s (20 MB/s
sending, 20 MB/s receiving) [7]. The primary unit of data
transfer in our benchmark applications is 4 KB.

3.3 Symmetric Multiprocessor

The Ultra Enterprise 5000 is a small-scale symmetric multi-
processor with uniform memory access. The main hardware
resource that distinguishes this system from the other two is the
GigaPlane, a 256-bit wide packet-switched memory bus that
connects up to eight CPU and I/O boards, as shown in Figure 1.
Our system contains four 2-CPU processorboards and four I/O
boards. A total of 1024 MB of memory is distributed across
four of the processor boards.

Each I/O board contains two S-Busses. One S-Bus has a
built-in fast Ethernet and fast-wide SCSI bus as well as an extra
slot for other devices, whereas the other has two S-Bus slots.
In most experiments, we add a fast-wide SCSI controller to
each I/O card; each fast-wide SCSI has two disks attached.

All communication on the Enterprise 5000 is performed via
loads and stores to shared memory. We use primitives such as
mutexes and condition variables to safely access shared data,
and barriers to synchronize threads across processors. Copy
rates are slightly higher than the single Ultra 1 workstation, at
190 MB/s.



I/O Bus Memory Bus
Read Write Read Write

Scan
Workstation Dr Dw Dr + (

key

rec
)Dr + (

match

total
)(2Dr) Dw

Cluster Dr Dw Dr + (
key

rec
)Dr + (

match

total
)(2Dr) Dw

SMP Dr Dw Dr + (
key

rec
)Dr + (

match

total
)(2Dr) Dw

Sort
Workstation Dr Dw Dr + (2Dr) + (

key

rec
)Dr + (

bucket

rec
)Dr Dw + (

bucket

rec
)Dw + (2Dw)

Cluster 2(P�1
P

)Dr +Dr Dw 2(P�1
P

)Dr + (5Dr) + (
key

rec
)Dr + (

bucket

rec
)Dr Dw + (

bucket

rec
)Dw + (2Dw)

SMP Dr Dw Dr + (4Dr) + (
key

rec
)Dr + (

bucket

rec
)(3Dr) Dw + (

bucket

rec
)Dw + (2Dw)

Transpose
Workstation Dr Dw Dr + (2Dr) Dw

Cluster 2(P�1
P

)Dr +Dr Dw Dr + 2(P�1
P

)Dr + (2Dr) Dw

SMP Dr Dw Dr + (2Dr) Dw

Figure 2: Benchmark Resource Models. This table presents models of resource usage for the three benchmarks across the
workstation, cluster, and SMP platforms. All read phase resource usage is relative to the rate data is read from disk, Dr; similarly,
for the write phase, all resource usage is relative to Dw . For example, the rate that data is expected to cross the I/O bus during the
read phase of the single workstation sort is equal to the rate that data comes from disk, whereas in the read phase of the cluster
sort, nearly three times the rate of the disk will cross the I/O bus, as P grows large.

4 Benchmark Descriptions and Models

In this section, we give an overview of the three I/O kernels
used throughout the study,and develop models of their resource
usage. These benchmarks primarily perform sequential I/O; in
future studies, we plan to examine non-sequential access pat-
terns. The first two benchmarks, scan and sort, are typical of a
data-processingenvironment. The third benchmark, transpose,
is more commonly found in scientific codes.

The models presented in this section are of I/O and memory
bus usage during the read and write phases of the benchmarks,
derived from an understanding of the code. All models of
resource usage are presented as ratios to the rate that data is
read from or written to disk. For example, if data is read from
disk atDr MB/s, on the single workstation platform, we expect
Dr MB/s to cross the I/O bus.

Benchmarks read data from disk via memory-mapped files.
We use mmap in all benchmarks because the alternative read
results in an extra copy to the buffer cache by the operating sys-
tem, which is problematic for applications that stream through
data [17]. By usingmadvise with a sequential accesspattern,
new pages are prefetched and old pages discarded appropri-
ately. For writing, all benchmarks repeatedly call write with
a large (64 KB) buffer, to avoid the high cost of repeated traps
into the kernel. We do not use mmap here because it is not a
natural match for writing (it can not extend the length of files).

Finally, all benchmarks have the capability to access mul-
tiple disks concurrently. We use a simple user-level striping
library, similar to that described in [15]. This library spreads
disk blocks across the disk sub-system with a user-specified
block size (64 KB) and with minimal CPU overhead.

Each benchmark has been hand optimized for the platform
in question. Therefore, for each of the three benchmarks, there
are three versions of code. For the cluster and SMP, we present
models from the perspective of a single processor, as each CPU
performs identical tasks. We now describe each benchmark.

4.1 Scan

A sequential scan, modeled after a scan and selection in a
database, is the simplest of the three benchmarks. The input
set we use in both the scan and the sort is derived from the
Datamation [8] and MinuteSort [15] sorting benchmarks: 100-

byte records with 10-byte keys. In our terminology, key is the
size of the key and rec is the size of a record. The scan selects
and writes to disk records that match a user-specified set of
criteria, where (match

total
) is the fraction of matching records. In

our benchmark, keys in a certain data range are selected, such
that roughly half of the data is written back to disk.

I/O Model: The model of I/O bus usage for the scan on
all three platforms is quite simple, since the only traffic cross-
ing the I/O bus is traffic from the disks. Thus, when reading
Dr MB/s from disk,Dr MB/s cross the I/O bus. Likewise, dur-
ing the write phase, when writing Dw MB/s to disk, Dw MB/s
cross the I/O bus.

Workstation Memory Model: During the read phase, the
scan performs the following three steps. First, records from the
memory-mapped file are transferred to memory, accountingfor
Dr MB/s across the memory bus. Second, the key portion of
each record is examined to determine whether the key matches
the criteria. Thus, a logical ( key

rec
)Dr crosses the bus, from

memory into the processor caches. Third, if the key matches,
it is copied into a separate buffer, for another (match

total
)(2Dr)

MB/s across the bus. The write phase writes the buffer to disk,
accounting for only DwMB/s.

Cluster Memory Model: The cluster version is nearly
identical to the single-node scan. After P processes have been
started across the nodes of the cluster, each node executes
a single-workstation scan. This situation is the “best-case”
scenario for a cluster, because no explicit data exchangeoccurs
(i.e. it is embarrassingly parallel). Because of this complete
parallelism, the models for resource usage for the cluster scan
match the single node models exactly.

SMP Memory Model: The SMP version forks off P
threads, each of which read and select records from an in-
dependent portion of the data file, and write them out to disk.
Again, there is logically no sharing in this benchmark; thus, the
resource usage models are identical to the single workstation.

4.2 Sort

The most complex benchmark used in this study is the external
sort, described in detail in [4]. Sorting was chosen by database
experts as an excellent test of the memory, I/O, and communi-
cation sub-systems of a machine [8]. As described in the scan,
we use 10-byte keys within 100-byte records.



The basic sorting algorithm is similar on all three platforms.
In the first step, the records must be converted from the layout
on disk to a format more suitable for efficient sorting. As
records are read from disk, the key and a pointer to the full
record are placed into buckets based on the top few bits of
the key; this improves the cache behavior of the sort in two
ways. First, the sort operates on only <partial key, pointer>
pairs, thus copying only 8-bytes rather than 100-byte records
as keys are compared and swapped. Second, the number of
keys in each bucket matches the size of the second-level cache.
The next step sorts the keys in each bucket, using the algorithm
described in [1]. Because this step accounts for only a very
small fraction of the total execution time and performs no I/O,
we do not discuss it further. Finally, the write phase scans the
bucketarray, gathering sorted records and writing them to disk.

I/O Model: The I/O bus usage for the single workstation
and the SMP sort are identical to that in the scan: only disk
traffic travels over the I/O bus. However, in the cluster, the
I/O bus must also handle network communication. For ev-
ery record read from local disk, the processor determines the
destination workstation responsible for this record in the final
sorted order. Assuming the initial data is randomly placed,
(
P�1
P

) of the data is sent to remote processors; the equivalent
amount is also received from all other processors. Thus, when
reading from disk at Dr MB/s, the cluster sends and receives
2(P�1

P
)Dr MB/s; as P grows large, nearly 3Dr MB/s cross

the I/O bus.
Workstation Memory Model: The memory bus model

captures the extra complexity of the sort. During the read
phase, the input file is mapped and read into the user’s address
space, accounting for Dr MB/s across the memory bus. To
ensure these pages are not discarded by the operating system
memory manager, the records are copied to an input buffer
(2Dr MB/s). To set up the sort phase, the keys are placed into
buckets based on their top few bits. Therefore, each key is
examined (( key

rec
)Dr), and the top four bytes of the key and a

pointer to the associated record are written into a bucket array
(( bucket

rec
)Dr); bucket is the size of a <partial key, pointer>

pair, or 8 bytes. The write phase includes a scan of the bucket
array (( bucket

rec
)Dw), a copy into the write buffer (2Dw), and

the transfer from memory to disk (Dw).
Cluster Memory Model: The only difference in the

cluster version from the basic algorithm occurs in the read
phase. Instead of simply placing keys and pointers into a lo-
cal bucket, the entire record is sent to the workstation that
should hold it in the final sorted-order. After each proces-
sor has mapped the input file (Dr ), the records are copied
into one of P send buffers (2Dr); as each buffer fills, it is
sent to the appropriate destination processor. This buffering
is necessary for efficient communication, since 100-byte mes-
sages cannot achieve peak transfer rates. As messages are sent
and received, the I/O traffic described above must also cross
the memory bus (2(P�1

P
)Dr + Dr). Upon receipt, records

are copied into a record buffer (2Dr), each key is examined
(( key

rec
)Dr), and a partial key and pointer are written into the

bucket array (( bucket
rec

)Dr), as in the single workstation sort.
The processors synchronize to complete the phase, and then
each independently sort and write out their set of records, both
of which are identical to the single workstation sort.

SMP Memory Model: The model of the SMP version
of the sort must also account for communication between pro-
cessors. Here, a global array of buckets and record buffers are
allocated, and each processor begins reading from a separate
file in parallel (Dr). As records are accessed, each proces-

sor could simply acquire a lock, copy the <key, pointer> pair
into the global bucket array, copy the record into the global
record array, and release the lock. However, this leads to high
lock contention and poor performance. To avoid this prob-
lem, each processor keeps a small record and bucket buffer,
into which it copies records (2Dr) and <key, pointer> pairs
(( key

rec
+

bucket

rec
)Dr). When a buffer fills, the processor grabs

the proper lock, and copies the keys (2( bucket
rec

)Dr) and records
(2Dr) into the global arrays. When the read phase is complete,
the processors synchronize,divide the global bucket and buffer
array among themselves, and sort the keys in parallel. Finally,
during the write phase, each processor gathers its records and
writes them to disk, as in the single workstation sort.

4.3 Transpose

Our final benchmark is transpose, similar to an operation found
in external scientific codes, such as out-of-core FFT [12]. The
basic operation reads in blocks in row-major order, and writes
them to disk in column-major order. Blocks are 4 KB for this
benchmark, a departure from the 100-byte records of the two
previous benchmarks.

I/O Model: The I/O bus model for both phases of the
single workstation and the SMP, and the write phase of the
cluster, match the other benchmarks. The model for the read
phase of the cluster corresponds to the sort.

Workstation Memory Model: The single node transpose
reads the input set, and writes out the transpose of the blocks
to disk. As it is reading the blocks from disk (Dr), it copies
them into column-ordered buffers (2Dr). For example, if the
program transposes 64 blocks (an 8x8 array), the first block
is read into buffer location 0, the next into location 8, and so
forth. The write phase writes out blocks sequentially until the
operation is complete, moving Dw MB/s across the bus.

Cluster Memory Model: On the cluster, after mapping
the input disk into memory (Dr), each node repeatedly sends
a block from its local, memory-mapped input file to a selected
destination node (2(P�1

P
)Dr). Upon receiving a message, the

processor copies it into the proper buffer location, based on
which processor sent the block (2Dr ). Once all the input data
has been read into memory and sent to the proper destinations,
each processor writes out the data to local disk in a phase with
no communication (Dw), identical to the single-node case.

SMP Memory Model: The SMP version begins with
each processor sequentially reading data from disk (Dr), and
copying them into a buffer (2Dr). The transpose is performed
via shared memory, with each processor claiming the required
portion of the other processors’ data, and writing it to disk,
moving Dw MB/s across the memory bus for the write.

4.4 Benchmark Summary

The models of resource usage are summarized in Figure 2. We
have seen that for entirely parallelizable workloads such as the
scan, the models are identical across platforms. For the cluster,
I/O bus usage during the read phases of the sort and transpose
is roughly three times that of a stand-alone workstation, due
to the addition of network communication. Finally, memory
bus usage for both the cluster and the SMP increases when
communicating; in the cluster, an extra copy is performed
to aggregate small messages into larger ones, whereas in the
SMP, an extra copy is necessary to avoid false sharing and lock
contention.
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Figure 3: Absolute Performance. These figures plot the incremental achieved disk bandwidth of the benchmarks. Each group
of bars scales the number of disks per processor. If the measured rate does not match expectations, we denote the cause of the
bottleneck (the CPU or I/O bus).

5 Experimental Results

This section contains the main experimental results of the pa-
per. We begin by presenting the absolute performance of each
benchmark across platforms, shown as the amount of deliv-
ered disk bandwidth as disks are added to the system. This
establishes two facts: first, the workloads are well-tuned and
effectively use multiple disks, and second, the point at which
some benchmarks reach a system bottleneck. We proceed by
examining each resource on the path from disk to the CPU: the
I/O bus, memory bus, processor interconnect, and processor.

5.1 Absolute Performance

We first show the absolute performance attained for each bench-
mark, across the three platforms, as disks are added to the sys-
tem. In an ideal system, achieved bandwidth matches the peak
disk rate multiplied by the number of disks in the system. In
our system, each disk can deliver Dr = 5.5 MB/s when reading
from disk, and Dw = 5.4 MB/s when writing to disk.

Figure 3 shows the increase in bandwidth achieved during
each phase of the benchmarks across the platforms. For ex-
ample, in the read phase of the sort for a single workstation,
the first bar in the group indicates that data is read from one
disk at about 5.5 MB/s. The next two bars show that adding
two additional disks yields the expected benefit, with each disk
adding roughly 5.4 MB/s. The sum of the three bars (not
shown), 16.3 MB/s, is the total data rate achieved with three
disks. When the fourth disk is added, the gain in read band-
width of 3 MB/s is below what is expected, indicating we have
reached a bottleneck in the system. In this case, the CPU is the
bottleneck, as indicated on the graph.

To summarize, we see that at four disks per workstation,
the single workstation sort reaches a CPU bottleneck. Cluster
performance falls off in the read phases of the sort and trans-
pose, due to a CPU and I/O bottleneck, respectively. Both of
these occur with three disks per workstation. Finally, SMP
performance degrades in the write phase of the sort with only
two disks per processor, again due to the CPU. We now proceed
by exploring each resource in detail.

5.2 The I/O Bus

We begin our exploration of system resources with the I/O bus.
We find that our measurements of I/O bus traffic on each of the
three platforms match the predictions of the models. Measure-
ments of the utilization of the Sun I/O bus reveal that while
the single workstation and SMP have sufficient bandwidth,
performance in the cluster is sometimes limited.

5.2.1 I/O Bus Bandwidth

Workstation I/O Bus: The leftmost graph in Figure 4 shows
the measured ratio of data crossing the I/O bus relative to data
coming from disk, as disks are scaled from one to four, for each
phase of the workloads. As predicted, for all applications on
a single workstation, I/O bus usage matches disk traffic. For
example, at four disks, when 22 MB/s are moving from disk,
the same amount is crossing the I/O bus. Dividing the amount
crossing the bus by the amount read from disk gives the ratio
of bus bandwidth to disk bandwidth. In the figure, the modeled
traffic is shown as a horizontal black line, and we can see that
the models match the experimental results precisely.

Cluster I/O Bus: In the cluster, the communication
phases, such as the read phases of the sort and transpose, are
of particular interest. Both of these benchmarks are expected
to move 2(P�1

P
)Dr + Dr MB/s across the I/O bus for every

Dr MB/s read from disk. On our 8-node cluster, that comes
to 2:75Dr MB/s. As shown in the middle graph of Figure 4,
the experimental results confirm this behavior. Therefore, in a
large cluster, the I/O bus must be able to handle roughly three
times the traffic of a stand-alone workstation.

SMP I/O Bus: As in the single workstation, only data
from disk crosses the I/O bus; any communication traffic only
crosses the memory bus. The data in the figure confirms
that D MB/s of bandwidth move across the I/O bus for ev-
ery D MB/s that are read from or written to disk.

5.2.2 I/O Bus Utilization

We have established demands placed on the I/O bus via models
and empirical measurement. Now we apply this knowledge to
understand how well the three architectures in this study sup-
port streaming-I/O applications. Figure 5 plots the I/O bus
utilization for the applications across the different architec-
tures, as the number of disks are increased.

Workstation S-Bus: For a single-processor workstation,
the S-Bus contains sufficient bandwidth to support the bench-
marks up to a reasonably high disk transfer rate. The peak
data bandwidth across the S-Bus operating in 32-bit mode is
80 MB/s; theoretically, this could be attained by moving the
maximal 8-word (8-cycle) data burst across the bus after ev-
ery 2-cycle arbitration phase. However, due to other control
information (usually in the form of programmed I/O), peak
utilization occurs at around 65%, or around 55-60 MB/s.

Figure 5 shows the utilization of the S-Bus as disks are
added to the system. We can see that even at four disks, the
bus is only about 25% utilized. Thus, via linear extrapolation,
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Figure 4: I/O Bus Data Movement. These figures plot the ratio of I/O bus bandwidth to disk bandwidth for the workloads across
platforms. The models are shown as horizontal black lines. Each set of bars represents a phase of one of the three benchmarks,
and in each group, the number of disks is increased, showing what happens as the load on the system is increased.
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Figure 5: I/O Bus Utilization. These figures plot the I/O bus utilization for the workloads across the three architectures, as disks
are added to the system. Only the cluster reaches near peak utilization, in the read phase of the transpose.

with no other bottlenecks in the system, the S-Bus would be
able to support approximately 55 to 60 MB/s of disk bandwidth
before hitting its peak utilization.

While the S-Bus in the Ultra 1 workstation contains suf-
ficient bandwidth to support the disk subsystem, the internal
SCSI bus does not. Although the workstation can house two
internal disks, a fast-narrow SCSI bus with a peak bandwidth
of 10 MB/s connects these disks to the motherboard. This
configuration limits performance when two modern disks are
attached, and should be avoided.

Cluster S-Bus: Because of the extra load placed on the
I/O bus during phases of concurrent disk I/O and network com-
munication, the S-Bus suffers high contention and peaks much
more quickly than in the single workstation scenario. As seen
in Figure 4, the utilization of the S-Bus during the read phase
of the sort and the transpose is quite high, between 50% and
65% with three disks per workstation. We show in Section 5.5
that the sort does not reach peak S-Bus utilization because
of a more severe CPU bottleneck. However, as indicated in
Figure 3, the S-Bus limits the performance of the transpose.

The S-Bus was targeted to meet the bandwidth require-
ments of much slower devices, not today’s high-speed disks
and networks used in tandem. In Sun Microsystems’ own
words, “The S-Bus is optimized for the technologies expected
to dominate in the late 1980s and early 1990s” [18]. It is
evident that a new bus is needed to support I/O-intensive ap-
plications in a cluster. The 64-bit S-Bus partially solves this,
but not without widespread availability of 64-bit cards.

SMP S-Bus: As stated above, the SMP S-Bus utilization is
identical to the single-node utilization. By the same standards,
the S-Bus can meet the I/O demands of the Enterprise system.

However, let us examine the overall I/O architecture of the En-
terprise. Filling 8 board slots of the Enterprise symmetrically
with 4 CPU boards and 4 I/O boards gives the machine a total
of 8 S-Busses, with a peak achievable bandwidth of 480 MB/s.
However, four of the busses have only a single S-Bus slot (plus
a built-in fast-wide SCSI slot); the other four have two S-Bus
slots. In comparison, a single Ultra 1 workstation has three
slots and an internal SCSI. If we attach fast-wide SCSI cards
to all available slots, and drive each SCSI with 15 MB/s of
disk bandwidth, each S-Bus will transfer 30 MB/s, or roughly
half of the potential data rate. The lack of bus slots implies
that more modern disk technologies such as UltraSCSI must
be used to take full advantage of available bandwidth.

5.2.3 I/O Bus Analysis

For stand-alone workstations, there are no immediate problems
with today’s I/O bus technology. As workstations grow faster
in the near future, standards such as PCI should provide the
necessary bandwidth.

For clusters, the situation is much more serious, because
the I/O bus must handle three times the bandwidth of stand-
alone machines. Current S-Bus technology struggles under the
aggregate demand of disk and network traffic. One straight-
forward solution is to provide separate paths for disk and
network traffic, via multiple I/O busses. A recent machine
from Sun, the Ultra30 workstation, is a good example of this:
two PCI busses make this machine ideal for cluster computing.
More radical solutions suggest placing the network interface
on the memory bus [14]. This solves the problem by removing
traffic from the I/O bus, while placing no additional load on the
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Figure 6: Memory Bus Data Movement. These figures plot the ratio of memory bus bandwidth to disk bandwidth. The modeled
amount of data movement, shown as horizontal black lines, under-predicts actual usage by a noticeable amount, due to interactions
with the cache block size, operating system zeroing and copying, and, in the case of the cluster, a copy in the communication layer.

memory bus. However, for the workloads in question, all of
which are bandwidth (and not latency) sensitive, this solution
may not justify the costs.

Finally, for SMP systems, standard I/O busses should pro-
vide plenty of disk bandwidth for the foreseeable future. How-
ever, the I/O architecture must provide an adequate number of
slots for attaching disks.

5.3 The Memory Bus

Now that we have seen the I/O bus behavior of the benchmarks,
we move on to the memory bus. Memory traffic is more
difficult to model; we find that our models consistently under-
predict memory bus usage. We show that the underlying cache
architecture, operating system, and communication layer are
responsible for these differences. As for the balance of our
platforms, the Ultra 1 workstation memory bus is unlikely to be
the bottleneck during streaming I/O; there is plenty of available
bandwidth for all of the benchmarks. In the workstation cluster,
where extra copies abound due to communication, the memory
interconnect still suffices.

5.3.1 Memory Bus Bandwidth

Workstation Memory Bus: Figure 6 shows the measured
memory bus traffic as a ratio to disk bandwidth; the inher-
ent traffic is designated as a black horizontal line across each
group of bars. There are two main reasons the models underes-
timate memory traffic: a mismatch between natural grain size
and the 64-byte cache blocks, and operating system behavior.
When these effects are taken into account, all memory traffic
is explained.

Extra traffic occurs in the read phase of the scan due to
two distinct interactions with the cache. First, as the scan ex-
amines the 10-byte key in every 100-byte record, a 64-byte
block must be fetched into the cache. Thus, ( 64

100 )Dr MB/s
are transferred across the memory bus instead of the predicted
(
key

rec
)Dr . Second, when copying selected records to the out-

put buffer, each 100-byte record lies on two or three cache
blocks. In the worst-case, if every other record matches the
scan criteria, what should generate ( 1

2 )(2Dr) MB/s, actually
generates ( 4

5 )(2Dr) MB/s.
Similar granularity mismatches occur in the sort; however,

it is more difficult to analytically determine its memory traf-
fic because some repeated accesses to data may be cached.
In the worst case, when examining 10-byte keys in 100-byte
records, the full 64-byte cache block must be accessed. Also,
when scattering 8-byte <partial key, pointer> pairs into random

buckets, an entire cache line may need to be read and written.
This could generate ( 64

100 )Dr + 2( 64
100 )Dr = 1:92Dr instead

of ( 10
100 )Dr + (

8
100 )Dr = :18Dr. Our empirical results show

that the worst case is realized. Further work, including sim-
ulations of the user code and operating system, is required to
understand this behavior in more detail, and is a part of our
future work.

Operating system behavior, not represented in the models,
generates significant traffic for all three benchmarks. During
the read phase of the benchmarks,not only must the OS perform
the work required to bring the blocks in from disk, it must also
zero pages allocated by the user process. For the sort and
transpose, the entire data set is copied into a user-allocated
buffer, all of which must be zeroed on demand, whereas half
as much zeroing takes place in the scan, because only (match

total
)

of the records are copied. We have found empirically that the
total OS traffic on the memory bus during the read phase is
2:5Dr MB/s for the sort and transpose, and 1:5Dr MB/s for
the scan.

Cluster Memory Bus: Figure 6 shows that memory traf-
fic is under-predicted by the cluster models as well. The read
phases of the sort and transpose are the only phases that perform
communication and thus differ from the single-workstation im-
plementation. Some of this extra traffic is captured in the mod-
els, whereas the rest arises from the behavior of the message
layer. When the sort and transpose benchmarks send a buffer,
the communication layer must copy the buffer to a pre-pinned,
pre-mapped region of the address space from which DMA op-
erations can be performed to the network device. As a result,
significantly more traffic passes over the memory bus in the
cluster than in any of the single-workstation benchmarks; e.g.,
in the sort, 12Dr MB/s cross the bus for every Dr MB/s read
from disk.

SMP Memory Bus: The memory traffic in all SMP
benchmarks except the read phase of the sort should be iden-
tical to that in the single node; however, the measurements in
Figure 6 show that at least an extra D MB/s is generated for
every D MB/s transferred from disk. We believe this extra
traffic is due to contention in the file system for buffers; while
we avoid lock contention and false sharing in the application
itself, we cannot avoid contention in the OS underneath. 2

2The sort and transpose benchmarks in the SMP zero their input buffers
before starting the measurements, which results in less memory traffic during
the read phase. Without explicitly performing this operation, I/O performance
suffered to the extent we could not fully utilize even two disks per CPU.



5.3.2 Memory Bus Utilization

We now present an evaluation of the Ultra memory systems.
Since we can not measure the memory bus utilization on a
workstation, we estimate utilization based on specifications.

Workstation UPA Interconnect: The UPA was designed
to support small-scale SMP systems; therefore, it is somewhat
over-engineered for the simple case of a single processor inside
of a workstation. Though the 167-MHz UltraSPARC processor
can only drive the memory system at about 340 MB/s (during
memcpy), the interconnect is theoretically capable of sustain-
ing roughly 1 GB/s. Even in the sort, the most memory-bus
intensive applications, only 7Dr MB/s moves across the mem-
ory bus for everyDr MB/s transferred from disk; thus, to move
80% of peak across the memory interconnect, we would have
to read from the disk sub-system at 114 MB/s.

Cluster UPA Interconnect: Again, due to the high capa-
bility of the UPA memory interconnect, the amount of mem-
ory traffic generated by the sort does not overload the memory
system. Even though the sort moves 12Dr MB/s across the
memory interconnect, this part of the system is not a bottle-
neck until Dr reaches 67 MB/s, well beyond what other system
components can handle.

UltraEnterprise Memory System: The GigaPlane is
the main system interconnect for Enterprise systems. The
bandwidth of the interconnect is quite high, and is capable
of delivering 2.5 GB/s with more memory banks. Because
we wish to compare this to the cluster interconnect, we defer
further discussion of it until the next section.

Interestingly, the memory bandwidth of the UltraEnter-
prise scales with the memory capacity. The system has eight
memory banks, where each bank serves to increase the total
memory bandwidth. However, before adding DRAM to the
n + 1st bank, the nth bank must be filled. Therefore, small
capacity systems also have small performance capabilities. In-
deed, in our early experiments, our server was configured with
only two memory banks, limiting our sustainable performance
to 1 GB/s on 8 processors (running a copy micro-benchmark
similar to that in [13]).

5.3.3 Memory Bus Analysis

We have seen that subtleties in program interaction with the
cache architecture, the operating system, and network commu-
nication, all lead to excess memory traffic. The mismatches
between the grain size of the applications and the block size of
the cache architecture are difficult to avoid without requiring
application awareness of the underlying machine architecture.
Reducing the number of copies performed by the operating
system and the communication layer may be more tractable.

Many modern operating systems avoid extra copies by pro-
viding direct, non-buffered I/O, which allows applications to
bypass the file system buffer cache. The next version of So-
laris (2.6) also includes this functionality. Zeroing pages for
protection is more difficult to avoid, and will continue to play
an important role for streaming I/O workloads.

Cluster communication results in two extra copies in our
current environment. Both could potentially be avoided. For
example, in the cluster sort, the first copy is explicit in the
program, where 100-byte records are copied into larger 4 KB
blocks to amortize the overhead of sending a message. This
copy could be avoided with tight integration between the net-
work interface and the processor [14], lowering overheads and
allowing applications to send small messages at peak rates. The
second copy occurs when message layer must copy buffers into

portions of the address space setup for DMA transfers. This
copy could be avoided by exposing communication buffers to
the application. The largest reduction in memory traffic in
the cluster could come from direct disk-to-network transfers,
completely avoiding the memory bus. However, an application
such as the sort must dynamically determine the destination of
each 100-byte record, perhaps requiring application-specific
code on the disk controller.

5.4 The Communication Interconnect

We now examine the demands placed on the communication
backplane for the cluster and SMP. We find that the intercon-
nects are placed under significantly different demands, though
both seem unlikely to be the bottleneck in real systems.

5.4.1 Interconnect Bandwidth

Cluster Interconnect: We analyze the communication rates
both on the links attaching machines to the network and the to-
tal amount of traffic generated across all nodes. As established
in Section 5.2, each workstation sends and receives roughly
(
P�1
P

)Dr MB/s during the read phase of the sort and the trans-
pose. Thus, the link that connects a machine to a switch has
to support (P�1

P
)Dr MB/s of traffic in each direction. With P

processors sending, the aggregate bandwidth moving through
the network in the read phase is P (P�1

P
)Dr MB/s.

SMP Interconnect: The SMP interconnect must support
all memory and I/O traffic. Therefore, it is not surprising that
this resource is under heavy contention. For example, as seen
in Figure 6, in both phases of the scan, each processor places
roughly 4Dr MB/s on the memory bus for every MB/s read
from disk. Therefore, the scan places roughly 4PDr MB/s on
the shared interconnect. The sort places up to 9PDr MB/s on
the bus, and the transpose roughly the same as the scan. The
difference in aggregate bandwidth between the SMP intercon-
nect and the cluster interconnect is roughly a factor of four to
nine; however, bandwidth requirements of both mediums scale
linearly with processors.

5.4.2 Interconnect Utilization

Myrinet Network: We now analyze the ability of the Myrinet
hardware to support this traffic on our 8-node cluster, assum-
ing a single 8-port switch is used. Myrinet links can sustain
160 MB/s in each direction [5], and thus has sufficient band-
width until Dr reaches ( 8

7 )160 MB/s. Regarding the abil-
ity of Myrinet switches to handle the total communication
bandwidth, each switch is a perfect crossbar, and can support
1280 MB/s of aggregate bandwidth when there is no port con-
tention. Thus, the Myrinet switch is not a bottleneck for the
total network traffic as long as Dr is under 180 MB/s, well
more than the S-Bus can handle.

While the Myrinet links and switches provide ample band-
width and capacity relative to today’s disk speeds,other current
networks are not in the proper performance regime. For ex-
ample, a 100 Mbps (12.5 MB/s) fast Ethernet connection only
provides enough link bandwidth to support about 6 MB/s of
disk bandwidth per workstation.

GigaPlane: In the Enterprise, the GigaPlane can support
roughly 2.5 GB/s of data transfer. In an 8-processor system,
we established that up to 9 � 8Dr MB/s must be transferred
across the bus. Thus, the benchmarks place up to 72 Dr MB/s
across the GigaPlane. If we could achieve peak utilization of
the bus, the worst case would limit the amount of per-processor
disk traffic to 35 MB/s.



5.4.3 Interconnect Analysis

Though the processor-to-processorinterconnect is often a main
concern for system designers, we can conclude that for stream-
ing I/O applications on small-scale parallel systems, it is un-
likely to be the bottleneck. The cluster interconnect needs to
provide bandwidth that scales linearly with the number of disks
on each workstation; for our streaming I/O benchmarks, the
switch must essentially have the capability to handle the sum
of all disk traffic. Because larger systems can consist of more
switches, the interconnect should be able to scale to medium-
and large-scale clusters. The SMP interconnect has to handle
the aggregate of all memory and I/O data movement. However,
for small-scale systems, modern, aggressive busses such as the
GigaPlane seem sufficient.

5.5 The Processor

In this last section, we examine the processing requirements
for streaming I/O. We begin by analyzing the number of in-
structions executed for each byte read from or written to disk.
Though we study SPARC-based systems,we believe these rela-
tionships can be used as coarse estimates for other RISC-based
machines. To understand how well the UltraSPARC proces-
sor executes the workloads, we measure processor utilization
and CPI. Whereas instructions are implementation indepen-
dent, utilization and CPI are directly determined by a number
of architecture-specific factors, including branch behavior and
memory latency. We shall see that the CPI for all platforms
and benchmarks is quite high, and, as a result, the processor
is often the bottleneck for our workloads. We should note that
the characterizations in this section are preliminary, e.g. the
exact breakdown of which instructions are executed and where
time is spent is a part of our on-going research.

5.5.1 Processor Instruction Rates

Workstation Processor: Figure 8 shows the number of in-
structions (in the millions) executed in system and user mode
for each MB/s of delivered disk bandwidth. We see that the
number of instructions executed in system mode is almost con-
stant across benchmarks and that writing with write requires
more system instructions than reading with mmap, mainly due
to an extra memory copy into the buffer cache.

The main difference across benchmarks arises in the work
at user-level that must be performed. Transpose requires the
least amount of work; in the read phase, the user code performs
only a single copy of each 4 KB record. The read phase
of the scan executes more instructions: not only must each
key be compared to the selection criteria, but copies must be
performed at a fine granularity. The write phases of both the
transpose and scan perform essentially no work at the user-
level, repeatedly calling write to move data to disk.

The sort is the most processor intensive, due to a mismatch
between the disk representation of records and the form that is
best for internal sorting. On disk, the records comprise a linear
array, while the internal sort executes best when the 10-byte
keys are separated from the larger records and when groups
of keys fit in the second-level cache. Therefore, as records
are read from disk, the keys are scattered into buckets, and
pointers are set up to the full records. The write phase must
then reverse the operation, gathering keys and records into a
linear array before writing to disk.

Cluster Processor: The major increases in instruction
rates relative to the single workstation occur when sending
and receiving messages, in the read phases of the sort and

Workstation Cluster SMP
Sys User Sys User Sys User

Scan Read 1.2 1.8 1.2 1.8 1.7 1.9
Write 1.6 0.0 1.6 0.0 2.0 0.0

Sort Read 1.5 2.6 1.6 3.9 1.3 3.3
Write 1.9 2.2 2.4 2.3 2.4 2.2

Trans Read 1.5 0.5 0.8 1.3 0.9 0.5
Write 1.6 0.1 1.6 0.1 1.9 0.1

Figure 8: Processor Instruction Rate. This table shows the
MIPS per MB/s of disk bandwidth.

transpose benchmarks. Because communication is performed
at user level, the increase is seen in user instruction counts.3

The transpose indicates the minimal instruction cost to per-
form bulk-message network communication, because it imme-
diately sends a 4 KB block after it has been read from disk.
The increase in the transpose read phase from the workstation
to the cluster shows that slightly less than 1 MIPS are required
to send and receive data at 1 MB/s: less work than the com-
bined system and user cost of reading from or writing to disk.
The cost of communicating is greater in the sort benchmark
because the 100-byte records must be copied into 4 KB buffers
to amortize the startup cost of communication.

SMP Processor: Similar to the cluster sort, some SMP
versions of the benchmarks perform additional work to copy
data: buffering is performed to avoid false-sharing and lock
contention. For example, in the sort, copying keys into a
temporary buffer before inserting them into the global bucket
array increases instruction costs by 0.7 MIPS per MB/s. Higher
instruction costs also appear in the read phase of the scan and
the write phases of all programs. We believe this is due to lock
contention within the kernel.

5.5.2 Processor Utilization and CPI

Workstation UltraSPARC-I: Figure 7 shows both the CPU
utilization and CPI of each benchmark. From these graphs, we
ascertain the sustainable disk bandwidth before each platform
becomes CPU limited. For the single workstation, the sort
places the most load on the processor, reaching 100% CPU
utilization with four disks, or roughly 20 MB/s. This explains
the drop in absolute performance seen in Figure 3, much earlier
in this section. The other two benchmarks fair somewhat better;
extrapolating the CPU utilization predicts that the CPU will not
be a bottleneck until roughly 30 MB/s are transferred from disk.
For all benchmarks, the CPU is expected to be the primary
bottleneck: we predicted the I/O and memory busses could
handle at least 55 MB/s and 114 MB/s, respectively, before
saturating.

Cluster UltraSPARC-I: Our cluster measurements show
that a fast communication layer places a heavy demand upon
the UltraSPARC processor. For example, the processor is now
100% utilized in the read phase of the sort with only three disks;
with this CPU bottleneck, adding more than two disks per
workstation does not improve the performance of sorting. The
transpose read fairs somewhat better, and would reach 100%
utilization with just over three disks per workstation, or when

3The reader may notice that the number of system level instructions in the read
phase of the transpose actually decreases in the cluster and SMP implementations.
The cluster repeatedly uses small buffers rather than one large buffer, saving the
operating system the cost of zeroing many pages; SMP versions zero the pages
before the read phase begins. This has the result of reducing SMP instructions
relative to the other platforms.
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Figure 7: Processor Utilization. These figures plot the processor utilization (with bars, corresponding to the left y-axis label) and
CPI (with a line, corresponding to the right y-axis label) for the workloads across platforms. For most workloads, the processor is
the main bottleneck of the system.

moving 18 MB/s from disk. For sort and transpose, both the
CPU and S-Bus reach peak utilization almost simultaneously.

The read phase of transpose has a high CPI for two reasons.
First, the low data locality of accessing 4 KB blocks of data
leads to high cache miss rates; this effect was also measured
on the single workstation. Second, accessing the network
interface card on the S-Bus is expensive; thus, CPI grows with
the number of disks as the contention on the I/O bus increases.

SMP UltraSPARC-I: The CPU utilization shows that for
the sort, the SMP can not leverage more than two disks per
processor. In general, the CPU utilization on the SMP is much
higher than the single workstation, even though the number of
instructions executed per MB/s of I/O is similar.

The utilization graphs for all three platforms illustrate the
importance of operating system performance for streaming-
I/O workloads. For each benchmark on each platform, the
time spent in the kernel dominates that spent at user-level,
especially as the number of disks increases. Interestingly, the
number of instructions executed is not as biased. This, along
with the high CPI, indicate poor kernel cache performance.

5.5.3 Processor Analysis

The processor is the main bottleneck for all of the workloads
across all of the platforms, except the few situations in the
cluster environment where the I/O bus limits performance.
There are two approaches to lowering the processor utilization
of such workloads. The first is by reducing the number of
instructions; communication layers such as Active Messages
provide minimal cost primitives for network access; perhaps
it is time to revisit the instruction costs of disk I/O. The high
instruction cost of disk access may be exacerbated in the Solaris
operating system, where generality, modularity, and support
for threads, may all increase the common code path to disk.
Instruction costs could also be reduced with additional support
for large block operations in the instruction set.

The second approach focuses on lowering the CPI. Though
the easiest solution may be in hardware via tighter integration
with the memory system, a software lesson is perhaps more
feasible for current systems: all operations must be “cache
conscious”. It is crucial to group data accesses into second-
level cache-sized objects, thereby avoiding the high cost of
repeated access to main memory. This style of programming
was used extensively in [15], and we plan to investigate the
support applications need to achieve better locality during I/O.

6 Conclusions

We have presented measurements of the resource costs of data
movement on three machine architectures. Across all plat-
forms, we developed models of benchmark resource usage,
and validated the models empirically. We have also measured
the utilization of each resource as the amount of disk bandwidth
in the system is scaled, in order to evaluate each architecture
from the perspective of the set of I/O kernels.

To summarize our results, we present a graphical repre-
sentation of what it means to be a balanced system. Figure 9
plots the balance of the three platforms for each phase of the
workloads in question. For each machine, the resources of the
machine are shown on the x-axis. The y-axis plots the pre-
dicted per-processor disk bandwidth that could be added to the
machine before that particular resource would reach saturation,
for the given workloads. This value is based on a linear extrap-
olation of the usage characteristics found in earlier sections. A
set of bars of the same height indicates a balanced system, and
a set of higher bars indicate a better system.

From the figure, we see that none of the machines are well
balanced. For all platforms, the first resource to become a
bottleneck is the processor. Much of this is due to the lack
of locality in streaming I/O benchmarks; in fact, none of the
benchmarks had a CPI lower than 2, on a processor that could
potentially execute 4 instructions per cycle.

For the single workstation, we also see that the memory in-
terconnect for the stand-alone workstation is over-engineered;
it is unlikely to be the bottleneck for these types of workloads.

For the cluster, the I/O bus limits performance during
phases of network communication. Not surprisingly, for bench-
marks with no communication, the balance of the cluster work-
station defaults to the stand-alone case. The memory bus
still provides plenty of bandwidth, but for especially memory-
intensive benchmarks, it is fairly well utilized. The network
backplane,Myrinet, has ample bandwidth,easily handling traf-
fic rates proportional to those of the disk.

Finally, the SMP has the least absolute performance, but, as
a result, appears to be the most balanced of the three architec-
tures. The communication backplane, the GigaPlane, handles
the high load placed upon it reasonably well. Under a stream-
ing I/O application set, it should be adequate for small-scale
parallel systems. However, the performance of the CPU is the
weak link in the chain; because of the surprisingly high CPIs,
processor utilization peaks rapidly. The end result is that the
cluster is a better platform for performing workloads that are
dominated by streaming I/O.
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Figure 9: Balanced Systems. These figures reflect the “balance” of each architecture. The x-axis shows the different resources
of the system, and the y-axis the amount of (per-processor) disk bandwidth one can introduce into the system before the resource
reaches peak utilization. A flat set of bars indicates a “balanced” system, and a higher set of bars indicates a “better” system.
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