
A Wakeup Call for Internet Monitoring Systems:
The Case for Distributed Triggers

Ankur Jain†,∗, Joseph M. Hellerstein‡,∗, Sylvia Ratnasamy∗, David Wetherall†

†University of Washington ‡University of California Berkeley ∗Intel Research Berkeley
{ankur,djw}@cs.washington.edu jmh@cs.berkeley.edu sylvia@intel-research.net

ABSTRACT
There have been a number of recent proposals for distributed
monitoring infrastructures. We argue that a vital missing
component from these proposals is a distributed triggering
mechanism, by which nodes in the system can proactively
work together to maintain invariants and constraints over the
system-wide behavior. Without such a triggering compo-
nent, existing proposals are doomed to poor performance,
high detection latency, or both.

A key research challenge in building such a triggering
mechanism lies in devising solutions whereby individual nodes
can independently detect (and react to) violations of con-
straints that are defined in terms of the aggregate behavior
of nodes in the system. We discuss our early efforts in de-
signing such a triggering system and the research challenges
that lie ahead.

1. INTRODUCTION
The growing scale and complexity of currently deployed

distributed systems (such as PlanetLab, various overlay ap-
plications, and even the Internet itself) has given rise to the
need for distributed tools that monitor the overall activity of
the system. Recognizing this need, several recent research
proposals have articulated a vision for large-scale monitor-
ing systems that collect, store, aggregate and react to obser-
vations about network conditions [28, 15, 5]. At the core of
these proposals is a distributed query engine whereby queries
are shipped out to all the nodes in the system and responses
are aggregated at either the source of the query [28] or in
the network itself [15]. These systems thus adopt what is
essentially a query-driven approach in which the monitoring
nodes are largely passive, logging data locally and reacting
only when a query is issued.

This approach is well suited to scenarios where the goal is
to continually record system state (e.g., to study traffic pat-
terns in a network) or to obtain an instantaneous snapshot of
system state (e.g., “how many processes were running when
we rebooted?”). Often however, our primary motivation in
monitoring a system is merely to ensure that all is well. This
is typically achieved by maintaining a well-defined set of
logical predicates or invariants over the entire system. For

example, one might want to ensure a distributed form of rate
limiting so that a PlanetLab measurement experiment is not
perceived to be a DDoS attack, e.g., the aggregate traffic to
any destination from a set of nodes running Scriptroute [25]
should not exceed a pre-defined bandwidth threshold. Or,
in a public DHT storage system such as OpenHash [17] one
might want to take precautionary steps in resource alloca-
tion whenever the storage consumed by a client IP address
exceeds a threshold number of bytes. Yet another example
is a distributed IDS system that, like DShield [26] but in a
distributed manner, uses correlated activity at different loca-
tions, including network telescopes or honeypots, to detect
Internet worms and viruses.

In such cases, we do not want to record global system state
at all times; instead, we would like to confine ourselves only
to detecting and reacting in the event of occasional violations
of these constraints. Ideally, this detection and response
should be achieved in a manner that remains both timely and
efficient at scale. Pure query-driven approaches, however,
are ill suited to this task – to detect violations, existing sys-
tems are essentially reduced to periodic querying. Timely
detection of violations requires frequent querying which is
expensive while a lower rate of querying leads to long pe-
riods of undesirable behavior going undetected. Moreover,
periodic querying leads to wasteful overhead in the common
case where there are no violations.

In this initial paper, we argue that current monitoring sys-
tems should be augmented by a distributed triggering com-
ponent in which the nodes being monitored proactively work
to enforce a set of system-wide logical predicates. This no-
tion of embedding triggers or predicates in query engines is
not a new one – the topic has been extensively researched in
the context of traditional (i.e., centralized or modestly dis-
tributed) databases[29] and is now widely recognized as a
useful and indeed a standard feature of modern databases [21].
Somewhat surprisingly then, triggering has yet to be iden-
tified as a key component in the recent focus on Internet
query systems. We believe that if systems such as PIER [15]
and Sophia [28] are to achieve true Internet-scale monitor-
ing, it is crucial that they incorporate a distributed triggering
component – without one, these systems appear destined to
suffer from either excessive query overhead or high detec-



tion latency. With one, many system-wide conditions can
be checked cheaply and in a manner that complements, not
replaces, existing query-driven approaches.

A key challenge that arises in supporting triggering in a
distributed system is that such triggers are naturally defined
in terms of the aggregate behavior of a collection of nodes.
For instance, in the above example of rate-limiting a Plan-
etLab measurement experiment, the constraint was defined
in terms of the aggregate traffic generated by a set of nodes.
Likewise, in the OpenHash scenario, the trigger was in terms
of the sum, over all OpenHash nodes, of the storage allocated
to a particular client. We call these aggregate triggers and
distinguish them from local triggers where the constraint or
invariant to be maintained can be defined entirely in terms of
the state at, or behavior of, an individual node (e.g., ensuring
that no PlanetLab machine is over 60% utilized). While sup-
port for local triggers is likely to be fairly straightforward,
aggregate triggers are more challenging. To the best of our
knowledge they are a largely unexplored research direction.
For example, there is much developed work [7, 9] on ef-
ficiently monitoring packets to, for example, identify “ele-
phant” flows but these do not help us find the “distributed
elephants”. Similarly, pushback schemes [20] search for
misbehaving aggregates locally but do not consider distributed
searches.

In this workshop paper, we present initial ideas on sup-
porting aggregate triggers in large distributed systems. We
include an initial set of design goals and metrics (Section 2)
some example solutions to illustrate possible approaches (Sec-
tion 3), and some design considerations that arise from these
examples (Section 4). We conclude by discussing a set of
research directions in Section 5.

2. DESIGN GOALS AND METRICS
To motivate our triggering solutions and set the context

for subsequent design discussions, we first identify key goals
and metrics for a distributed triggering system.

Overhead: computing a distributed function involves wide-
area communication. Ideally, this control traffic overhead
should scale gracefully with increasing numbers of constraints
and participant nodes. Moreover, such overhead should be
low in the common case of “no suspect activity.” This how-
ever is in direct conflict with our next goal.

Timeliness: this refers to the elapsed time between when a
constraint was violated and when it was detected. Clearly,
the earlier a violation is detected, the better. Note how-
ever that there is an inherent trade-off between timeliness
and overhead. The more frequently an aggregate is com-
puted, the faster a violation will be detected but the greater
the communication cost and vice versa. The key insight that
allows us to navigate this trade-off is that, often, the value of
timely detection depends on the extent to which a constraint
is violated. This leads directly to our next metric.

Penalty: this captures the “cost” of having violated a con-
straint and is a function of both the time-to-detection and
the extent to which a constraint was violated. For example,
in the rate-limited PlanetLab application introduced earlier,
penalty might be measured as the excess bytes (i.e., number
of bytes over a target threshold) transmitted to a destination.
Triggering solutions must aim to minimize penalties in the
event that constraints are violated.

Accuracy: this refers to the accuracy of the computed value
for the aggregate function. Clearly, this is important in order
to reduce the likelihood of false positives or negatives. Ac-
curacy might be impaired by a number of factors including
stale input measures, packet loss, the failure of participant
nodes, and incorrect inputs from misconfigured or malicious
nodes.

Simplicity: a less quantifiable but equally important goal is
that triggering algorithms should be both conceptually and
operationally simple. This is particularly important if dis-
tributed triggering is to serve as a debugging and diagnostics
tool. Distributed systems are sufficiently difficult to debug
without having to debug the debugging tool!

With the above goals in mind, we now turn to designing so-
lutions for a specific application – a rate-limited PlanetLab
application.

3. ILLUSTRATIVE EXAMPLES
We illustrate two example approaches for distributed trig-

gering using the problem of rate-limiting a PlanetLab appli-
cation as our driving scenario. In Section 4, we extrapolate
from these simple approaches to discuss design considera-
tions for more complete approaches.

Consider a measurement experiment run on all PlanetLab
nodes using the Scriptroute service [25] as a concrete appli-
cation. Recall from our description in Section 1 that the goal
of limiting this application is to ensure that the aggregate
traffic emanating from a set of nodes to any destination does
not exceed a specified rate limit. More formally, let n be the
number of nodes, f x

i be the flow rate (in bps) generated by
node i to destination x and C be the global rate-limit thresh-
old in bps. Then, we want to ensure that for every destination
x:

n

∑
i=1

f x
i ≤C (1)

For simplicity, we consider two key figures of merit for so-
lutions: communication overhead in packets per second; and
penalty as the excess bytes sent over the global limit C before
a misbehaving aggregate is detected and can be halted.

A straightforward solution is to impose a hard local rate-
limit of C/n at each node, so that the n nodes are simply
unable to send at a rate greater than C. This is the mecha-
nism currently used by Scriptroute. However, the per node



limit of C/n either becomes too small as the system grows,
so that it is overly restrictive on application behavior, or C
must be made too large to detect all dangerous situations
if it is to allow reasonable application behavior at individ-
ual nodes. Neither option is attractive and we seek a better
alternative. We now present two example solutions using
distributed triggers.

3.1 Rate-limiting PlanetLab: Take 1
Our first solution leverages a distributed hash table (DHT)

to spread the responsibility for maintaining aggregates among
the participating nodes. Each node i maintains a counter bx

i
of the number of bytes transmitted to every destination x.
Each node also maintains a threshold number of bytes that is
the fair share rate for node i (i.e., C/n) sent to destination x
over an averaging interval of τ seconds, an epoch. Then, ev-
ery time bx

i exceeds the threshold, node i sends an update to
the DHT node corresponding to HASH(x) and resets its byte
counter for x. These updates enable the DHT node at HASH(x)
to maintain an estimate of the aggregate flow to destination
x. It can then take corrective action if the aggregate is es-
timated to exceed C. The following analysis illustrates the
desirable tradeoff between overhead and penalty achieved
by this scheme.

Analysis: Consider the scenario in which there is a des-
tination x to which n′ nodes send at a rate f x

i = f such that
n′ f = F >C. The threshold is Cτ

n bytes per destination. Thus
the number of packets seen by the corresponding DHT node
is nF/C > n every epoch of τ seconds. Averaging rates, no
more than n packets are expected in an epoch if the aggregate
is C. Thus a violation can be estimated after Cτ/F seconds,
in which case the number of excess bytes is (C/F).(F−C)τ.
This is very low for F slightly greater then C and bounded
from above by Cτ for large F , i.e., the excess is bounded by
a constant no matter whether the violation is small or large.
The overhead is also a fraction of the aggregate value (de-
termined by the threshold), and in particular is small in the
expected case that the aggregate is much less than C.

3.2 Rate-limiting PlanetLab: Take 2
In our second solution, every node i monitors its outgoing

traffic to every destination x as before, averaging its local
rates over τ seconds (an epoch) to smoothen out bursty traf-
fic. Let the average rate be f x

i . Then, with probability p =
f x
i

C
for f x

i ≥C/n (with p = 1 for f x
i > C) or p = 0 for f x

i < C/n,
node i triggers and polls the entire set of participant nodes
for their local rates. The cutout of p = 0 is to avoid overhead
for the safe situation of all nodes sending below their fair rate
of C/n. Once the triggering node has accumulated all the re-
sponses, it can trivially compute the aggregate to destination
x, ∑n

i=1 f x
i , and determine whether it exceeds C. If so, the

triggering nodes disseminates an alarm to all participants.
Analysis: As before, consider n′ nodes that send at a rate

f x
i = f such that n′ f = F >C. This implies that f >C/n and

so p = f /C. Hence at the end of every epoch, n′p = F/C

nodes are expected to trigger and initiate aggregation. To
detect the violation we require that one or more nodes trig-
ger, and assume that multiple triggers can be combined into
a single aggregation operation. Each aggregation requires
n to-and-fro messages. Thus, the expected communication
overhead when there is a violation is n packets per epoch.
When there is no violation it is substantially below this level,
as nodes with rates less than the fair share contribute no over-
head.

To calculate the expected time-to-detection and hence ex-
cess bytes, observe that the probability that no node trig-
gers aggregation until time (k − 1)τ is (1− p)n′(k−1). The
probability that at least one node triggers in the next epoch
is 1− (1− p)n′ . Hence the probability that it triggers for
the first time in epoch k is [(1− p)n′(k−1)] · [1− (1− p)n′ ].
This gives the expected time after which aggregation is trig-
gered as ∑∞

k=1 kτ · (1− p)n′(k−1) · [1− (1− p)n′ ] = τ
1−(1−p)n′ .

Thus, the expected number of excess bytes across all nodes
is (F−C)τ

1−(1−p)n′ . Since p and n′ are related by n′ > 1/p, the de-
nominator is usually close to 1 (the worst-case lower-bound
being (1−1/e)). The excess is then close to (F −C)τ. The
result is that the scheme has an excess that is somewhat
larger than the previous one (but still competitive with pe-
riodic querying) in exchange for its decrease in overhead.

3.3 Relation to Periodic Querying
The above analyses highlight some interesting properties

of the two schemes, particularly as they relate to the alterna-
tive of periodic queries. With periodic queries, n messages
are exchanged every epoch whether or not there is any sus-
pect activity in the system. This is in contrast to both our
solutions which, in the common case where flow aggregates
are below C, send little or no traffic, and more generally have
overhead related to activity levels. Yet in the (hopefully rare)
event where the aggregate constraint is violated the excess
bytes in both our solutions is close to what they would be in
the case of pure periodic querying, i.e.(F −C)τ.

This, in essence, is the behavior desired of a distributed
trigger mechanism – it should incur low overhead in the
common case when the system behaves well; in the rare
cases when violations do occur, they should be detected with
low penalty.

4. DESIGN CONSIDERATIONS
An aggregate triggering mechanism rests on the local logic

for triggering, and the global logic for testing the aggregate
condition in the rule. The previous section explored two ex-
ample points in the trigger design space. We now make an
effort to taxonomize this design space. We begin with the
local component of triggering. We then turn our focus to the
global checking of the aggregate condition, which hinges on
distributed coordination in both space and time.



4.1 Deterministic vs. Probabilistic Triggering
Notice that in Take 2, the choice of whether to compute

an aggregate was a probabilistic one while Take 1 used a
deterministic approach. Both, however, use what we call
a proportional approach in which the frequency at which
global checking is invoked is proportional to a locally avail-
able measure that is indicative of the aggregate value. More
importantly, a proportional approach yields the property that,
taken together, the collective outcome of the decisions by in-
dividual nodes is a reliable indicator of the likelihood that a
global condition is being violated.

Hence, a proportional approach allows us to relax on time-
liness and achieve low overhead in precisely those cases where
violations are unlikely or at worst of low penalty. Such flex-
ibility is not possible with a strict periodic approach. Also
note that the above holds without assumptions on the time-
varying behavior of local rates based on past observations,
which might fail to hold in the case of a malicious adver-
sary.

4.2 Coordination of Condition-Checking
Aggregate condition-checking is a distributed computa-

tion, which widens the design space considerably. In order to
compute an aggregate, all the items in a set must be brought
together and distilled into aggregates, either piecewise or en
masse. This implies that items in the set have to be acquired,
and rendezvous in the network in both space and time. We
discuss each in turn.

Space: We use our two rate-limiting examples to illustrate
several issues.

Participants: static vs. dynamic. In Take 2, we assumed that
the set of nodes was well-known (and static), and a request
for data could be sent to each. By contrast, in Take 1 we
made no assumption about global knowledge of participants;
in fact, using a DHT as a substrate is expressly intended to
account for dynamic sets of participants.

Spatial Rendezvous: trigger vs. canonical. In Take 2, the
aggregating node accumulated all the data for aggregation;
the choice of accumulator could change each time the trig-
ger was fired. This design is natural given that the triggering
node is already responsible for contacting all the other nodes
in the system. By contrast, in Take 1 there was a canoni-
cal accumulator address for measurements about a particu-
lar destination IP. It is also natural in the DHT scenario to
implement hierarchical aggregation, which brings the data
together piecewise, aggregating it along the way.

Dissemination: yes or no. In both of our rate-limiting schemes,
only a single accumulator node learned the true aggregate.
An alternative goal might be to disseminate the aggregate re-
sult to multiple nodes; these nodes could then make better-
informed local decisions about checking triggers in future.
In order to achieve broader dissemination, one can perform

aggregation followed by dissemination, or integrate the two,
e.g. via a gossip-style algorithm [18].

Time: In order to check an aggregate, the right data must
come together at the same place at the same time. We have
seen two alternative mechanisms for achieving that.

Coupled Pull: In Take 2, the node that fires the trigger also
kicks off a protocol that requests (“pulls”) readings from all
the participants at once. Achieving this kind of synchronous
pull requires coordination among the nodes, which can be
difficult to scale.

Decoupled Push: In Take 1, each node sends (“pushes”) data
toward the accumulating address autonomously, whenever
its local trigger fires. This decoupling of nodes in time is
achieved by the use of storage at the accumulator: the accu-
mulator is responsible for maintaining the state of a moving
aggregate that it updates appropriately when new data ar-
rives.

4.3 Roundup
In sum, our simple scenario highlighted four distinct vari-

ables in the design space, though presumably there are more.
We note that the combinations of the variables are not en-
tirely arbitrary. For example, the coupled-pull approach in
Take 2 makes rendezvous at the triggering site quite natural,
where as the decoupled-push of Take 1 requires some canon-
ical location to host the data. A more detailed exploration of
this design space should yield a large family of techniques
that work in different settings. There is also the possibil-
ity of hybrid techniques that use different combinations of
variable-settings at different scales.

5. MOVING FORWARD
Distributed rate limiting is an important, practical exam-

ple of our agenda and we intend to explore it more deeply.
However, we believe this is only the tip of the iceberg in the
broader area of distributed triggering. In this section we ex-
plore other challenges that emerge as we vary assumptions
made in previous sections. We stress that this is just a “tast-
ing”, and by no means an attempt to exhaustively cover the
possible topics of interest.

5.1 A Variety of Statistical Methods
Our discussion so far focused on checking constraints over

simple statistical summaries of the data – e.g., functions like
SUM and COUNT. Here, we consider a variety of additional
statistical properties that may be useful to compute and test.

More than Sum: Complex Aggregates. Network aggre-
gation infrastructures can support a large class of functions
for merging data incrementally in a single pass up a tree.
Up to now we have focused on SUM (which also subsumes
counting or voting). Standard database languages offer other
aggregates including AVERAGE, STDEV, MAX and MIN.



Given a constraint on one of these global aggregates (e.g.
“ensure that the STDEV of latency is ≤ 1 second”), it is not
immediately clear what local “event” should trigger global
constraint checks.

These open questions apply to standard SQL aggregates,
which are frankly quite rudimentary. It is possible to go
much further with user-defined aggregate functions that sum-
marize a distribution – these might include aggregates to
compute histograms, wavelets, samples, and the like [2].
Constraints on distributions are not unnatural to specify: for
example, one could ask to be notified when today’s distribu-
tion of some attribute differs significantly (e.g., as measured
by relative entropy) from a baseline distribution. Efficient
distributed triggering schemes for constraints over complex
aggregates are an interesting open problem.

Aggregation with Redundant Routing: Recent work has
focused on aggregation schemes that can compute correct
(typically approximate) answers in the face of duplicate de-
livery of measurements. In some cases this is motivated by
robustness – aggregation on a tree topology is very sensitive
to loss, so it’s better to replicate data along multiple paths
(a DAG) to the final collecting node [19, 6, 23]. There may
be value in pursuing these approaches in triggering, partic-
ularly to ensure delivery of critical alerts and/or to prevent
malicious parties from having too much control over loss or
error in the aggregate communication path.

Other work on gossip-based algorithms assumes that there
is no collecting node, and that the goal is for all nodes to
eventually know the value of an aggregate [18]. This ap-
proach is intriguing in its robustness and simplicity, and its
ability to disseminate the aggregate value (which can enable
high-accuracy local triggers). Gossip does have significant
drawbacks in bandwidth and latency, so it may more appro-
priate in a hybrid scheme – e.g., gossip locally to decide
whether to trigger a more structured global aggregate check.

Statistical Methods Beyond Aggregation: In many cases,
the desired trigger cannot be specified as a simple constraint
of the form “aggregate-fn(x) op constant”. Instead, one
wants to know properties of data with respect to a distri-
bution. Outlier detection is a good example: the definition
of an outlier is that it is significantly different from most of
the other data currently being observed. Put succinctly, we
would sometimes want to do statistical data mining rather
than explicit querying.

5.2 Database-Like Approaches
To this point we have focused largely on triggers based

on statistical properties. This is fairly natural in large-scale
network monitoring tasks where the gross behavior is of-
ten of significant interest. But it is not the traditional fo-
cus of the triggering schemes explored in database research.
Here we highlight some research topics that are analogous to
themes in database research, but mapped into the massively
distributed domain.

Traditional ECA Rules Standard SQL database triggers are
based on a decade or so of research into so-called “active
databases”, which are database systems augmented with Event-
Condition-Action (ECA) rules [29]. These rules specify a
simple triggering event E that fires the rule (e.g., insert tu-
ple into table T ”), followed by a potentially complex con-
dition C (an arbitrary SQL query returning a non-empty an-
swer set), which if true leads to a database action A (inser-
tion or deletion of data, transaction rollback, invocation of
a stored procedure, etc.) Database triggers are a recasting
of the Production Rule (“Expert”) Systems popular in the
AI community in the 1970’s and 1980’s [16] – these were
essentially “condition-action” rule systems on small (main-
memory) databases.1

Database triggers and production rules tend to focus on
matching (joining) events, rather than on aggregates. For
example, a simple network-monitoring rule might say “on
arrival of a packet from host S at honeypot H, if another
packet from S arrived in the last five minutes at any partic-
ipating host N, send an alarm to N”. These kinds of rules
are not unlike pattern-based intrusion detection systems, but
distributed across all hosts. There is a rich literature on
discrimination networks, which are actually single-site data
structures that can efficiently handle a large set of such trig-
gers [11, 22, 14]. Mapping those ideas to a massively dis-
tributed domain is an open challenge.

Operator Composition: A recurring theme in database sys-
tem design is to focus on libraries (algebras) of simple op-
erators that can be functionally composed in arbitrary ways
to form complex queries. In our triggering discussion here,
we have focused largely on testing predicates over simple
single-aggregate expressions. It would be attractive to ex-
tend this work to handle composition of operators in a seam-
less and efficient way. The following is an example of a con-
straint with one aggregate computed over another: “compute
the sum of all flows that originate from nodes with a greater-
than-average number of distinct recipients; if this is greater
than X sound an alarm.” One could also compare two sep-
arate aggregate values (e.g.over different subsets of nodes),
or test aggregates over joins of events, etc. Approximating
these complex queries is a hard problem on its own [12, 13];
coming up with efficient condition-testing protocols seems
strictly harder.

A note on relation to Continuous Queries We distinguish
our general approach here from related work on continuous
queries in databases. Rather than set up a distributed trig-
ger, one could register a similar continuous query with a dis-
tributed stream query system [19, 4, 24]. However, existing

1Expert systems were hyped to the point where they shouldered
partial blame for the onset of “AI winter” in the late 1980’s.
Database triggers are largely considered useful, in part because they
are typically used sparingly, often in a manner that avoids cascading
execution in which one rule’s actions trigger another’s conditions,
etc.



distributed continuous query approaches do not employ the
kind of local triggering that we rely upon here; instead they
take new incoming data and proactively push it through a
distributed dataflow – either upon arrival, or on a periodic
schedule. Moreover, distributed query systems tend to focus
on propagating query results, which may be approximate to
a single point in the network; by contrast we are interested in
maintaining global invariants without reference to a specific
query node.

5.3 Security and Privacy Issues
There are a host of security issues in delivering trigger-

ing schemes. One main theme is to ensure that the triggers
are tamper-proof, and will reliably “sound the alarm” iff the
desired conditions are truly met. Another is to prevent the
triggering infrastructure from being fooled into becoming a
source of undesirable traffic itself. This is frankly a wide
open research area. We forgo the opportunity to speculate
about these issues in detail here, though we can point the in-
terested reader to a relevant survey of security issues in p2p
systems [27].

On the privacy front, there is a growing body of useful
work on privacy-preserving aggregation (e.g. [3]), join (e.g. [1])
and data mining (e.g. [10]). The aggregation and join work
both rely on homomorphic cryptography schemes (e.g. [8])
that enable arithmetic or comparison operators to be exe-
cuted in the encrypted domain. The data mining work uses
both cryptographic and randomization-based approaches to
hiding information. It would be interesting to see how the
use of these schemes might change the considerations for
triggering.

6. REFERENCES
[1] R. Agrawal, A. Evfimievski, and R. Srikant.

Information sharing across private databases. In ACM
SIGMOD, June 2003.

[2] D. Barbará, et al. The New Jersey data reduction
report. IEEE Data Enginering Bulletin, 20(3), 1997.

[3] J. Canny. Collaborative filtering with privacy. In IEEE
Conf. on Security and Privacy, May 2002.

[4] M. Cherniack, et al. Scalable distributed stream
processing. In CIDR, 2003.

[5] D. D. Clark, C. Partridge, J. C. Ramming, and J. T.
Wroclawski. A knowledge plane for the internet. In
SIGCOMM, 2003.

[6] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate Aggregation Techniques for Sensor
Databases. In ICDE, 2004.

[7] N. Duffield, C. Lund, and M. Thorup. Estimating flow
distributions from sampled flow statistics. In
SIGCOMM, 2003.

[8] T. ElGamal. A public-key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4), July 1985.

[9] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In SIGCOMM, 2002.

[10] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke.
Privacy-preserving mining of association rules.
Information Systems, 29(4), June 2004.

[11] C. Forgy. RETE: A fast algorithm for the many
pattern/many object pattern match problem. Artificial
Intelligence, 19, 1982.

[12] M. Garofalakis and P. Gibbons. Approximate query
processing: Taming the terabytes. In VLDB, 2001.

[13] P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In ACM SIGMOD, June 1999.

[14] E. N. Hanson, S. Bodagala, and U. Chadaga. Trigger
condition testing and view maintenance using
optimized discrimination networks. IEEE Trans.
Knowl. Data Eng., 14(2), 2002.

[15] R. Huebsch, et al. Querying the internet with PIER. In
VLDB, 2003.

[16] P. Jackson. Introduction to Expert Systems.
Addison-Wesley Publishing Company, 1986.

[17] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker.
Adoption of DHTs with OpenHash, a Public DHT
Service. In IPTPS, Feb. 2004.

[18] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In FOCS, 2003.

[19] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation service for
ad-hoc sensor networks. In OSDI, Dec. 2002.

[20] R. Mahajan, et al. Controlling high bandwidth
aggregates in the network. SIGCOMM CCR, 32(3),
2002.

[21] J. Melton. Understanding the New SQL: A Complete
Guide. Morgan Kaufmann, 2 edition, 2000.

[22] D. P. Miranker. TREAT - a better match algoritm for
AI production systems. In AAAI, July 1987.

[23] S. Nath, P. Gibbons, Z. Anderson, and S. Seshan.
Synopsis Diffusion for Robust Aggregation in Sensor
Networks. In ACM SenSys, Nov. 2004.

[24] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
SIGMOD, 2003.

[25] N. Spring, D. Wetherall, and T. Anderson. Scriptroute:
A public internet measurement facility, 2002.

[26] J. B. Ullrich. Dshield, http://www.dshield.org.
[27] D. Wallach. A Survey of Peer-to-Peer Security Issues.

In Int’l. Symposium on Software Security, 2002.
[28] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia:

An Information Plane for Networked Systems. In
HotNets-II, Nov. 2003.

[29] J. Widom and S. Ceri. Active Database Systems:
Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann, 1996.


