
Customizable Routing with Declarative Queries

Boon Thau Loo∗ Joseph M. Hellerstein∗† Ion Stoica∗

ABSTRACT
To meet the demands of new Internet applications, re-
cent work argues for giving end-hosts more control over
routing. To achieve this goal, we propose the use of a re-
cursive query language, which allows users to define their
own routing protocols. Recursive queries can be used to
express a large variety of route requests such as the k
shortest paths, shortest paths that avoid (or include) a
given set of nodes and least-loaded paths. We show that
these queries can be efficiently implemented in the net-
work, and in the simple case when all users request short-
est paths, the communication overhead of our solution is
similar to that incurred by a distance vector protocol.
In addition, when only a subset of nodes issue the same
query, the communication cost can be further lowered us-
ing automatic query optimization techniques – suggesting
that declarative queries and automatic optimization are
important in this domain. Finally, we outline the main
challenges faced by our proposal, focusing on the expres-
siveness and efficiency of our proposal.

1. INTRODUCTION
In the current Internet architecture, the routing func-

tionality is embedded in the infrastructure with end-hosts
having little control over the path followed by their pack-
ets. This limits the ability of the infrastructure to evolve
and meet the demands of new applications or provide new
services. Several solutions have been proposed to address
this problem. These solutions range from separating rout-
ing from the forwarding infrastructure [8], enabling end-
hosts to choose their paths at the AS level [11], or even
computing arbitrary routes [3].

We explore an approach in which end-hosts use declar-
ative queries to express routing protocols. These proto-
cols are then executed by the nodes in the routing infras-
tructure. In our examples, we use Datalog, a declarative
query language targeted at the kind of recursive queries
over graphs that are appropriate for routing [9].

Our use of a declarative query language is an attempt
to achieve a sweet spot between expressiveness and se-
curity. Datalog offers more flexibility than most existing
solutions in its ability to naturally express a large variety
of routing protocols, as we demonstrate in Section 5. On
the other hand, it is less general than running arbitrary
code in Active Networks [3], but as a result can be more
safely analyzed and executed (Section 2.2).

We also show that declarative queries need not ham-
per the efficiency of traditional protocols. For example,
we show that in the simple case when all end-hosts is-
sue the same Datalog query to find the shortest paths
to other nodes, the communication cost to execute all
these queries is roughly equal to the communication cost
∗University of California at Berkeley
†Intel Research Berkeley

of a traditional distance-vector routing protocol. In addi-
tion, our simulation results demonstrate that when only
a subset of nodes issue the same query, the communica-
tion cost can be further lowered using automatic query
optimization techniques.

Finally, we observe that multiple alternative algorithms
for route discovery have tradeoffs depending on constraints
in the specification of the routing query, on the pres-
ence or absence of other queries in the network and on
the network topology. This variability provides strong
motivation for the use of declarative languages and run-
time query optimization in routing protocols. We discuss
the challenge of generating efficient query plans from the
declarative queries in such a large distributed system. To
support a large variety of concurrent customized rout-
ing protocols, we show how to exploit similarities across
queries to share route computation. We also outline chal-
lenges and some suggested solutions for route stability.

2. SYSTEM MODEL
We model the routing infrastructure as a directed graph,

in which each link is associated with a set of parameters
(e.g. loss rate, available bandwidth, delay). The nodes
in the routing infrastructure can either be IP routers
or overlay nodes. Consider the example where an end-
host A wishes to establish the best path to another end-
host B based on a particular metric such as latency or
bandwidth. A expresses its requirements as a declara-
tive query in Datalog, and sends this query to one of the
routing infrastructure nodes to which the host is directly
connected. The result of this query can be either the en-
tire path to B, in which case A uses source routing to
send its packets to B, or the establishment of forwarding
state at all routers from A to B, in which case A simply
sends a packet to the first hop, with destination B.

Routing queries can be processed either in a centralized
or distributed fashion. Centralized approaches [4] would
require route providers to periodically gather network in-
formation from the infrastructure. Each routing query
would then be sent to one or more of these providers,
which would process the queries using their internal
databases and return the result to the querier.

An alternative that we explore in this paper is to ex-
ecute the query in the infrastructure in a distributed
fashion. This alternative ensures that the routing in-
frastructure scales organically with the number of nodes,
and adheres to the spirit of decentralization in the Inter-
net itself. In this case, each infrastructure node runs a
general-purpose recursive query processing engine instead
of a traditional routing protocol. The query processing
engine generalizes the operations performed by typical
routing protocols, as we illustrate below.

2.1 Routing Information
To execute queries, each node maintains local infor-

mation similar to the way a router maintains a routing
table. This local information is directly accessible by the
query processor. Initially, this local information consists
of the properties associated with the node itself, and of
the links to its neighbors. To keep with the terminology
in databases, we will refer to local information as base
tuples. Specifically, the format of the base tuples is as
follows:

• node(nodeID, ...). A node tuple stores informa-
tion on a node in the network. The nodeID field is
typically the routing address of the node. nodeID
can be a logical address (such as Distributed Hash
Table (DHT) [1] identifier) or a physical address (IP
Address). Other fields representing node metrics
(e.g. load) may also be included.

• link(source, destination, ...). The routing table
is represented as a set of link tuples, where a link
tuple represents an edge from source to destination.
Other fields representing link metrics (e.g. delay,
loss rate, bandwidth) may also be included.

Each tuple is stored at the address indicated by the
underlined address field. During query execution, the
query processors generate intermediate data, called de-
rived tuples. Derived tuples are specified by the query,
and either stored locally or sent to a neighbor of the
computing node for further processing. One example of a
derived tuple we will see in our examples is a path tuple:

• path(source,destination, pathVector, cost). A
path tuple represents that destination can be reached
from source along the path indicated by pathVector,
where cost is the aggregate of all link costs along the
path.

In addition to the base and derived tuples, a query pro-
cessor generates result tuples that are part of the query
answer. These tuples are either sent to the querier or
stored in the network as forwarding state. Examples of re-
sult tuples in subsequent examples include nextHop and
shortestPath.

2.2 Comparison with Active Networks
At one extreme, our proposal can be viewed as an in-

stantiation of Active Networks: users write programs,
and nodes in the network execute these programs. How-
ever, our proposal is more restrictive than traditional Ac-
tive Network proposals. Datalog is a side-effect-free lan-
guage, limited to polynomial time computations [7]. This
restricts the potential for erroneous or malicious state
modification and resource consumption. Like any query
language, Datalog is logic-based and amenable to a range
of static checking. Finally, our proposal is concerned only
with processing on the control and not the data plane.

Despite these restrictions, we demonstrate in Section 5
that Datalog is sufficiently expressive for a large vari-
ety of routing protocols. At the same time, while these
constraints make the challenges of achieving efficient ex-
ecution and security more tractable, there still remain
challenges to be tackled. We return to these issues in
Section 4.

3. THE BASICS
We begin our discussion with the textbook example

of a recursive query: the graph transitive closure, which
can be used to compute network reachability. Using this

example, we will introduce the syntax of Datalog, show
the generation of a query plan from Datalog, and step
through the communication patterns of running the query
plan within a network. Last, we show that the execution
of the query resembles the well-known path vector or dis-
tance vector routing protocols.

3.1 Datalog Program Syntax
Datalog is similar to Prolog, but hews closer to the

spirit of declarative queries, exposing no imperative con-
trol. Each Datalog program consists of a set of declarative
rules and queries. Following the Prolog-like conventions
used in [9], names for tuples, predicates, function symbols
and constants begin with a lower-case letter, while vari-
ables names begin with an upper-case letter. A Datalog
rule has the form <head> :- <body>, where the body is
a list of predicates over constants and variables, and the
head defines a set of tuples derived by variable assign-
ments satisfying the body’s predicates. A query is just
a specific rule of interest as output. A Datalog program
consists of a set of rules and a query; typically the rules
reference each other in a cyclic fashion to express recur-
sion. Presented with a program, a Datalog system will
find all possible assignments of tuples to unbound vari-
ables in the query that satisfy the rules in the program.

Our first example, the Network-Reachability program,
takes as input link tuples, and computes the set of all
paths (represented by path tuples). In all our examples,
S, D, C and P abbreviate the source, destination, cost
and pathVector fields respectively for both the link and
path tuples. As before, the address fields indicating the
location of the tuples are underlined. We begin our dis-
cussion by looking only at the part of the query written
in bold text, ignoring the rest of the text for a moment.

NR1: path(S,D,P,C) :- link(S,D,C),

. P = concatPath(link(S,D,C), nil).

NR2: path(S,D,P,C) :- link(S,Z,C1),

. path(Z,D,P2,C2), C = C1 + C2,

. P = concatPath(link(S,Z,C1),P2).

Query: path(S,D,P,C).

The above program works as follows. Rule NR1 pro-
duces new one-hop paths from existing link tuples, storing
them at the source node. Rule NR2 recursively produces
path tuples of increasing length by matching the desti-
nation fields of existing links to the source fields of pre-
viously computed paths; the new path tuples are stored
the source node.

The query does not impose a restriction on either source
or destination as both S and D are unbound variables.
Hence, the program computes the full transitive closure
containing path tuples between all possible pairs of reach-
able nodes. If the program is only interested in the paths
for node b, then the query would be path(b,D,P,C), with
the source field bound to constant b.

We now focus on the remaining portions of rules NR1
and NR2. The expression P = concatPath(L, P1) is a
predicate that is satisfied if P is the path vector produced
by prepending link L to the existing path vector P1. With
these additions, rules NR1 and NR2 also compute the
total path costs, and the path vectors themselves.

3.2 Query Plan Generation
Figure 1 shows a query “plan” for the Datalog pro-

gram. A query plan is a dataflow diagram consisting of

Dup(path)

path(
S
,D,P,C)

link.D=path.S

path.S

link(
S
,D,C)

link.D
 Dup(path)

(link.S,path.D,concatPath((link.S,link.D),

path.P),link.C+path.C) as path(S,D,P,C)

Figure 1: Query Execution Plan for the Network-

Reachability Program.

relational operators and arrows indicating the flow of tu-
ples. The transformation to this query plan is as follows.
Rule NR1 is a simple renaming of existing link tuples to
path tuples, and this is shown by the rightward arrow
from link(S,D,C) to path(S,D,P,C).

Rule NR2 requires a relational join operator to match
the destination fields of link tuples (link.D) with the
source fields of existing path tuples (path.S). The fields
used for matching are a result of variable unification of
the common Z variables in rule NR2. The join operator,
represented by the ./ symbol, matches link and path tu-
ples from the inputs on the appropriate attributes. The
projection operator, represented by the π symbol, takes
as input the output of the join and a list of fields, extracts
and renames only the listed fields to form its output tu-
ples. The Dup operator removes duplicate tuples from
its input stream. Note that unlike many textbook query
plans, the dataflow here forms a cycle, which captures the
recursive use of the path rule definition in the query.

The clouds in the figure are required only when the
query plan is executed in a distributed fashion. They
represent the forwarding of tuples from one node to an-
other, and are labeled with the destination node. The
first cloud (link.D) ships link tuples to the nodes indi-
cated by their destination address fields, in order to join
with matching path tuples stored by their source address
fields. The second cloud (path.S) ships new path tuples
computed from the join back to their source nodes for
further processing.

3.3 Query Plan Execution
When the query plan is executed, the flow of tuples in

the network enables nodes to exchange the routing in-
formation necessary to compute the queried routes. Fig-
ure 2 shows the resulting communication pattern for ex-
ecuting the query plan in Figure 1 on all nodes in the
network. Our example is based on a directed graph, al-
though this discussion applies to both directed and undi-
rected graphs.

We will describe the communication in stages, where
each stage or iteration represents a “round of commu-
nication”, in which all nodes exchange tuples from the
previous iteration. Each iteration represents the traver-
sal of a “cloud” in Figure 1. The first iteration derives
single-hop path tuples from the first rule of the program.
It does this by traversing the link.D cloud, which ships
link tuples to the address in their destination field, where
they are cached for the duration of the query. Because the
query has no recursion on the link table, all subsequent
iterations involves the other cloud (path.S). In the 2nd

iteration, the shipped link tuples are joined with exist-
ing one-hop path tuples to produce two-hop path tuples.

1
st
 Iteration
 2
nd
Iteration

c

e
d

f

p(
a
,b,[a,b],1),

p(
a
,c,[a,c],1)

p(
c
,e,[c,e],1)
p(
b
,d,[b,d],1),

p(
b
,e,[b,e],1)

p(
e
,d,[e,d],1)

l
’
(a,
c
,1)
l
’
(a,
b
,1)

l
’
(b,
d
,1)

l
’
(d,
f
,1)

l
’
(e,
d
,1)

b

g

p(
f
,g,[f,g],1)

l
’
(f,
g
,1)

l
’
(c,
e
,1)

p(
d
,f,[d:f],1)

c

e
d

f

p(
a
,d,[a,b,d],2),

p(
a
,e,[a,c,e],2),

p(
a
,e,[a,b,e],2)

p(
c
,d,[c,e,d],2)

p(
b
,f,[b,d,f],2),

p(
b
,d,[b,e,d],2)

p(
e
,f,[e,d,f],2)

l
’
(a,
c
,1)
l
’
(a,
b
,1)

l
’
(b,
d
,1)

l
’
(d,
f
,1)

l
’
(e,
d
,1)

b

g
 l
’
(f,
g
,1)

l
’
(c,
e
,1),

l
’
(b,
e
,1)

p(
d
,g,[d,f,g],2)

l
’
(b,
e
,1)

a
 a

Figure 2: Nodes in the network are running the query

plan in Figure 1. p(S,D,P,C) abbreviates path(S,D,P,C) and

l(S,D,C) abbreviates link(S,D,C). Link costs in our example

are set to 1, and hence path cost is equal to the number of hops.

l’(S,D,C) refers to link tuples that are shipped and cached at

the destination nodes. Only new path tuples generated at each

iteration are shown.

These tuples are then sent back to the source nodes (the
path.S cloud) and three-hop path tuples are computed.
The query is completed after k iterations, where k is the
diameter of the network.

3.4 Path Vector or Distance Vector Protocol
The computation of the above query resembles the com-

putation of the routing table in a path vector or distance
vector protocol. The computation starts with the source
computing its initial reachable set (which consists of all
neighbors of the source) and shipping it to all its neigh-
bors. In turn, each neighbor updates the reachable set
with its own neighborhood set, and then forwards the re-
sulting reachable set to its own neighbors. The distance
vector computation can be expressed with minor modifi-
cations to our previous program (modifications in bold):

DV1: path(S,D,D,C) :- link(S,D,C),

. P = concatPath(link(S,D,C), nil).

DV2: path(S,D,Z,C) :- link(S,Z,C2),

. path(Z,D,W,C1), C = C1 + C2.

DV3: shortestLength(S,D,min<C>) :- path(S,D,Z,C)

DV4: nextHop(S,D,Z,C) :- path(S,D,Z,C),

. shortestLength(S,D,C)

Query: nextHop(S,D,Z,C).

Aggregate constructs are represented as functions with
arguments within angle brackets (<>). DV1 and DV2
are modified from the original rules NR1 and NR2 to
ensure that the path tuple maintains only the next hop
on the path, rather than the entire path vector itself.
DV3 and DV4 are added to set up the routing state
nextHop(S,D,Z,C) stored at node S, where Z is the next
hop on the shortest path to node D. The above query can
still be further optimized (Section 6). The main differ-
ence between this query and the actual distance vector
computation is that rather than sending individual path
tuples between neighbors, the traditional distance vector
method batches together a vector of costs for all neigh-
bors.

4. CHALLENGES
Based on the Network-Reachability example, we have

identified several challenges that we need to address be-
fore our proposal becomes feasible:
Expressiveness: How expressive and flexible is the Dat-
alog language in expressing various routing policies? What
are the limitations of this language?
Efficiency: Can Datalog queries be executed efficiently
in a distributed system? It appears that the answer to
this question hinges on two sub-questions. Can plan gen-
eration techniques be adapted or developed to enable
Datalog queries to perform well in a large network sys-
tem? And, given that there will be many queries issued
concurrently, how can we reuse the work done by previous
or concurrent queries to reduce redundant work?
Stability and Robustness: Given that the network is
dynamic and the resulting routes can be used for a long
time, how can we efficiently maintain the robustness and
accuracy of routes?
Security: Is Datalog an acceptably safe language to ex-
pose in the network infrastructure? Compared to Active
Networks, our proposal trades expressivity for better se-
curity opportunities. Finding the right balance between
expressiveness and security is an open problem.

In the rest of the paper, we address the first two chal-
lenges, focusing on the expressiveness and efficiency of
our proposal. We also outline solutions and open issues
related to stability and robustness.

5. EXPRESSIVENESS
In its purest form, Datalog has the ability to express

most polynomial-time computations [7]. Most implemen-
tations of Datalog enhance it with a limited set of func-
tion calls, including boolean predicates, arithmetic com-
putations and simple string manipulation (e.g. the
concatPath function). To illustrate the flexibility of Dat-
alog, we provide several examples of useful routing pro-
tocols. To demonstrate the ease of use, we present the
examples incrementally, starting from the base rules NR1
and NR2 from Network-Reachability example in Section 3,
and adding simple modifications to create new routing
protocols.

5.1 Best-Path Routing
By adding two rules BPR1 and BPR2, the following

Best-Path program computes the best path for the path
metric C:

#include(NR1,NR2)

BPR1: bestPathCost(S,D,AGG<C>) :- path(S,D,P,C).

BPR2: bestPath(S,D,P,C) :- bestPathCost(S,D,C),

. path(S,D,P,C).

Query: bestPath(S,D,P,C).

#include is a macro used to include earlier rules. We
have left the aggregation function (AGG) unspecified. By
changing AGG and the way that the path cost C is com-
puted, the Best-Path program can generate best paths
based on any metric, such as average link cost, least total
aggregate node load, average link bandwidth, etc. For
example, if the query is used for computing the shortest
paths, min is the appropriate replacement for AGG in
rule BPR1. The resulting bestPath tuples are stored at
the source nodes, and are used by end-hosts to perform
source routing. The two added rules BPR1 and BPR2
do not result in extra messages being sent beyond those
generated by rules NR1 and NR2. This is because path
tuples computed by rules NR1 and NR2 are stored at

the source nodes, and bestPathCost and bestPath tuples
are generated locally at those nodes. Instead of comput-
ing the best path between any two nodes, we can also
compute any path or the Best-k paths between any two
nodes.

5.2 Policy-Based Routing
Each individual node can customize its own local rules

that represent policy decisions within its own routing do-
main. For example, certain nodes may refuse to carry
traffic for some other nodes. We can express this kind of
policy constraint by adding an additional rule:

#include(NR1, NR2)

PBR1: permitPath(S,D,P,C) :- path(S,D,P,C),

. excludeNode(S,W), ¬inPath(P,W).

Query: permitPath(S,D,P,C).

In this program, excludeNode(S,W) is a tuple that rep-
resents the fact that node S does not carry any traffic for
node W. The program includes a function inPath(P,W)
that returns true if node W is along the path vector P. If
BPR1 and BPR2 are included as rules, we can generate
Best-Path that meets the above policy.

5.3 Dynamic Source Routing
All of our previous examples use what is called right re-

cursion, since the recursive use of path in the rule (NR2,
DV2) appears to the right of the matching link. The
query semantics do not change if we flip the order of
path and link in the body of these rules, but the execu-
tion strategy does change. In fact, using left recursion as
follows, we achieve the Dynamic Source Routing (DSR)
protocol [6]:

#include(NR1)

DSR1: path(S,D,P,C) :- path(S,Z,P1,C1), link(Z,D,C2),

. P = concatPath(P1, link(Z,D,C2)),

. C = C1 + C2.

Query: path(N,M,P,C).

5.4 Disjoint Paths Routing
One limitation of Datalog is the inability to express

the Best-k-Disjoint paths between two specified nodes.
This problem is known to be NP-complete. A heuris-
tic approach greedily generates one disjoint path at a
time, keeping track of previously discovered nodes N from
source S as avoidNodes(S,N) tuples. To illustrate, the
following program computes k (hopefully good) node-
disjoint paths from node a to node b:

#include(BPR1, BPR2)

DPR3: path(S,D,P,C) :- link(S,D,C),

. P=concatPath((link(S,D,C), nil),

. ¬avoidNodes(S,D).

DPR4: path(S,D,P,C) :- link(S,Z,C1), path(Z,D,P2, C2),

. P=concatPath(link(S,Z,C1), P2),

. C=C1+C2, ¬avoidNodes(S,Z).

DPR5: avoidNodes(S,N) :- node(N), bestPath(S,D,P,C),

. inPath(P,N), N 6=S, N6=D.

Query: bestPath(a,b,P,C)

Each invocation of the program produces a bestPath
tuple. The nodes along the pathVector field for the newly
produced bestPath tuple are added as avoidNodes derived
tuples, and the program is executed up to k times to get
k disjoint paths.

6. EFFICIENCY
In this section, we address the challenge of generating

efficient query plans from the declarative queries. We
utilize three well-known query optimization techniques
used in centralized deductive database systems, and dis-
cuss how useful they will be in generating efficient query
plans in our distributed environment. They are aggregate
selections, magic sets rewriting and left-right recursion
rewriting. In addition, we address previously unexplored
challenges introduced by our environment, which requires
work-sharing among a diverse set of queries in order for
the routing infrastructure to scale.

6.1 Pruning Unnecessary Paths
A naive execution of queries with aggregates such as

Shortest-Path and Least-Loaded-Path requires the enu-
meration of all possible paths. This can be avoided with
aggregate selections [10]. To illustrate, in Figure 2, there
are two different paths from node b to node f, but only the
shorter of the two is required when computing shortest
paths. By maintaining a “min-so-far” aggregate value for
the current shortest path cost from node b, we can avoid
sending path tuples to neighbors if we know they cannot
result in the shortest path. Such pruning based on run-
ning aggregates only works for monotonic functions like
min or max. Aggregate selections result in significant sav-
ings for dense networks, where there can be many paths
between any two nodes.

6.2 Limited Sources and Destinations
The Network-Reachability example in Section 3 requires

all nodes to participate in the query plan. This is overkill
when only a subset of nodes want to know their reach-
able set. A program rewrite technique called magic sets
rewriting [2] can be used to limit query computation to
only a portion of the graph, based on the nodes issuing
the query. For example, if nodes b and e are the only
nodes issuing the path query, the rewritten example is as
follows:

MRR1: magicSources(D) :- magicSources(S), link(S,D,C).

MRR2: path(S,D,P,C) :- magicSources(S), link(S,D,C),

. P = concatPath(link(S,D,C), nil).

MRR3: path(S,D,P,C) :- magicSources(S), link(S,Z,C1),

. path(Z,Y,P2,C2), C = C1 + C2,

. P = concatPath(link(S,Z,C1),P2).

MRR4: magicSources(b).

MRR5: magicSources(e).

Query: path(N,M,P,C).

As before, modifications indicated in bold are made to
rules NR1 and NR2. After the rewrite, only nodes reach-
able from b and e need to participate in this query. The
program can be further optimized by combining common
sub-rules in MRR1, MRR2 and MRR3. Magic sets can
also be used to limit computations by destinations, or by
both source and destination nodes concurrently.

6.3 Left-Right Recursion Rewrite
In Figure 2, suppose node b is the only source node.

Even with the use of magic sets, the paths for nodes g, f
and d are computed before source node b can compute its
paths. We can avoid this extra computation by rewriting
the program using left recursion:

#include(MRR2, MRR4, MRR5)

MLR1: path(S,D,P,C) :- magicSources(S), path(S,Z,P1,C1),

. link(Z,D,C2), C = C1 + C2.

. P = concatPath(P1, link(Z,D,C2)).

Query: path(N,M,P,C).

As pointed out in Section 5, executing the program in
a left-linear fashion bears close resemblance to dynamic
source routing. This approach reduces communication
overhead by computing only the required paths for the
source nodes b and e. Each node computes new path
tuples by recursively following the links along all reach-
able paths, and does not depend on paths generated by
neighboring nodes. Hence, the main drawback of this ap-
proach is that source nodes do not share the paths com-
puted among themselves even when the paths overlap.
This leads to redundant work as the number of source
nodes increases. The redundancy may be more appar-
ent for dense networks since there will be more overlap-
ping paths among different source nodes. In general, one
would like an optimizer to automatically choose whether
to use left or right recursion (or, more generally, the order
of predicate evaluation in the rules).

6.4 Multi-Query Sharing
A key requirement for scalability is the ability to share

route computation among a potentially large number of
queries. If all nodes are running the same query, us-
ing right-recursion ensures that each node directly uti-
lizes path information sent by neighboring nodes, hence
achieving 100% sharing.

On the other hand, if a small subset of nodes are is-
suing the same query, using left-recursion achieves lower
message overhead as we will see in Section 8. To facilitate
sharing among nodes issuing the same query, previously
computed tuples are reused whenever possible. For ex-
ample, revisiting the example network in Figure 2, if node
d’s computed path tuples are materialized (computed and
stored) and stored in the network, they can be reused by
both nodes b and e, and hence avoid multiple traversals
of the path d → f → g. Further sharing is achieved if the
resulting path tuples are sent back via the reverse path
back to the source node to be reused by other queries. For
example, when node a computes its shortest path to node
g, the nodes on the reverse path (nodes b, d, f and g) can
cache information on the shortest path (and sub-paths)
to node g, to be reused by subsequent queries.

7. STABILITY AND ROBUSTNESS
In practice, we expect the computed routes to be used

for a long time. These routes may be invalidated as the
underlying network changes. Some basic mechanisms are
available to handle this issue effectively; we sketch an
approach here.

Each base tuple should be maintained as soft-state with
an associated timeout. A smaller timeout ensures fresher
routes at the expense of more messaging overhead. The
base tuples are periodically renewed with new values, or
deleted when expired. Derived tuples computed using
base tuples should be timestamped based on the oldest
base tuple used in the computation, so that they expire
when any of their components expire.

To ensure that new tuples trigger only incremental re-
computations, we need not discard the state of a query
after a route is established. Instead, the intermediate
state of each query can be retained in the network until
the query is no longer required. This intermediate state

includes any shipped tuples used in join computation, and
any intermediate derived tuples. This state is deleted at
the end of the query, or whenever the base tuples expire,
whichever is earlier. With a bit of subtlety in the query
processing algorithms, the insertion of a new base tuple
should only trigger a minimal incremental computation
to update the current state of query execution.

Beyond minimizing overhead of incremental route main-
tenance, there are other challenges related to route flap-
ping, and unwanted interactions between diverse queries
with conflicting metrics. We plan to investigate these
issues in future work.

8. PRELIMINARY EVALUATION
We present a preliminary evaluation via simulation.

The simulation computes new tuples based on the query
workload, and identifies those tuples that need to be
shipped at each iteration during query execution. The in-
put network is a connected undirected graph of size 1000,
with 3000 random links. The input query is the short-
est path query with aggregate selections and magic sets
rewrite. Our experiments vary the number of nodes issu-
ing the queries, and count the number of messages (tu-
ples) incurred during the execution of the queries. In all
our experiments, the baseline uses right recursion to exe-
cute the query and is labeled as Right-Full in all graphs.
Right-Full computes all-pairs shortest paths regardless of
the number of nodes issuing the query, and resembles the
computation of the routing table in a path vector or dis-
tance vector protocol.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000

M
es

sa
ge

 O
ve

rh
ea

d
P

er
 N

od
e

Number of Source Nodes

Right-Full
Left-AllResults
Left-NoResults

Figure 3: Message Over-

heads Per Node

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 100 200 300 400 500 600 700 800 900 1000

M
es

sa
ge

 O
ve

rh
ea

d
P

er
 N

od
e

Number of Source/Destination Pairs

Right-Full
Left-NoShare

Left-Share (1% Dst)
Left-Share (15% Dst)
Left-Share (50% Dst)

Figure 4: Message Over-

heads Per Node with Sharing

In Figure 3, the Right-Full baseline incurs a per-node
message overhead of 1800 messages. Left-AllResults and
Left-NoResults show the per-node message overhead of
using left recursion in query execution, where each source
query node computes its own shortest-paths independently
of other nodes. Left-AllResults includes the cost of re-
turning all computed shortest-path results, while Left-
NoResults does not include the cost of returning any re-
sults; The pair is used to provide an upper and lower
bound respectively when the number of destinations spec-
ified in the query varies from 0 to 1000. Our experimental
result shows that when there are few sources and destina-
tion nodes involved in the queries, the message overhead
can be much lower compared than computing all-pairs
shortest paths. However, as the number of source nodes
increases, the message overhead increases linearly, even
exceeding Right-Full at 600 and 900 source nodes respec-
tively due to the lack of sharing.

In Figure 4, we examine the effects of work-sharing to
reduce redundant computation when using left recursion.
Here, we limit each query to a source and destination pair.
Left-NoShare and Left-Share show the message overhead

of left recursion without and with sharing. Sharing oc-
curs when query results are cached on the reverse path
as described in Section 6.4 for use by subsequent queries.
When the percentage of destination nodes involved in the
queries is low (1% Dst), the cache hit rate is high. As
the percentage of destination nodes increases (50% Dst),
the cache hit rate is lowered, and hence less sharing is
achieved.

Our simulation results demonstrate that the optimal
query plan is affected by the number of nodes issuing
the same query. Other factors such as the presence of
different queries with correlated metrics and the network
topology may also affect the choice of query plan. Given
that the query workload and network are dynamic and
may not be known a priori, we intend to explore adaptive
query optimization techniques that results in an optimal
query plan at run time.

9. CONCLUSION
In this paper, we argue that recursive queries are flexi-

ble enough to express a large variety of routing protocols
easily. We also argue that they allow for efficient execu-
tion, are amenable to automatic optimization, and they
offer an attractive mixture of expressiveness and safety.
Many research questions are open, including a study of
various query execution strategies, automatic query opti-
mization, automatic sharing across queries, techniques to
tolerate flux in the topology, and of static analysis tech-
niques to ensure that queries can be executed safely. To
ground our investigation, we have added recursive query
features to the PIER [5] DHT-based query engine, and
are using it to build a customizable routing infrastruc-
ture.

10. REFERENCES
[1] Hari Balakrishnan, M. Frans Kaashoek, David Karger,

Robert Morris, and Ion Stoica. Looking Up Data in P2P
Systems. Communications of the ACM, Vol. 46, No. 2,
February 2003.

[2] C. Beeri and R. Ramakrishnan. On the Power of Magic.
In PODS, 1987.

[3] D. Tennenhouse and J. Smith and W. Sincoskie and D.
Wetherall and G. Minden. A Survey of Active Network
Research. In IEEE Communications Magazine, 1997.

[4] Nick Feamster, Hari Balakrishnan, Jennifer Rexford,
Aman Shaikh, and Jacobus van der Merwe. The Case
for Separating Routing From Routers. In FDNA, 2004.

[5] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham,
Boon Thau Loo, Scott Shenker, and Ion Stoica.
Querying the Internet with PIER. In Proceedings of
VLDB, Sep 2003.

[6] David B Johnson and David A Maltz. Dynamic Source
Routing in Ad Hoc Wireless Networks. In Mobile
Computing, volume 353. 1996.

[7] Phokion Kolaitis and Moshe Vardi. On the Expressive
Power of Datalog: Tools and a Case Study. In PODS,
1990.

[8] Karthik Lakshminarayanan, Ion Stoica, and Scott
Shenker. Routing as a Service. Technical Report
UCB-CS-04-1327, UC Berkeley, 2004.

[9] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey
of Research on Deductive Database Systems. Journal of
Logic Programming, 23(2):125–149, 1993.

[10] S. Sudarshan and R. Ramakrishnan. Aggregation and
Relevance in Deductive Databases. In VLDB, 1991.

[11] Xiaowei Yang. NIRA: A New Internet Routing
Architecture. In Proceedings of FDNA-03, 2003.

