
Data Lineage and Information Density in Database

Visualization

by

Allison Gyle Woodru�

B.A. (California State University, Chico) 1987

M.A. Linguistics (University of California, Davis) 1989

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Michael Stonebraker, Chair

Professor Joseph Hellerstein

Professor James Landay

Professor Ray Larson

Fall 1998



The dissertation of Allison Gyle Woodru� is approved:

Chair Date

Date

Date

Date

University of California at Berkeley

Fall 1998



Data Lineage and Information Density in Database

Visualization

Copyright Fall 1998

by

Allison Gyle Woodru�



1

Abstract

Data Lineage and Information Density in Database Visualization

by

Allison Gyle Woodru�

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Michael Stonebraker, Chair

Visual representations of data help users interpret and analyze information. We

have identi�ed two key issues in existing visualization systems: data lineage and information

density. This dissertation de�nes these problems and details solutions for them. We show

that our techniques can be applied in database visualization systems, and we discuss how

they improve the usability of these systems.

The data lineage problem occurs when users apply a sequence of processing steps

to input data sources; when viewing the �nal result, these users may wish to trace certain

elements in the result back to the original input items. We call these types of queries data

lineage queries. Current systems, e.g., geographic information systems or scienti�c visual-

ization systems, provide little support for this task. In the �rst part of this dissertation, we

discuss techniques for allowing users to access intermediate results e�ciently while perform-

ing data lineage queries. We then introduce weak inversion and veri�cation and show how

they can be used to reconstruct the (approximate) lineage of derived data. Because they

eliminate much of the irrelevant source data, weak inversion and veri�cation can greatly re-

duce the amount of source data the end user must examine while performing a data lineage

query.

Visualizations often display too much information, making it di�cult for users to

interpret them. Similarly, visualizations often display too little information, thereby un-

derutilizing display space. In the second part of this dissertation, we describe the general

principle of constant information density. We show how both semantic and spatial trans-

formations based on constant information density can be applied to create visualizations



2

with appropriate density, thereby minimizing clutter and sparseness in the display. We

describe an end-user programming environment in which users can construct visualizations

with constant information density.

Professor Michael Stonebraker
Dissertation Committee Chair



iii

To all the teachers and colleagues who have taught me so much.



iv

Contents

List of Figures vii

List of Tables ix

1 Introduction and related work 1

1.1 Data lineage : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1.1 Data
ow systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1.2 Motivation and related work : : : : : : : : : : : : : : : : : : : : : : 3

1.1.3 Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.2 Constant information density in zoomable interfaces : : : : : : : : : : : : : 7

1.2.1 Related work on clutter and sparsity : : : : : : : : : : : : : : : : : : 8

1.2.2 The DataSplash environment : : : : : : : : : : : : : : : : : : : : : : 10

1.2.3 Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

I Data lineage 15

2 Bu�ering 16

2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

2.2 Problem de�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.3 Assumptions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.4 Graph generation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.5 Simulation model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

2.6 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

2.7 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

3 Weak inversion and veri�cation 32

3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

3.2 Abstract model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

3.3 Concrete model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

3.3.1 Extending the abstract model to a database environment : : : : : : 39

3.3.2 Registration procedure : : : : : : : : : : : : : : : : : : : : : : : : : : 45

3.4 Inversion planner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

3.4.1 Preservation of properties : : : : : : : : : : : : : : : : : : : : : : : : 47



v

3.4.2 Inversion planner algorithm : : : : : : : : : : : : : : : : : : : : : : : 54

3.5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

II Constant information density in zoomable interfaces 58

4 Pilot study 59

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

4.2 Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

4.3 Apparatus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

4.4 Participants : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

4.5 Procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

4.6 Task : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

4.7 Results and discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

4.8 User response : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

4.9 Limitations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

4.10 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5 End-user control of information density 67

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

5.2 Density feedback : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

5.2.1 Measuring information density : : : : : : : : : : : : : : : : : : : : : 69

5.2.2 Providing visual density feedback : : : : : : : : : : : : : : : : : : : : 70

5.2.3 User interaction with the new layer manager : : : : : : : : : : : : : 72

5.2.4 Density metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

5.2.5 Non-uniform data : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

5.3 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

6 Constant density visualizations of non-uniform distributions of data 76

6.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

6.2 Technique : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

6.2.1 Processes for modifying density : : : : : : : : : : : : : : : : : : : : : 79

6.2.2 Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

6.2.3 Computational complexity : : : : : : : : : : : : : : : : : : : : : : : : 82

6.2.4 Implementation and examples : : : : : : : : : : : : : : : : : : : : : : 83

6.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

6.3.1 E�ectiveness in non-cartographic domains : : : : : : : : : : : : : : : 87

6.3.2 Choice of representations for display : : : : : : : : : : : : : : : : : : 89

6.4 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

7 Semi-automated adjustment of density 92

7.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

7.2 Changing layer density : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93

7.3 Complexity of transformation space : : : : : : : : : : : : : : : : : : : : : : 95

7.3.1 Rule system : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96



vi

7.3.2 Edit distance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

7.4 Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

7.4.1 Edit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

7.4.2 Transform : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

7.4.3 Select : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

7.5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

8 Goal-directed zoom 101

8.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

8.2 Characteristics of goal-directed zoom : : : : : : : : : : : : : : : : : : : : : : 102

8.3 A goal-directed zoom system : : : : : : : : : : : : : : : : : : : : : : : : : : 103

8.4 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

III Future work and conclusions 106

9 Future work 107

9.1 Bu�ering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 107

9.2 Weak inversion and veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : 108

9.2.1 E�cient rematerialization of intermediate results : : : : : : : : : : : 108

9.2.2 E�cient materialization of partial results : : : : : : : : : : : : : : : 108

9.2.3 Reuse of common subexpressions : : : : : : : : : : : : : : : : : : : : 109

9.3 Constant information density : : : : : : : : : : : : : : : : : : : : : : : : : : 109

9.3.1 Movement optimization : : : : : : : : : : : : : : : : : : : : : : : : : 109

9.3.2 User studies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

9.3.3 Display and constraint mechanisms : : : : : : : : : : : : : : : : : : : 110

10 Conclusions 111

Bibliography 112



vii

List of Figures

1.1 A sample Tioga recipe. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Data displayed in a Tioga browser. : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 DataSplash, showing United States cities application seen from a high elevation. 11

1.4 United States cities application seen from a low elevation. : : : : : : : : : : 12

2.1 Structure of a sample data
ow diagram. : : : : : : : : : : : : : : : : : : : : 18

2.2 Compute costs for varying graph structures and access patterns. : : : : : : 26

2.3 Heuristic performance with 10% bu�ering. : : : : : : : : : : : : : : : : : : : 27

2.4 Heuristic performance for baseline case. : : : : : : : : : : : : : : : : : : : : 29

2.5 Heuristic performance with high branching factor and long query paths. : : 30

3.1 Cyclone track extraction. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3.2 Weak inversion and veri�cation. : : : : : : : : : : : : : : : : : : : : : : : : : 35

3.3 Properties of weak and veri�ed inverse images. : : : : : : : : : : : : : : : : 37

3.4 Weak inversion of multiple levels. : : : : : : : : : : : : : : : : : : : : : : : : 41

3.5 Combination of weak inverse images. : : : : : : : : : : : : : : : : : : : : : : 50

3.6 Weak inversion of a chain. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

3.7 Algorithm for inverting a chain. : : : : : : : : : : : : : : : : : : : : : : : : : 56

3.8 Inversion of cyclone track extraction. : : : : : : : : : : : : : : : : : : : : : : 57

4.1 The applet used in the pilot study. : : : : : : : : : : : : : : : : : : : : : : : 62

5.1 A visualization of selected companies from the Fortune 500 and Global 500. 71

5.2 A cluttered application. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

5.3 A less cluttered application. : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

6.1 DataSplash visualization of census data. x axis shows housing cost and y

axis shows income. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77

6.2 VIDA0 visualization of census data. x axis shows housing cost and y axis

shows income. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

6.3 VIDA visualization of census data. x axis shows housing cost and y axis

shows income. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

6.4 VIDA visualization of Fortune 500 data at a high elevation. x axis shows %

pro�t growth and y axis shows number of employees. : : : : : : : : : : : : : 84



viii

6.5 Zoomed-in view of visualization of Fortune 500 data. x axis shows % pro�t

growth and y axis shows number of employees. : : : : : : : : : : : : : : : : 85

6.6 Na��ve DataSplash visualization of population data. : : : : : : : : : : : : : : 86

6.7 VIDA visualization of population data. : : : : : : : : : : : : : : : : : : : : : 86

6.8 Visualization of an arti�cially-created data set with a regular distribution

pattern. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 90

7.1 A cluttered application. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

7.2 The transformation canvas. : : : : : : : : : : : : : : : : : : : : : : : : : : : 99

8.1 Sample goal-directed zoom interaction. : : : : : : : : : : : : : : : : : : : : : 104



ix

List of Tables

2.1 Graph structures and access patterns. : : : : : : : : : : : : : : : : : : : : : 26

3.1 De�nitions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

3.2 Information to register for weak inversion functions. : : : : : : : : : : : : : 44

3.3 Information to register for veri�cation functions. : : : : : : : : : : : : : : : 44

4.1 Number of objects visible at di�erent elevations in visualizations. : : : : : : 61

4.2 Percentage of participants returning to top layer. : : : : : : : : : : : : : : : 64

4.3 Median number of pan operations. : : : : : : : : : : : : : : : : : : : : : : : 64

7.1 Modi�cation functions to decrease density. : : : : : : : : : : : : : : : : : : : 94



x

Acknowledgements

I am grateful to my advisor, Professor Michael Stonebraker, for his insightful comments and

support. I wish to thank the other members of my committee, Professors Joseph Hellerstein,

James Landay, and Ray Larson, for much helpful feedback and many interesting discussions.

I would also like to thank the members of the Tioga and DataSplash development teams,

particularly Jolly Chen, Michael Chu, Vuk Ercegovac, Mark Lin, Chris Olston, and Mybrid

Spalding.

The people who have provided encouragement are too numerous to mention. I will

simply thank my friends and family for their invaluable support and enthusiasm.

This work was partially supported by NSF under grants #IRI-9400773 and #IRI-

9411334.



1

Chapter 1

Introduction and related work

In this chapter, we motivate our work. We introduce the general concepts that we

explore during the remainder of the dissertation. Speci�cally, in Section 1.1, we de�ne data

lineage and introduce our techniques for supporting data lineage queries. In Section 1.2, we

introduce the Principle of Constant Information Density and show how we have applied it

to the construction of visualizations with appropriate density.

1.1 Data lineage

In this section, we introduce data
ow systems, which provide the context for our

work. We then de�ne data lineage and discuss its signi�cance in data
ow systems. Finally,

we introduce our techniques for supporting data lineage in data
ow systems.

1.1.1 Data
ow systems

Data
ow systems allow users to specify the 
ow of data between di�erent pro-

cessing steps. These systems then manage the 
ow of data accordingly when the steps are

executed. Tioga [41] is one such system, a graphical application development tool that uses

the boxes and arrows notation popularized by scienti�c visualization systems such as AVS

[49], Data Explorer [25], and Khoros [34]. Tioga improves upon these systems by provid-

ing sophisticated data management using the POSTGRES database management system

(DBMS) [43].

In the Tioga programming model, boxes represent user-de�ned database queries or

browsers that display data, and edges between boxes represent 
ow of data. Although only



2

Figure 1.1: A sample Tioga recipe.



3

a few dozen boxes have currently been implemented, additional boxes may be programmed

by users. Nonexperts build visual programs called recipes by interactively connecting boxes

together using a graphical editor. Current applications include a photographic slide library

and a geoindexing system.

Figure 1.1 shows the geoindexing application. Boxes in the recipe include database

queries which index text documents according to the geographic locations to which these

documents refer. The directed edges between the boxes represent the 
ow of data between

the functions.

At the end of the recipe is a browser box which displays documents according to the

geographic indexes the recipe creates. The default Tioga browsing paradigm allows users to

visualize data results in a multidimensional space. Users navigate through their data using

a 
ight-simulator interface. Additional browsers may be implemented by advanced users.

In Figure 1.2, the browser displays the �nal results of the recipe in Figure 1.1.

Documents appear as rectangles in a latitude/longitude viewing space centered on Califor-

nia. Shading indicates the system's con�dence in assigning a given document to a given

location. In this �gure, a rectangle has been selected, and the associated text from an

environmental impact report appears in the display.

1.1.2 Motivation and related work

In the computational sciences, sequences of processing steps such as those that

occur in Tioga data
ow diagrams are common. In these applications, the lineage of a

datum consists of its entire processing history. This includes its origin (e.g., the identi�er

of the base data set, the recording instrument, the instrument's operating parameters) as

well as all subsequent processing steps (algorithms and respective parameters) applied to

it.

Lineage is valuable to users for a variety of applications including investigation of

anomalies and debugging. For example, lineage information allows the user to trace the

impact of faulty source data or buggy programs on derived data sets. It also allows the user

to investigate the source data or programs that produced an anomalous data set.

The perceived importance of data lineage has grown in step with the increased

volume and widened dissemination of processed data sets. The amount of support for

data lineage has grown as well. For example, new scienti�c data standards (e.g., the Spatial



4

Figure 1.2: Data displayed in a Tioga browser.



5

Data Transfer Standard [28], the Spatial Archive and Interchange Format [44], and the draft

Content Standard for Digital Spatial Metadata [14]) provide slots for annotations relating

to lineage. Recent scienti�c work
ow systems (e.g., GIS databases such as Geolineus [24]

and geophysical databases such as BigSur [9]) automate the process of lineage tracking by

providing direct support in the work
ow infrastructure. BigSur, for example, can supply

the entire graph of processing steps that were applied to generate an image, or a list of all

images produced using a given processing step.

1.1.3 Solution

We have identi�ed two major de�ciencies in existing data lineage systems. First,

the systems do not provide adequate support for real-time access to the results of interme-

diate processing steps, even though such intermediate results are key to interactive data

lineage queries. Second, the systems do not provide lineage that is su�ciently detailed to

allow users to trace from a single element in an output data set to speci�c relevant items

in the input data sets. We discuss these problems and our resolution of them in turn.

In Chapter 2, we discuss e�cient implementation techniques to support queries

to intermediate nodes (outputs of processing steps between the input source data and the

�nal result). Because it is impractical to store all intermediate results, our approach is

to perform selective bu�ering of certain results to reduce latency. We de�ne the optimal

bu�er allocation problem to be the determination of the bu�er contents that minimize the

average response time to a sequence of user queries to intermediate nodes. We show that

this problem has several characteristics that render traditional bu�er management strategies

ine�ective. Since optimal bu�er allocation is NP-hard, as we prove, we propose heuristic

methods for bu�er management of intermediate results.

We present a simulation of the behavior of these heuristics under a variety of

conditions: we vary both the structure of the graph (e.g., its size) and the user query

pattern. We argue that history mechanisms that track user access patterns can be used to

improve performance. We further show that graph structure and access pattern determine

the factor of improvement that is possible. The performance enhancements we describe can

be applied to minimize query response time in visual data
ow languages.

In Chapter 3, we examine a di�erent aspect of the data lineage problem. The

current state-of-the-art for processing data lineage queries is primitive. Most systems are



6

na��ve and are not able to identify even the input sources. The most advanced systems

assume that the processing history and source data associated with a datum can be stored

as metadata [9]. A metadata-based approach to data lineage such as that followed by [24]

and BigSur [9]) assumes relatively coarse-grained information will su�ce.

However, some scienti�c applications require lineage at a much �ner granularity

than previously considered. For example, some applications require lineage at the level of

pixels in images [4]. Imagine an application that takes many satellite images as input and

outputs a composite. Such a program may involve a pre-processing step to register the

images to a common grid. For debugging purposes, the user may wish to know which pixels

of which original raster images were used in the construction of the composite. Such inves-

tigations may be di�cult or impossible without data lineage: the user may not be familiar

with processing steps that were written by an expert programmer. Further, tracing back

manually through a number of processing steps is tedious and time-consuming, particularly

if large data sets are involved.

For such applications, a metadata approach to data lineage would require storing

information for each pixel. Outside of the database �eld, e.g., in areas such as data
ow

program debugging [56], detailed information has been stored. In [56], the data tags are

used in realtime and then discarded. However, our applications require that the metadata

be available after the program executes. It is impractical to store this volume of infor-

mation, especially since the metadata does not lend itself well to compression because the

information for each pixel may di�er signi�cantly.

We propose a novel approach for supporting such �ne-grained data lineage. Our

approach uses a limited amount of information about the processing steps to infer the

necessary lineage information lazily (i.e., on demand). In this way, the system avoids

computing and storing such information in advance. The �ne-grained data lineage technique

presented here therefore complements coarse-grained metadata techniques.

In the absence of metadata, the most obvious way to identify relevant inputs is to

invert the processing steps. Observe that each processing step is a function. A function f

is said to be invertible if there exists some function f�1 such that for each element a input

to f , f�1(f(a)) = a. Unfortunately, only a limited number of functions (those that are

one-to-one and onto) are invertible.

We introduce the notion of weak inversion, which applies to a larger class of

functions. Each function that is weakly invertible has a corresponding function f�w . f�w



7

maps from the output of f to the input of f , but is not guaranteed to be perfectly accurate.

Instead, the accuracy of f�w is described by a number of weaker guarantees. We also

introduce the notion of veri�cation. Veri�cation functions re�ne the set identi�ed by f�w.

We propose the implementation of weak inversion and veri�cation as extensions

to an object-relational database management system. We assume that expert users register

their data processing functions in the DBMS and that the DBMS manages the application of

these functions. These users register weak inversion and veri�cation functions in the DBMS

as well. Given a speci�c datum to invert, an inversion planner process infers which weak

inversion and veri�cation functions must be invoked, constructs a plan (a correct ordering

of the weak inversion and veri�cation functions), and then executes the plan by calling the

corresponding sequence of functions within the DBMS.

Using the techniques described in this section, we are able to support data lineage

queries. We now turn to a di�erent visualization problem, that of constructing visualizations

with appropriate information density.

1.2 Constant information density in zoomable interfaces

In this section, we �rst introduce the information density problem. We then de-

scribe previous work related to this problem. We next present the context for our solution,

and the solution itself. Finally, we outline the remainder of this dissertation.

Visual representations of information can often help users understand complex

data sets. However, if these visual representations have too much information, i.e., if they

are cluttered, their e�ectiveness can be signi�cantly reduced. For example, clutter can

result in overplotting, in which certain objects are not visible because they are occluded by

other objects. In fact, multiple studies have shown that clutter in visual representations

of data can have negative e�ects ranging from decreased user performance to diminished

visual appeal. For example, Phillips and Noyes demonstrated that visual clutter decreases

map reading performance [33]. In a related study, Springer showed that directory assistance

operators locate targets more slowly on screens with more information [39]. For a review

of a number of other studies of clutter, see [48].

In the situation that is the converse of clutter, visual representations have too little

information. Such sparse visualizations can be unappealing and ine�ective. For example,

sparsity can result in ine�cient use of the available display space, limiting the number of



8

objects a user can investigate and compare simultaneously.

1.2.1 Related work on clutter and sparsity

Researchers have attempted to address the clutter and/or sparsity problem in a

number of ways. Previous work has examined appropriate amounts of information density

for speci�c character displays, user interface screens, or images. Such work indicates that

increasing density increases the time required to �nd information [19]. However, we know

of no studies of information density in interactive visualizations.

Other work has focussed on the automated construction of displays with appropri-

ate detail. Previous work on automatically creating visually appealing displays has consid-

ered the layout of objects [23]. However, the layout problem detailed in [23] has somewhat

arti�cial objectives, requiring that no objects overlap and that the minimal amount of space

be wasted (i.e., that density be maximized). Other systems include: APT, which examines

data set to be visualized and tries to pick the best presentation based on certain e�ec-

tiveness criteria [26]; SageBrush, in which users specify some properties of the display and

unspeci�ed properties are inferred by the system [36]; and AUTOGRAPH, which takes as

input a data set, a description of the data, and a statement of the intended use of the

visualization, and outputs a graphical display [37]. These systems have several limitations.

For example, they are largely designed to support small data sets and a restricted number

of display types.

In other related work, researchers in the area of cartography have studied auto-

mated generation of maps of given scales. Many of these researchers use expert systems

that generally are unable to produce maps of su�cient quality for commercial use [10].

Other cartographers have applied a new data structure (the Multi-scale tree) to the same

problem [16]. Given a set of maps produced (manually or with a computer-assisted tool)

at di�erent scales, the algorithm is designed to automatically produce di�erent views of

the data as the user zooms. These views would have a constant number of active pixels

(pixels that are being used to represent objects in the display). However, the algorithm

described in this approach has several major limitations. It gives the user no control over

which representations are chosen for display or over the �nal presentation. It supports only

one density metric (ink, i.e., the number of active pixels). Finally, examples are limited

to the cartographic domain, and it is not clear the technique would generalize to other



9

applications.

As an alternative to automated techniques, a number of interactive visualization

systems provide clutter reduction mechanisms that allow users to view detail selectively.

These systems assume that a programmer or end user manually adjusts the data or the

visual representations of the data to minimize clutter. For example, non-linear magni�cation

schemes can be used to minimize clutter in the display. Fisheye views are one type of non-

linear magni�cation scheme, in which objects are viewed as though through a �sheye lens

so that objects in the center of the screen are given more display space than objects on the

periphery [17]. Objects on the periphery can be displayed with reduced detail or can be

omitted. Users can refocus the lens to change the detail shown for given objects. However,

non-linear magni�cation displays can be disorienting for the user.

Ahlberg and Shneiderman use an alternative mechanism that allows the user to

�lter objects in the display dynamically [1]. This technique does not di�erentially �lter sub-

divisions of the display. Therefore, if the underlying data is of non-uniform distribution, the

resulting visualizations can have regions that are too dense and/or too sparse. Fishkin and

Stone extend Ahlberg and Shneiderman's model by providing movable �lters that the user

can position manually in the display [15]. However, Fishkin and Stone's work requires the

user to manually choose the areas to which �ltering is applied. Note that these techniques

do not modify the visualization, but rather the data set being visualized.

A �nal type of interactive system, the semantic zoom system, addresses clutter and

sparsity by supporting multiple graphical representations of objects. The user is provided

with an interactive visualization, and a representation with appropriate visual complexity

for the current view appears in the display.

More concretely, semantic zoom systems typically use a spatial metaphor in which

objects are displayed in a two-dimensional canvas over which the user can pan and zoom.

The user's distance from the canvas is known as their elevation. Note that when the user

views an object from a high elevation, it may appear quite small. However, when they

zoom in on it, it gets larger, occupying a larger percentage of the display. As the object

gets larger, it is appropriate to make its graphical representation more complex. Therefore,

di�erent graphical representations are appropriate for di�erent elevations.

For example, suppose a city is represented as a dot when the user is at a high

elevation. When the user zooms in on the city, a text label may be added to the represen-

tation, or a city map may replace the text. Signi�cant examples of semantic zoom systems



10

include Pad and Pad++ [32, 5].

For a variety of reasons, semantic zoom systems lend themselves to a more sophis-

ticated approach to the problems of clutter and sparsity. In the next subsection, we outline

one such system, which provides the context for our solution.

1.2.2 The DataSplash environment

In this subsection, we describe the DataSplash environment. DataSplash is a direct

manipulation semantic zoom system in which users can construct and navigate visualizations

[2]. This system has been implemented on top of the POSTGRES object-relational database

management system [43] and released as freely available software [35].

In DataSplash, all objects in a canvas are organized into layers. Each object is

a member of exactly one layer. Each layer is associated with exactly one database table.

DataSplash uses the spatial metaphor of a two-dimensional canvas common to semantic

zoom systems. Each row in the table is assigned an x,y location in the canvas, i.e., the rows

are scattered across the canvas, giving an e�ect similar to a scatter plot. The x,y locations

are derived from data values in the rows. For example, if the user has a table of United

States cities with latitude and longitude columns, x and y can be assigned to the longitude

and latitude values of each city.

At any time, the user can create an object in DataSplash's paint program interface

and duplicate that object for every row in the database table. As a result of this duplication

operation, a copy of the object appears at the x,y location of every row in the table. The

e�ect is like splashing paint across the canvas, coating every scattered row. The user may

also associate display properties of objects with columns in the table, e.g., height, width,

color, and rotation of each splash object can be derived from values in the columns of its

row. Continuing the example of a visualization of United States cities, the user may specify

that a circle is to be drawn at the x,y location of each city. The user may further specify

that the radius of each circle be proportional to the population of that city.

Users can pan and zoom above the resulting two-dimensional canvas. When they

zoom, they change their elevation above the canvas. Elevation is expressed as a percentage

of a user-speci�ed maximum elevation. DataSplash allows users to control the range of

elevations at which each layer is rendered. To this end, each layer appears as a vertical

bar in a layer manager. The top of the layer bar represents the highest elevation at which



11

Figure 1.3: DataSplash, showing United States cities application seen from a high elevation.

objects in the layer are rendered. Similarly, the bottom of the layer bar represents the

lowest elevation at which objects in the layer are rendered. The user's current elevation

is shown with a horizontal elevation bar. Any layer bar that is crossed by the horizontal

elevation bar is considered to be active and objects in the corresponding layer are rendered.

An icon of the type of object displayed by each layer appears in the button below its layer

bar.

Users can graphically resize layer bars in the layer manager. In addition to resizing

layer bars, users can also shift them up and down and add or delete new layer bars. These

operations are performed in the same way as in traditional paint programs, e.g., to resize a

layer bar, the user drags a resize handle. DataSplash has a number of additional features,

but we do not discuss them here because they are not relevant to information density.

Figures 1.3 and 1.4 show the display and layer manager of a sample application.

The application contains six layers. The �rst layer contains an outline of the United States.

The second layer contains outlines of each state in the United States. Note that these two

representations are mutually exclusive, i.e., their elevation ranges are disjoint, so only one

can be visible at a given time.

The third through sixth layers are based on city data. The data has been seg-

mented according to population size; the third layer contains cities with the highest popu-

lation, the fourth layer contains slightly smaller cities, etc. Each city in each entry is drawn

in a circle and cities with higher populations are drawn as larger circles.

In Figure 1.3, the layer manager appears in the white rectangle in the upper-right.

The horizontal line (elevation bar) indicates that the user is at a high elevation. The only

layer active at this elevation is the United States outline layer. This layer is rendered in the



12

Figure 1.4: United States cities application seen from a low elevation.

display on the left.

In Figure 1.4, the user has zoomed to a lower elevation, as can be seen from the

position of the horizontal elevation bar in the layer manager. Note that the elevation bar

now intersects �ve layers; at this elevation, the state outlines and city circles layers are

active. Therefore, the objects associated with these layers are all visible in the display on

the left.

Another feature of DataSplash is its support for portals. Portals are windows

that open onto other canvases. DataSplash users can automatically generate a portal for

every row in a database table. For example, the user can easily specify that each city in a

visualization of the United States should have a portal that goes to a map of that city. A

portal history mechanism allows users to go backwards and forwards between canvases.

The features described above have been implemented and tested informally. Al-

though users generally respond positively to the system, we have observed that they have

di�culty constructing applications that display an appropriate density at all elevations. To

understand this, consider the simplest possible application - one in which the representation

of the objects never changes (scaling aside) as the user zooms in and out. The display seen

by the user is a �xed-size viewport onto an underlying, or native, coordinate space de�ned

by the x,y values of the objects. The objects never change their native x,y position, so

object density in the native space obviously never changes. However, any change in eleva-

tion implies a change in the area of the native space visible in the display, which implies

(in general) that the display contains a di�erent number of objects. This in turn implies a

change in display object density. As a result, the same visualization can be appealing at



13

one elevation, cluttered at higher elevations, and sparse at lower elevations.

Unfortunately, when users see a visualization at a given elevation, they �nd it di�-

cult to imagine how that same visualization will appear when viewed from other elevations.

Therefore, poor visualization quality may result if users do not visit many elevations when-

ever they modify applications, checking for appropriate detail. This is a tedious, highly

iterative process, which is made even more di�cult by two additional facts: (1) objects

may change representation as users zoom (if they have di�erent graphical representations

in di�erent layers) and (2) users of current systems must visually and subjectively judge

appropriate density. In the following subsection, we discuss how we have ameliorated this

process.

1.2.3 Solution

We have identi�ed a cartographic precept that de�nes appropriate transition points

between di�erent graphical representations. The Principle of Constant Information Density

states that the number of objects per area should remain constant. More generally, the

amount of information should remain constant as the user pans and zooms above a display

[45, 16]. In Part II, we describe our application of this principle to interactive visualizations

of cartographic and non-cartographic data.

In Chapter 4, we discuss a pilot study of user response to interactive visualizations

with varying densities. Our results, though highly preliminary, suggest that users avoid

higher density elevations in preference for lower density elevations and that users pan more

frequently in displays that have lower density. We propose that application designers use

our solutions, as described in Chapters 5 - 7, to ensure constant information density and

thereby minimize unexpected user navigation patterns.

In Chapter 5, we introduce a system that helps users construct interactive visu-

alizations with constant information density. This work is an extension of the DataSplash

database visualization environment. Recall that our experience with DataSplash indicates

that users �nd it di�cult to construct visualizations that display an appropriate amount

of detail. In Chapter 5, we introduce VIDA0 (VIDA is an acronym for Visual Information

Density Adjuster). VIDA0 is an extension to DataSplash based on the Principle of Constant

Information Density. This extension gives users feedback about the density of visualizations

as they create them. In this way, our extension helps users create interactive applications



14

that display the appropriate amount of detail at all times.

The techniques described in Chapter 5 help users manually construct applications

in which overall display density remains constant. In the context of semantic zoom sys-

tems, this approach ensures uniformity in the z (elevation) dimension, but does not extend

naturally to ensuring uniformity in the x and y dimensions.

In Chapter 6, we present an extension to VIDA0. This new version, VIDA, auto-

matically selects user-provided layers for display such that the resulting visualizations are

uniform in the x, y, and z dimensions. In VIDA, users express constraints about visual

representations that should appear in the display. The system applies these constraints to

subdivisions of the display such that each subdivision meets a target density value. We

describe our algorithm, implementation, and the advantages and disadvantages of our ap-

proach.

In Chapter 7, we discuss an extension to VIDA that semi-automatically modi�es

the contents of layers, thereby constructing visualizations that have constant information

density. While the techniques of Chapter 5 and Chapter 6 focus on deciding when to display

given representations, this chapter focuses on ways to actually change those representations.

To that end, we present a taxonomy of data manipulation and graphical operations that

can be performed to adjust density. We discuss interfaces with which users can semi-

automatically adjust the density of a group of objects and adjust the density of an entire

visualization. While the concepts in this chapter have not been implemented, the design is

presented in the context of the VIDA architecture.

Finally, in Chapter 8, we discuss a new navigation technique for constant infor-

mation density systems. We introduce a novel zoom method, goal-directed zoom. In a

goal-directed zoom system, users specify which representation of an object they wish to

see. The system automatically zooms to the elevation at which that representation appears

at appropriate detail. We have extended VIDA to support end-user construction of visu-

alizations that have goal-directed zoom. We present a sample user interaction with this

environment.

In Part III, we discuss future directions and conclusions.



15

Part I

Data lineage



16

Chapter 2

Bu�ering

2.1 Introduction

In Section 1.1, we de�ned data lineage queries over data
ow programs.1 Further,

we saw that data lineage queries require access to intermediate computations. When such

results are not bu�ered e�ectively, access to them can incur signi�cant performance penal-

ties. In this chapter, we discuss bu�ering of intermediate results in data
ow diagrams to

reduce latency.

Data
ow languages apply a sequence of operations to speci�ed inputs. In many

cases, the �nal output of a data
ow diagram is the only result examined by a user. However,

when performing tasks such as debugging or tuning, a user may wish to view intermediate

results. In a na��ve implementation, intermediate results are not saved when a data
ow

diagram is executed. As a consequence, if a user asks to view intermediate results, these

results need to be recalculated. Since computation costs may be extremely high, the delay

in response time can be substantial. A more sophisticated implementation can support

bu�ering of intermediate results. Because blindly bu�ering all intermediate results may not

be feasible, such a system must attempt to select for bu�ering those intermediate results

that minimize latency.

We examine strategies for bu�ering of intermediate results in data
ow diagrams

in the context of Tioga [41]. Tioga was motivated by the needs of scienti�c users in the

1Much of the material in this chapter appears in [53]. Copyright 1995 IEEE. Reprinted, with permission,
from Proceedings of the 1995 IEEE Symposium on Visual Languages, Darmstadt, Germany, Oct. 1995, pp.

187-94.



17

Sequoia 2000 project [42]. In a typical task, these users will construct a recipe, run it on a

speci�ed set of inputs, and view the �nal result. If this result contains an anomaly or some

unintuitive or unwanted result, users might want to perform the following types of actions:

� search query. In this case, the user examines intermediate results of Tioga boxes to

locate data of interest, e.g., the source of an anomaly. Intermediate results may be

viewed by placing browsers at arbitrary points in the recipe.

� modi�cation query. Users may want to tune a recipe. In this case, they will rerun it

using di�erent parameters as input to speci�c functions. Alternatively, they may wish

to modify the code of a particular box and rerun the entire recipe with the new box.

Finally, they may incrementally add boxes to develop an application, as supported by

systems such as Weaves [21].

Note that some tasks may involve both search and modi�cation queries. For

example, debugging may entail a sequence of search and modi�cation queries to locate and

correct a faulty processing step or data.

Attempts to reduce the latency of search and modi�cation queries raise several

interesting issues. For example, we observe that bu�ering of intermediate results can sig-

ni�cantly improve performance. In this chapter, we use a simulator to examine bu�er

management strategies to improve the performance of Tioga on search queries. Because

modi�cation queries have many similar characteristics, such as the dependencies between

results, our �ndings have direct relevance to modi�cation queries.

In Section 2.2, we de�ne the problem of optimal bu�er allocation. In Section 2.3,

we present our assumptions, and in Section 2.4, we describe our mechanism for generating

graphs that are input to our model. In Section 2.5, we present our simulation model and our

heuristics, and in Section 2.6, we present our results. Finally, in Section 2.7, we conclude.

2.2 Problem de�nition

Consider the recipe graph of Figure 2.1 in which box A is an input and box I

represents the �nal output. Suppose the existence of a bu�er with limited space. The bu�er

can contain the results of some set of boxes; the size of these results must sum to less than

or equal to the space available in this bu�er. Now suppose the bu�er is currently empty and



18

Figure 2.1: Structure of a sample data
ow diagram.

the user queries box F. The results from boxes A, B, C, and E are calculated as part of the

computation of box F, and the results of A, B, C, E, and F are therefore all candidates for

bu�ering. However, if there is insu�cient bu�er space to store all these intermediate results,

the system must choose which box results to bu�er. This is a complex problem because

the worthiness of box results (their potential to reduce latency) depends on a variety of

complex considerations, beginning with compute cost and bu�er space requirements.

The worthiness of each box result is also signi�cantly a�ected by the structure of

the recipe graph. Box results in the bu�er can save time during the computation of other

boxes by obviating the need to compute all their ancestors. We say that a box is guarded

if some box along each path from the box to the target (the queried box) is bu�ered. For

example, if the results from boxes C and E are in the bu�er and box F is being queried,

only box F needs to be computed during this move (since boxes C and E have guarded

boxes A and B, making their computation unnecessary). We additionally observe that the

current residency of the bu�er pool a�ects the worthiness of other box results.

Finally, the probability that a box result will be accessed impacts its worthiness.

(In our simulator, this probability is constructed according to a probabilistic move model

described in detail in Section 2.5.) We de�ne a query to be the user's request to view the

results of a single box. A query path is a sequence of queries. The current query is the user's

position in the query path. At each position, a possible bu�er allocation may be made. A

set of bu�er allocations for the entire query path is called a solution.

We assume the existence of a con�guration that includes the following information:

the structure of the recipe graph, the user's current position in the recipe graph, the current

contents of the bu�er, and the probability distribution of the user's expected movements.

Given such a con�guration, we de�ne the optimal bu�er allocation at a given position as

the one that will minimize the average response time to an unknown (but probabilistic)



19

future sequence of queries on intermediate results. The bu�er allocation at a given position

is drawn from a set of candidate results, those that are already in the bu�er pool or must

be computed at the given position.

As a result of the complications listed in the discussion of worthiness above, cal-

culating the optimal bu�er allocation is in fact NP-hard. This can be shown as follows by

a polynomial reduction from the Knapsack problem [20] to our problem of optimal bu�er

allocation. In such a reduction, compute times and bu�er space requirements correspond

to the value and size of objects to be placed in the knapsack. Intuitively, the search space is

extremely large since it must consider the impact of all possible allocations on the latency

of all possible query paths that could be followed in the future (and in turn all the bu�er

allocations for each position in each path). Performing an exhaustive search of all bu�ering

solutions for all future paths is not feasible. Na��vely calculating the optimal allocation for

positions in short query paths through graphs with a small number of boxes (e.g., 10) took

days on a DEC Alpha computer.

Attempts to apply known techniques for solving related problems fail, either be-

cause they ignore critical aspects of our problem or because they assume information not

available to us. Traditional bu�er management strategies such as LIFO and LRU are in-

e�ective due to the following characteristics of our problem: (1) box results can guard

other boxes; (2) the sizes of box results vary; (3) the compute times of boxes vary; and

(4) the future reference stream is impossible to predict. Because traditional caching and

bu�er management techniques [38, 13, 11] do not consider guarding, items of variable size,

or variable fetch costs, they make poor bu�er allocation decisions for intermediate results.

Register allocation is in many ways more similar to the optimal bu�er allocation problem

we are considering. However, heuristics to solve register allocation are predicated on an

understanding of the future reference stream [40]. This understanding allows the register

allocation heuristics to eliminate many results from consideration. Because the reference

stream in search query paths in data
ow diagrams is unpredictable, it can not be con-

strained. Finally, although techniques exist that minimize bu�er usage during the execution

of a data
ow diagram [46], these techniques do not consider retaining intermediate results

after computation is complete.

Although strategies such as dynamic programming can reduce the computation

time, a less compute-intensive strategy is to use heuristics to make near-optimal bu�er

allocations. As a consequence, we have developed novel heuristics that are more appropriate



20

to the optimal bu�er allocation problem. In this document, we compare the behavior of a

number of these heuristics on a variety of graph types and user access patterns.

2.3 Assumptions

We make several assumptions with respect to the operation of the data
ow system

and the structure of the data
ow graph. We assume the existence of recipe graphs that

have already executed and materialized �nal results. All inputs and �nal results are saved

as tables in the underlying DBMS. However, we assume that intermediate results of recipes

are not saved. We assume that the system has bookkeeping information that records the

exact compute time for each box, as well as the exact size of its output.

For simplicity, we assume the common case in which each graph has one box which

is a terminal box. The terminal box has no outputs and is saved in a DBMS table. We refer

to boxes that do not output data except to the terminal box as sinks. These boxes are of

interest because queries to them can require the computation of a large number of boxes,

therefore providing a large set of results as candidates for the bu�er pool. Boxes that do

not take input from other boxes are called sources. In a query path, a user views the results

of the terminal box and then performs a sequence of queries on the recipe graph, visiting a

number of boxes before terminating the search. We assume that this sequence is not known

in advance and that the terminal box is never revisited.

We assume the existence of a workspace in which computations are performed. For

each recipe, we assume the existence of a separate bu�er of limited size. Each time a user

asks to view an intermediate result, our strategies determine which box results they would

like to retain in the bu�er after its computation. Desired box results in the workspace are

copied into the bu�er. We assume that box results may be bu�ered only in their entirety.

We assume without loss of generality that this bu�er space is on disk. In most cases the

bu�er space available will not be su�cient to store all intermediate results. Our goal is

to choose which intermediate results to bu�er to minimize the expected average latency of

future search queries.



21

2.4 Graph generation

Because only a limited number of recipes have been developed in Tioga to date,

we randomly generate recipe graphs for our tests. The parameters for generating these

graphs are based on conversations with Earth scientists from the Sequoia 2000 project [42]

and on observations of graphs developed in Tioga and other data
ow systems such as AVS

[49], Data Explorer [25], and Khoros [34]. That is, we developed an algorithm and chose

parameters that produced graphs that \look right" to users.

Our �rst observation is that boxes in data
ow diagrams, both in Tioga and in other

systems, are typically composed of groups. While groups have a relatively high degree of

interconnectivity, there tends to be a relatively low degree of connectivity between groups

in a graph.

Therefore, we begin by generating groups as follows. The group generator creates

a certain number of boxes (a value randomly chosen from a speci�ed range). The graph

generator takes as input a range of orders of magnitude for bu�er sizes and compute times.

To assign a value from one of these ranges, we �rst randomly select an order of magni-

tude from the speci�ed range. We then randomly select a number from within that order

of magnitude. The resulting distribution of numbers generated resembles an exponential

distribution.

In our studies, we focus on graphs in which bu�er sizes vary by up to two orders of

magnitude (between 1 and 100) and compute times vary by up to �ve orders of magnitude

(between 1 and 100,000). These values are based on discussions with Earth scientists about

typical data
ow applications. After the boxes have been assigned bu�er sizes and compute

times, we add edges that result in acyclic graphs with a controlled branching factor (the

average number of edges per box). In this study, we generated graphs ranging from a low

branching factor of approximately 1.2 to a high branching factor of approximately 1.8.

The graph generator makes calls to the group generator a speci�ed number of

times (a typical value was three, although larger values were used when we wished to

construct larger graphs). It then adds edges between the groups as follows. The graph

generator connects a source, sink, or intermediate box in the �rst group to a source, sink, or

intermediate box in the second group according to a speci�ed probability function. In the

results presented in this chapter, plausible values are chosen based on informal observations

of existing data
ow diagrams. We designate the box in the �rst group a source, sink, or



22

intermediate box with probability 10%, 80%, and 10%, respectively. The box in the second

group is a source, sink, or intermediate box with probability 25%, 70%, and 5%, respectively.

The probability distribution of these connections controls the relative numbers of sources

and sinks in the �nal graph. Finally, after all groups have been connected, all sinks are

connected to a terminal box.

2.5 Simulation model

We next implemented a simulator that would measure the performance of a variety

of bu�ering strategies on various graphs. We developed a move model that speci�es the

sequence of intermediate results examined by a user. Note that for a given pair of boxes,

if the output of the �rst box is passed as input to the second box, we say the �rst is the

parent of the second and the second is the child of the �rst. Under these de�nitions, if a

user is positioned at a given box, it is possible for them to:

� move backward in the graph to a parent (e.g., from box F to box C in Figure 2.1).

� move forward in the graph to a child (e.g., from box C to box F).

� move sideways to a spouse box that shares a child (e.g., from box F to box G).

� move to a random box in the graph (e.g., from box G to box B).

� reset (end the query).

Each of these �ve possibilities is assigned a probabilistic value; the �ve values sum

to one hundred percent. The probability of resetting indirectly controls the length of a

single query path. We studied a variety of probability distributions including, for example,

a largely backwards, short query path characterized by 50-10-15-10-15 and a relatively ran-

dom, long query path characterized by 13-13-18-53-3 (backward-forward-sideways-random-

reset).

The simulator generates a complete query path and passes it to procedures that

mimic the behavior of bu�ering strategies on that path. At each position, the bu�ering

strategy has a list of candidate box results that could be retained. This includes results

that existed in the bu�er previously as well as results that must be calculated at the current

position. A viable candidate is one that will �t in unallocated space in the bu�er. At each



23

position, the strategies assume they have the entire bu�er space to allocate and �ll it

according to their heuristic. The allocation ends when the strategies determine the bu�er

is full or when they determine that none of the unbu�ered candidate box results is viable.

For each heuristic, the cost of the entire query path using its solution is recorded.

We have examined a large number of strategies in this way. For the sake of brevity, we

discuss only the following in this document:

� No Bu�ering. No intermediate results are cached. This represents the worst case.

� First-in-�rst-out (FIFO). At each position in the query path, FIFO bu�ers box

results in reverse timestamp order. Timestamps represent the creation time of a box

result within a query path. Within a position, we assume the necessary boxes are

computed in topological order, since no box may be computed until its ancestors are

computed. Timestamps are therefore assigned according to a post-order, depth-�rst

traversal.

� Random Average. At each position in the query path, this strategy selects box

results uniformly at random and attempts to bu�er them. A bu�er allocation is

complete when the bu�er is full or all available box results have been bu�ered.

� k-Random. Random Average as above is run k times on a �xed query path; the

k-Random solution is the one with the best running time. In this way, we use the best

allocation of a randomly chosen set of allocations to approximate roughly the optimal

allocation. For data in this chapter, values for k range between 64 and 256; separate

simulations established that in most cases higher values of k yield only marginal

improvements.

Note that k-Random approximates the behavior of an o�ine algorithm, or an oracle

that acts with knowledge of future moves. Such behavior may not be achievable in

the general case; however, it gives us a value against which to compare our heuristics.

� Path Cut. At a high-level, Path Cut's heuristic is to minimize the cost of hypothetical

backward query paths. These hypothetical paths are the set of all paths that begin at

any node and consist only of backward and reset moves. The cost of such backward

paths can be decreased by the bu�ering of their midpoint. Results of boxes that have

some combination of the following characteristics are therefore desirable: (1) midpoint



24

of multiple backward query paths; (2) midpoint of at least one expensive backward

query path; or (3) midpoint of at least one backward query path that is likely to

occur. At each position in the �xed query path, Path Cut assigns the midpoint of

each hypothetical backward path a path cut value (PCV). The worthiness of a box

result is the sum of its PCVs for all paths. A greedy algorithm is used to attempt to

bu�er box results in the expected order of their worthiness.

The worthiness function is computed as follows: assume that the replacement algo-

rithm is making a bu�ering decision while computing a current box c. For every box

in the recipe graph, the algorithm constructs all paths to each of its ancestors. It

calculates the sum Sp of the compute costs for all boxes in a path p from a box n

to an ancestor a. The compute cost of a single box is the sum of the costs of all its

ancestors (all the boxes on which it is dependent for input) assuming that no box

results are bu�ered. The algorithm identi�es the computational midpoint m of path

p. m is the box along p such that the sum of the compute costs between a and m is

greater than or equal to 50% of S. The algorithm then calculates two probabilities.

For this calculation, the algorithm assumes that it has perfect information about the

probability distribution of the moves described above. First, it calculates the proba-

bility P(pjn) of the path between n and a occurring given that the user reaches box n

(this is the probability of a backwards move to the power of the length of p). It then

calculates the probability P(c ! n) that n will be the box visited immediately after

c. The PCV of m is equal to Sp � P(p) � P(c! n), or the cost of the path weighted

by the probability the path will be reached and followed from the current box c. The

worthiness is the sum of all PCVs for a given box. This value approximates the ability

of the box to minimize the cost of hypothetical backward query paths.

� Path Cut No Probabilities (NP). This heuristic is identical to that above, with

the exception that the PCV assignment considers no probabilities, i.e., the PCV of

m is equal to Sp.

We simulated the above strategies on a variety of graphs and with a variety of

access patterns. We present the results of these simulations in the next section.



25

2.6 Results

This section quantitatively demonstrates the bene�ts of bu�ering of intermediate

results. First we show that signi�cant gains can be achieved by such bu�ering. We next

show how these bene�ts vary with heuristic, graph structure, and access pattern. We then

examine the behavior of heuristics for varying bu�er sizes. Finally, we discuss the results

of additional experiments we conducted.

We begin by characterizing the maximal reduction in latency that can be achieved

by bu�ering of intermediate results. We assume the bu�er is empty when computation

begins. The best possible performance occurs with 100% bu�ering, i.e., when every box

result that is computed is inserted in the bu�er and not removed until queries on the graph

are complete. (The computation cost in this case is not simply the cost of executing the

recipe since a user may choose to examine only a subset of the intermediate results.) In

this situation, the bu�er space needed is at most the sum of the space requirements of all

boxes in the graph, since each box result need be stored at most once.

Figure 2.2 presents the relative performance of No Bu�ering and 100% bu�ering

solutions to query paths for a variety of graph structures and access patterns that can

be characterized as described in Table 2.1. Recall that the values chosen are based on

discussions with Earth scientists regarding typical applications. The Size column notes the

average number of boxes in the graph. Graphs with an average number of 18 boxes consist

of three groups. The BF column characterizes branching factor (low of 1.2 and high of

1.8). The C and B columns indicate the number of orders of magnitude variation among

the compute times and bu�er space requirements of box results in a recipe graph. P(back)

and P(random) indicate the probability of backwards movement and random movement.

PL represents the path length, indirectly controlled by the probability of resetting. For

simplicity, in the table the values of the last three items are classi�ed as high and low.

The complete move probability distributions are 50-10-15-10-15 (baseline), 13-13-18-53-3

(random), 53-13-18-13-3 (bushy), 50-10-15-10-15 (variable), and 53-13-18-13-3 (big).

For each type described above, we generated dozens of graphs and ran thousands

of query paths within each graph, measuring the compute costs in each case. Figure 2.2

presents the average of the results in the case of No Bu�ering and 100% bu�ering. We

observe that if no bu�ering is done, three independent conditions can make query paths

expensive. First, longer query paths are more expensive. Second, query paths through



26

Size BF C B P(back) P(Random) PL

baseline 18 low 6 1 high low short

random 18 low 6 1 low high long

bushy 18 high 6 1 high low long

variable 18 low 6 3 high low short

big 54 low 6 1 high low long

Table 2.1: Graph structures and access patterns.

Figure 2.2: Compute costs for varying graph structures and access patterns.

larger graphs are expensive (because the computation of a single box may depend on the

computation of a larger number of ancestors). Third, query paths in bushy graphs are more

expensive (a higher degree of connectivity also implies that the computation of a single box

may depend on the computation of a larger number of ancestors).

It is apparent that bu�ering 100% of the results as they are computed signi�cantly

reduces the average compute time per path. (Recall that there is a cost associated with

computing the results the �rst time, so even complete bu�ering can not reduce computation

time to 0.) The greatest gain is achieved for the random graph; 100% bu�ering in this

case is 13% of the cost of No Bu�ering. This data clearly demonstrates that bu�ering of

intermediate results is desirable.



27

Figure 2.3: Heuristic performance with 10% bu�ering.

We next examine the improvements that would be possible with a smaller bu�er.

In Figures 2.3 - 2.5, we show the relative bene�ts of the various bu�er management schemes

under a variety of conditions. We note that there is a certain minimum computational cost

that will be incurred by any solution. Note that this cost is represented by 100% bu�ering.

Therefore, we can compare solutions according to the computational cost they incur above

this minimum. Speci�cally, we eliminate the minimum computation cost before comparing

each heuristic solution with the No Bu�ering solution as follows. If a heuristic cost is h, the

100% bu�ering cost is B100, and the No Bu�ering cost is NB, the Y axis contains h�B100

NB�B100
.

Values close to 0% mean the heuristic closely approximates 100% bu�ering; higher values

mean the heuristic performs in a manner similar to No Bu�ering.

Figure 2.3 presents the performance of various heuristics on the same graphs,

access patterns, and query paths detailed in Figure 2.2, assuming a bu�er 10% of the size

of the 100% bu�er. Observe that graph structure and access pattern a�ect the behavior

of the heuristics. Considering graph structure, observe that the heuristics are clustered

together fairly tightly for the variable size graph set. This occurs because each heuristic

attempts to �ll the �xed size bu�er completely. As the bu�er �lls, an increasingly small

number of box results are viable candidates. As a consequence, there is a certain set of box



28

results with small space requirements that is chosen by most heuristics. This similarity in

bu�er allocations compresses the di�erence among the heuristics. Considering variations in

access pattern, observe that in the random graph set (which has longer query paths), the

performance of the heuristics is quite poor compared to that in the other graph sets. This

is not because the heuristics are making poor bu�ering decisions in the random graph, but

rather is a result of the small bu�er size. Even in the optimal solution for these query paths,

items must be removed from the bu�er and calculated again later.

Also observe that in many cases, heuristics come close to the performance of 100%

bu�ering. Speci�cally, k-Random and Path Cut tend to do extremely well. The relative

performance of the heuristics for each graph type and access pattern is relatively consistent,

with a few interesting exceptions. For example, in most cases Path Cut tends to outperform

Path Cut NP. However, it loses its advantage on query paths with a high degree of random-

ness. This implies that the worthiness assignment being used by Path Cut may be most

e�ective for access patterns in which the user has a high probability of moving backward

through the graph. Note that in the bushy and big graphs, Path Cut actually outperforms

k-Random. This is because k-Random has a much lower chance of �nding a good solution

for a long query path than for a short query path (since k is �xed and the set of solutions

for a long query path is much larger than the set of solutions for a short query path).

Also observe that FIFO does quite poorly in general, often worse than Random Average.

Intuitively, since FIFO bu�ers the most recently generated box results, it always attempts

to bu�er the result of the box that is being visited. Since the user most often moves away

from that box, often to ancestors that have no dependence on it, this is a poor strategy.

Figures 2.4 and 2.5 show the performance of heuristics as a function of the size

of the bu�er. Error bars represent 95% con�dence intervals. Note that the performance of

the heuristics quickly converges as the bu�er size increases. Observe also that for certain

strategies, a bu�er that is approximately half the size of the maximum bu�er can yield the

same performance as the maximum bu�er. This is largely because many query paths do

not access all box results, and so much of the maximum bu�er remains unused.

We tested many variants of the heuristics described in this chapter. In general, the

other heuristics we examined performed slightly worse than Path Cut and slightly better

than Path Cut NP.

We also investigated the usefulness of approximate rather than perfect information

about the probability distribution of the user's movements. The performance of heuristics



29

0%

10%

20%

30%

40%

50%

60%

70%

80%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of maximum buffer space

% of no buffering

FIFO

Random Average

Path Cut NP

Path Cut

k-Random

Figure 2.4: Heuristic performance for baseline case.



30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of maximum buffer space

% of no buffering

FIFO

Random Average

Path Cut NP

Path Cut

k-Random

Figure 2.5: Heuristic performance with high branching factor and long query paths.



31

using approximate information is quite close to that of the heuristics using perfect infor-

mation. Since history mechanisms may be used to approximately predict the user's future

movements, we conclude that keeping history about the user's access patterns is advisable.

We further observe that information about performance can be presented to the user. With

such a mechanism, the user can make informed decisions about their queries, e.g., they can

avoid boxes that will be expensive to compute.

2.7 Conclusions

We have seen that bu�ering of intermediate results can signi�cantly reduce the

latency of search queries in data
ow diagrams. Use of a relatively small bu�er can provide

substantial improvements over no bu�ering. Further, traditional strategies such as FIFO

are much less e�ective than the new heuristics that we propose. These heuristics approach

the maximal improvement possible. The most e�ective heuristics make predictions about

the user's access pattern, suggesting that a history mechanism is warranted. By bu�ering

intermediate results using these heuristics, we can signi�cantly reduce the latency of data

lineage queries.



32

Chapter 3

Weak inversion and veri�cation

3.1 Introduction

Data lineage support should be judged not only by its e�ciency, but by its quality

as well.1 In Chapter 2, we discussed a method by which intermediate results can be retrieved

e�ectively when queried by the user. In this chapter, we turn to the problem of retrieving

more re�ned results.

In this chapter, as an example, we consider the scenario of a scientist applying a

series of processing steps to an atmospheric data set and then viewing the result, a plot of

cyclone tracks, in a database visualization system. Suppose the scientist sees an anomaly

and wants to identify the input data that contributed to the unexpected value. The database

systemmay be able to trace the lineage of the anomaly at a coarse level, using metadata. For

example, it may be easy to determine that the cyclone track point originated in a particular

time step of the atmospheric data. However, tracing from a speci�c cyclone track point in

the processed data set to a particular atmosphere pressure value in the source data set is

not feasible using such an approach; the amount of metadata required is comparable to the

size of the data set.

We propose a novel method to support this type of �ne-grained data lineage.

Rather than relying on metadata, our approach computes lineage on-demand using a limited

amount of information about the processing operators and the base data. We introduce the

1Much of the material in this chapter appears in [54]. Copyright 1997 IEEE. Reprinted, with permission,

from Proceedings of the 13th International Conference on Data Engineering, Birmingham, England, Apr.

1997, pp. 91-102.



33

notions of weak inversion and veri�cation. While our system does not perfectly invert the

data, it uses weak inversion and veri�cation to provide a number of guarantees about the

lineage it generates. Weak inversion and veri�cation can eliminate much of the irrelevant

source data, thereby greatly reducing the amount of source data that the end user must

visualize. We propose a design for the implementation of weak inversion and veri�cation in

an object-relational database management system.

In the remainder of this section, we present a sample scenario that is used to

illustrate our principles throughout the chapter. Section 3.2 de�nes our abstract model of

weak inversion and veri�cation. Section 3.3 describes how this model can be extended to

a database environment and details the process by which expert users may register weak

inversion and veri�cation functions in an extensible database. Section 3.4 describes the

inversion planner. Finally, Section 3.5 presents conclusions.

Example scenario

As a real-world application of our techniques, we consider a scenario for extracting

cyclone tracks from atmospheric simulation data, based on [27]. In this subsection, we

present the processing steps used in this scenario. Throughout the chapter, to illustrate

portions of the model, we discuss the weak inversion and veri�cation of functions in this

example.

Validation of atmospheric simulations involves the comparison of model data to

observational data. Cyclone tracks form one type of reference for such comparisons. The

cyclone track extraction process begins with data generated by an Atmospheric General

Circulation Model (AGCM), a simulation of the global climate. Two functions are applied

to data output by the AGCM. The �rst function extracts local minima in sea level pressure

(SLP), each of which may be the center of a cyclone. The second function assigns these

minima to cyclone tracks. In the remainder of this subsection, we describe in detail the two

processing steps (Figure 3.1a) and the schema of the data (Figure 3.1b).

Each AGCM tuple contains a time stamp corresponding to one time step in the

simulation, as well as a multi-dimensional array. Each multi-dimensional array is divided

into cells representing a spatial location, and each cell contains a variety of data about

atmospheric conditions at each location, e.g., SLP value, wind velocity, and wind direction.

Figure 3.1c shows a visualization of one such array. Two dimensions are used to represent

x and y location. The SLP value of each location is shown by the degree of gray shading



34

AGCM Minima Tracks
minima

extraction
track

extraction

(a) Data
ow of cyclone track extraction.

LocationTime Array

AGCM

Time

Minima
Wind
Vel.

Wind
Direct. LocationTime

Tracks

Track

(b) Schema of cyclone track extraction.

(c) SLP plot (d) Cyclone track plot

(single timestep). (multiple timesteps).

Figure 3.1: Cyclone track extraction.



35

Din Rout

f

Din

I

I -1

f -1

Din Rout
f

I

I -1

f -1

(a) Application of f . (b) Inversion of f .

I -w

I
f -w

D
in

R
out

f

I -w

f -w I -w

I
f -wI -w

D
in

R
out

f

I
I -v

f -v

(c) Weak inversion of f . (d) Veri�cation of f .

Figure 3.2: Weak inversion and veri�cation.

used at that position in the plot.

A feature extraction algorithm is applied to this data to locate minima. It is

a neighborhood algorithm (described in more detail in Section 3.3.1) that outputs the

following data about each minimum (shown in the Minima table in Figure 3.1b): time,

location, wind velocity, and wind direction.

Cyclone track identi�cation is performed on the Minima table. The track identi-

�cation algorithm attempts to assign each minimum to the trajectory of some cyclone. To

be assigned to a given track a, the minimum at time t must (1) have a certain proximity to

the minimum in track a at the previous timestep t � 1 or (2) be consistent with the wind

velocity and direction of such a minimum. Some minima are not in fact cyclone centers

and are not assigned to any cyclone track. The output of the cyclone track identi�cation

phase is a list of the time, location, and track number of the minima that were successfully

assigned to tracks.

At this point, the user views the results of the data processing. Figure 3.1d is a

plot of the spatial movement of cyclone tracks as extracted by the process described above.

The scientist may be puzzled by one of the cyclone tracks because it does not match their

expectations or agree with the observational data. They would like to select the apparently

anomalous track and see all inputs that contributed to it. 2

Note that we use a 2 symbol to mark the end of examples.



36

3.2 Abstract model

In this section, we de�ne the model that will allow us to identify relevant inputs

for the user. We begin with a function f that maps from a domain D to a range R. Now

suppose the existence of sets Din � D and Rout � R such that Rout = ff(d)jd 2 Ding. In

Figure 3.2a, function f has been applied to each dot in set Din, yielding the set of triangles

in Rout. Note that Din and Rout represent the elements in each set, not the enclosing

rectangles themselves.

We are interested in inverting some subset of Rout. We call this subset I (the image

of f). If f is invertible, there exists some function f�1 : R! D such that f�1(f(d)) = d for

any d 2 D. We say that I�1f = ff�1(i)ji 2 Ig = fd 2 Din; f(d) 2 Ig is the inverse image

of I , i.e., the relevant members of Din that map onto I under f . To reduce notational

clutter, we use I�1 to mean the inversion of an image I under some function f (the f is

understood). Additionally, when necessary for this discussion, we use accents to distinguish

particular functions, e.g., f , f̂ , and ~f . When we de�ne such functions, their corresponding

images and inverse images are annotated Î , Î�1, etc.

Figure 3.2b shows f�1 mapping from the image I to the inverse image I�1. Again,

note that the image and the inverse image both represent sets of elements, rather than the

enclosing rectangles.

Not all functions are invertible; further, even if a function is invertible, its inverse

may not be known. In these cases, we call the hypothetical inverse image I�h. I�h is the

set of elements that actually map on to the image I ; note that I�h may not be derivable in

practice.

To approximate I�h, we begin with a weak inverse function f�w : R! D. f�w is,

strictly speaking, a relation rather than a function (members of the range may map to more

than one member of the domain). To avoid confusion with database relations, we refer to

f�w as a function. Applying f�w to I produces D�w = ff�w(i)ji 2 Ig, a set of values in

the domain D.

Recall that our goal is to approximate I�h as closely as possible. Note that by

de�nition f�w generates D�w without examining Din; therefore it may contain members of

D that are not in Din. However, any members that are not in Din can not have contributed

to the image, and therefore, do not belong in the inverse image. Hence, we can re�ne

D�w by intersecting it with Din. The result is called I�w, i.e., I�w = Din \ D�w . I�w



37

DinDin Rout
f

f -w

I
I -h

I -w

Rout
f

f -w

Din Din Rout
f

I
I -h

I -w

Din Rout
f

I -w

f -w
I

Din Rout

(a) Complete. (b) Pure.

Figure 3.3: Properties of weak and veri�ed inverse images.

approximates I�h.

Figure 3.2c shows f�w mapping from I to I�w. Recall that f�w does not produce

I�w directly; rather, I�w results from the intersection of D�w (the output of f�w) and Din.

As an example, suppose f is a function that maps from integers to their squares

and that I is the singleton set f9g in Rout. f
�w can conclude that D�w = f3;�3g. If Din

contains 3 but not -3, I�w = f3g.

Because f�w does not necessarily �nd the hypothetically perfect inverse image,

it is not guaranteed that ff�w(f(i))ji 2 I�hg = I�h. Instead, we specify the relationship

between I�w (the set that is identi�ed) and I�h (the set that is actually of interest) with

the following properties:

� complete: I�w � I�h. I�w is complete if it contains all items of interest. In this

case, there are no false negatives (items that should be included in I�w that are not),

i.e., f�w does not exclude any items of I�h from I�w . In Figure 3.3a, we see an

image I which inverts to an inverse image I�h and a function f�w which yields I�w

when applied to the members of I . In this illustration, I�h is contained by I�w, so

I�w is complete with respect to I�h.

� pure: I�w � I�h. I�w is pure if it contains only items from I�h. In this case, there

are no false positives, i.e., f�w does not include any items in I�w that are not in

I�h. In Figure 3.3b, I�w is contained by I�h, so I�w is pure with respect to I�h.

Complete and pure are related to the traditional information retrieval metrics recall

(the fraction of relevant documents that are retrieved) and precision (the fraction of

documents that are retrieved which are relevant) [12]. Speci�cally, complete represents

perfect recall and pure represents perfect precision.

Note that if D�w is both complete and pure, D�w = I�h, i.e., ff�w(i)ji 2 Ig is I�h.



38

Relationship to other sets Description De�nitions

f f : D! R function applied to Din to yield Rout

Din Din � D input set

Rout Rout � R output set Rout = f(Din)

I I � Rout � R portion of Rout being queried (the image)

I�1 I�1 � Din � D inverse image of I

f�w f�w : R! D weak inversion function of f

D�w D�w � D �lter on Din D�w = ff�w(i)ji 2 Ig

I�w I�w � Din � D weak inverse image of I I�w = Din \ D�w

f�v f�v : R�D ! D veri�cation function of f

I�v I�v � I�w � Din � D the veri�ed inverse image of I I�v = f�v(i; I�w)

Table 3.1: De�nitions.

In general, we use the term closeness to describe the relationship between the

weak inverse image and I�1. Note that not all sets with a given property are equivalent.

For example, if two weak inverse images A and B are complete, with jAj < jBj, A is closer

because it contains fewer irrelevant items and therefore more closely approximates the actual

inverse image. (We use the notation jAj to represent the cardinality of a given set A.)

Similarly, if two non-equal weak inverse images are pure, the larger one is closer because it

contains more relevant items (again, more closely approximating the actual inverse image).2

We next observe that not all functions have useful f�ws. (The most general f�w

outputs D, saying that it is complete, since it must contain all items that contributed to the

output items. We de�ne a useful f�w as one that is more restrictive, i.e., one that outputs

D�w � D).) Therefore, we introduce a veri�cation function, f�v , which has access to the

values in Din (the input set). f�v : R � D ! D takes I�w and I as input and outputs

a set I�v � I�w. In Figure 3.2d, the veri�cation function f�v is applied to I and I�w to

yield I�v. I�v can be described by the same properties as I�w , i.e., I�v can be complete

or pure. In addition, f�v can require that the input set I�w be complete or pure. We term

such restrictions application conditions.

Our basic notation is summarized in Table 3.1.

2A possible general formulation of closeness involves a unit-cost similarity metric: jA\ I�hj� jAnI�hj <
jB\I�hj� jBnI�hj. (Consider that the number of correct items in A is A\I�h and the number of incorrect

items is AnI�h. By subtracting the number of incorrect items from the number of correct items, we �nd an

approximate measure of accuracy.) For simplicity, during the rest of the chapter we consider only cases in

which we compare two pure or two complete sets.



39

3.3 Concrete model

This section applies the concepts of the abstract model to a speci�c environment,

the Tioga database visualizer [41, 2]. As described previously, Tioga adopts the boxes-and-

arrows programming paradigm popularized by AVS [49], Data Explorer [25], and Khoros

[34]. Every box is a user-de�ned function and arrows represent the 
ow of data between

these functions. Certain boxes are database browsers that visualize data and display it

to the user. Tioga functions are written by expert users and registered in POSTGRES,

an object-relational DBMS [43]. This registration mechanism can be extended so that the

expert user can register weak inversion and veri�cation functions.

In this section, we show how the set entities of the abstract model presented in

Section 3.2 map onto database tuples and attributes. The fact that tuples have multiple

attributes complicates the de�nition and application of the weak inversion and veri�cation

functions; we extend our model to address this issue. We then extend our model to allow the

weak inversion and veri�cation of portions of attributes, e.g., an element in an array. Next,

we extend the model from the inversion of single functions to the inversion of arbitrary

data
ow graphs. Finally, we present the procedure the expert follows to register weak

inversion and veri�cation functions in POSTGRES.

3.3.1 Extending the abstract model to a database environment

Each function in Tioga takes as input some table Din and yields as output some

table Rout. These tables are a generalization of the input and output sets Din and Rout of

the abstract model; the sets in the abstract model can be considered to be single-column

tables.

In this subsection, we discuss the inversion of attributes as well as the inversion of

elements within complex attributes, e.g., arrays.

Attributes

We begin with the image I that is to be weakly inverted. I in general consists of a

set of tuples, which may be expressed as a selection on Rout. For clarity, we consider that I

consists of a single tuple in this discussion. However, it is a straightforward generalization

to consider images that contain multiple tuples or are the result of applying a selection

predicate to Rout.



40

We have chosen to support weak inversion and veri�cation at attribute-level gran-

ularity. This has two primary advantages over tuple-level granularity. First, the user is only

required to provide weak inversion and veri�cation functions for attributes in which they

are interested or which they understand. Second, it allows more precise inversion.

The inverse image I�1 consists of the tuples in Din that contain attributes that

a�ected I . There is a separate weak inversion and veri�cation process for each attribute

within Rout, and each yields a single weak inverse image and veri�ed image. Therefore, f�w

for a tuple is comprised of a number of functions f�w1 ...f�wn . Each f�wk weakly inverts a

speci�c attribute k of Rout. We de�ne Ik as the projection of I on k. D
�w
k = ff�wk (i)ji 2 Ikg

describes a subset of the domain that might have contributed to Ik . Figure 3.4a shows the

inversion of single attributes within a single tuple. In the top of the �gure, attribute a

is weakly inverted, resulting in I�wa , which is shaded gray. In the bottom of the �gure,

attribute b is weakly inverted, resulting in I�wb , which is shaded gray. Note that the weak

inverses of these attributes may be di�erent tuples in Din; we will explore the signi�cance

of this later in the discussion.

In our concrete model, each f�wk outputs a Boolean expression ��wk containing

selections on Din. D�w
k is the result of ��wk applied to D. Similarly, I�wk is the result of

��wk applied to Din. I
�w
k may be complete or pure with respect to Ik . Additionally, I�wk

may possess a user-de�ned property with respect to Ik .

As with f�w , the veri�cation function f�v for a tuple is comprised of a number of

functions f�v1 ...f�vn . Each f�vk takes two inputs and veri�es a speci�c attribute k of Rout.

The �rst input to an f�v
k

is Ik. The second input is the weak inverse image I�w
k

. The user

may register requirements (application conditions) for the weak inverse image, i.e., an f�vk

may require that an input I�wk possess a speci�c property or properties with respect to Ik.

The output of an f�v
k

is I�v
k

; I�v
k

can be described by the properties we have previously

de�ned (pure, complete, or user-de�ned).

The expert user writes and registers each f�wk and f�vk individually. This user

may register zero or more weak inversion or veri�cation functions for each attribute. If the

user does not provide a weak inversion or veri�cation function for a given attribute, the

system provides a trivial default function (discussed below). Multiple weak inversion or

veri�cation functions for a given attribute may be desirable when di�erent weak inversion

or veri�cation functions for an attribute have di�erent properties. For example, one can

imagine registering one f�wk that is complete but not pure and another that is pure but not



41

D
in

R
out

f

f
a

-w

I a
-w

I
a

D
in

R
out

fb
-w

I
b

-w

I b

f

(a) Weak inversion of attributes a and b in I .

D
in

R
out

E
x

-w

E
x

-w

I
a

-v

I
aE

x
f x

-w

f

(b) Weak inversion of an element E in attribute a.

Figure 3.4: Weak inversion of multiple levels.

complete.

Although the weak and veri�ed inverse images consist of entire tuples in Din, the

user may want to know which attributes in Din are related to some speci�c attribute in Rout.

(we assume the existence of an interface through which the user speci�es the attribute(s)

in Rout of interest.) Such information can be inferred using the registration tables that are

described in Section 3.3.2 and presented to the user.

Weak and veri�ed inverse images of the same attribute may be combined. Further,

the weak and veri�ed inverse images of di�erent attributes in the image can be combined

to �nd the weak and veri�ed inverse images of the entire image. The resulting weak and

veri�ed inverse images of the entire image can be described as having a given property or



42

properties (pure, complete, or user-de�ned). In Section 3.4 we discuss methods of combining

weak and veri�ed inverse images and the properties that result from these combinations.

We assume that a small amount of bookkeeping is done during the combination of weak and

veri�ed inverse images to preserve information about which attributes in Din are related to

which attributes in Rout.

As an additional complication, attributes in an image may be the output of either

aggregate or scalar functions. As an example of an aggregate function, if an attribute a

in Rout is the maximum value of some attribute in Din, fa is aggregate. However, if an

attribute a in Rout is derived from values in exactly one tuple in Din, fa is scalar. In

Section 3.4, we discuss the di�erent rules for combining the outputs of these two types of

functions.

Example of weak inversion and veri�cation of an attribute

We now return to our cyclone extraction scenario. Recall the schema described

in Figure 3.1b. It is possible to write a trivial weak inversion function for the time �eld in

Minima. Speci�cally, if IT ime consists of the single value t (recalling that for purposes of

this discussion I is a singleton set), ��wTime is \select * from AGCM where AGCM.Time =

t". 2

Complex Attributes and Elements

We have assumed above that I consists of simple attributes within tuples in Rout.

However, POSTGRES supports a variety of complex attributes, e.g., arrays, tuple types (in

which an attribute may be broken down into a number of other attributes), and user-de�ned

types (which can only be manipulated using the methods de�ned for the type). Observe

that any attribute, whether simple or complex, can be weakly inverted and veri�ed within

the model described in Section 3.3.1.

We de�ne an element to be a member contained in a complex attribute, e.g., a

cell within an array or an attribute in an instance of a tuple type (we consider tuple to

be a type generator that takes a list of types as its arguments). The user may wish to

query an element within a complex attribute in Rout. For example, a scientist may wish to

invert a speci�c pixel within a satellite image. In this subsection, we extend the de�nition of

weak inversion and veri�cation functions to operate on elements within complex attributes.3

3We do not currently support these operations for subparts of arbitrary user-de�ned types that by nature



43

Therefore, the user may register an f�wk for any dimension k in an array. Similarly, the

user may register an f�wk for any attribute k of a tuple type. In either case, appropriate

f�vk s may also be registered. (Note that each element of a complex attribute may in turn

be a complex attribute. Therefore, weak inversion and veri�cation functions may exist for

an element within an element.) We assume the existence of some interface through which

the user can specify some element that they wish to invert.

For example, suppose there exist tables Din and Rout, each containing an attribute

of the array type, as shown in Figure 3.4b. Now imagine that E is an element within a

speci�c array attribute a and that the goal is to invert dimension x in a. Weak inversion

and veri�cation functions are applied to identify I�va in Din; the relevant tuples in Din are

shaded gray. Then, f�wx s are applied to each member of I�va .4 The result is E�w
x , which is

shaded black in Din.
5

Put more informally, we wish to invert an element E contained by an array a. First

we weakly invert and verify the higher level object a, yielding I�va . This result is shown in

gray. This result is the veri�ed inverse of all the elements in a, and we are interested in a

speci�c element, so now we must invert dimension x, the dimension of interest in element

E. We do not need to apply this inversion to all members of Din, since we have already

eliminated many from consideration by our inversion of a. Therefore, we apply all f�wx s to

the members of I�va . The result is speci�c elements in the tuples in I�va , shown in black.

We can then apply veri�cation functions to these elements (not pictured).

Weak inversion and veri�cation functions are not required to return values at the

same level as their arguments. We use the term level to describe the degree of nesting of an

attribute or element within a tuple. The top (�rst) level consists of the attributes in a given

table, the second level consists of the attributes or dimensions contained by the top level,

etc. Because weak inversion and veri�cation functions do not necessarily return values at

the same level as their arguments, the weak inversion of an element might yield a simple

attribute. Similarly, the weak inversion of an attribute might yield an element.

Example of weak inversion and veri�cation in the presence of complex attributes

do not have accessors known to the database. For example, if the user has registered a black-box circle type

with a radius method, we do not assume the radius is visible to our system. By contrast, if the circle type

is implemented as a tuple type, the radius and center-point are visible as attributes of the tuple type.
4The speci�c process is discussed in more detail in Section 3.4.2 below.
5We use I and E in this example to distinguish between the attribute and the element within the attribute.

However, in general, we still consider the output of an f�w
k

(f�v
k

) to be I�w
k

(I�v
k

).



44

Information Type

name of f�w
k

string

name of f string

nature of fk aggregate or scalar

image type type of attribute or dimension k within Rout being weakly inverted

inverse image types types of attributes or dimensions within Din that app ear in I
�w

k

properties of output I�w
k

complete and/or pure and/or user-de�ned

Table 3.2: Information to register for weak inversion functions.

Information Type

name of f�v
k

string

name of f string

nature of fk aggregate or scalar

image type type of attribute or dimension k within Rout being veri�ed

inverse image types types of attributes or dimensions within Din that appear in I
�v

k

properties of output I�v
k

complete and/or pure and/or user-de�ned

application conditions for I�w
k

complete and/or pure and/or user-de�ned

Table 3.3: Information to register for veri�cation functions.

Suppose the goal is to identify the inverse image of a speci�c minimum I in Min-

ima in our cyclone track extraction scenario. We now consider a method of inverting

Minima.Location. Recall that the function that extracts minima from AGCM.Array is a

neighborhood algorithm. Minima at a location (x, y) are identi�ed if they meet one of two

criteria:

1. All immediate neighbors of (x, y) have a higher SLP than SLP(x, y).

2. The average SLP of the 5x5 neighborhood centered at (x, y) (but exclusive of (x, y))

is higher than SLP(x, y).

Therefore, the classi�cation of I as a minimum may have resulted either from

values of its immediate neighbors or from values of the 5x5 neighborhood surrounding it.

Since there is no way to distinguish between these two cases without examining the values

in the AGCM table, the weak inversion of ILocation returns all cells in the 5x5 neighborhood

centered at ILocation. This weak inverse image is complete but not pure. The veri�cation

function has an application condition that speci�es that the weak inverse image must be

complete (it must be able to examine the entire 5x5 neighborhood).



45

The veri�cation function examines the contents of the 5x5 neighborhood and de-

termines which criteria applied. If the �rst applied, the veri�ed inverse image consists of

the immediate neighborhood. If the second applied, the veri�ed inverse image consists of

the 5x5 neighborhood. In both cases, the veri�ed inverse image is both complete and pure

with respect to ILocation. 2

Data
ow graphs

Thus far, the model has not addressed multiple inputs or outputs to functions.

However, a general data
ow graph is a DAG. We address this issue by restructuring the

data
ow graph into groups of functions with one input and one output. We invert these

groups separately. We then combine the results of the inversions.

More speci�cally, we de�ne a chain in a data
ow graph to be a linear sequence

of functions from an input to an output. Each function in the chain is called a step. An

arbitrary data
ow graph may be broken down into a number of such chains. Each chain is

inverted separately (the speci�c process for inverting a chain is discussed in Section 3.4).

The results of the inversions of each chain are unioned to �nd the inversion of the entire

data
ow graph.

3.3.2 Registration procedure

The expert user must register several pieces of information about weak inversion

and veri�cation functions. This information is used by the inversion planner described in

Section 3.4 to infer which functions should be used for weak inversion and veri�cation.

The user begins by identifying the name of the function that will perform the

weak inversion or veri�cation. The user next identi�es the function f that is being weakly

inverted and veri�ed. The user also speci�es whether the attribute being inverted results

from an aggregate or scalar function, i.e., fk is described as aggregate or scalar.

The user must also register information that allows the inversion planner to infer

which weak inversion and veri�cation functions apply to a given attribute. Therefore, for

each inversion function, the user speci�es the types of the relevant attributes (or dimensions)

in the image and in the inverse image. The inversion planner searches for attributes (or

dimensions) in Din and Rout that match these speci�ed types.6

6This typing system may lead to ambiguities, e.g., if two attributes of the same type appear in Din and



46

Finally, the user enters information about the properties of the sets output by

the weak inversion and veri�cation functions. Note that if a property is speci�ed for an

output set, it is guaranteed to be true. However, if it is not speci�ed, it might or might not

pertain. The information the expert user enters to register an f�wk or an f�vk is summarized

in Table 3.2 and Table 3.3.

As mentioned in Section 3.3.1, in addition to the f�wk s or f�vk s registered by the

user, every attribute or element resulting from every function has a default f�wk and a default

f�vk . The default f�wk outputs a �lter ��wk consisting of no selections, i.e., I�wk = Din. The

default I�wk is therefore guaranteed to be complete, but it is not guaranteed to be pure

or to possess any user-de�ned properties. The default f�vk outputs I�wk . Therefore, the

default I�vk has precisely the same properties as the I�wk it takes as input. Note that if both

defaults are used, I�wk = I�vk = Din.

User-de�ned properties are registered in a separate mechanism in which the user

speci�es the name of the property and the combination rules that apply to it (either complete

or pure rules as described in Section 3.4.1).

3.4 Inversion planner

The inversion planner is responsible for devising a plan to weakly invert and verify

the image selected by the user. The result of the execution of this plan must match the

user's speci�cation of properties as closely as possible (e.g., the user may specify that they

wish the veri�ed inverse image to be complete or pure). The plan speci�es which weak

inversion and veri�cation functions will be applied to which tables in what order.

In this section, we discuss how properties of weak and veri�ed inverse images can

be preserved during the combination of weak inversion and veri�cation functions. We then

present the algorithm the inversion planner follows to invert a chain.

We make several simplifying assumptions. In Chapter 9 we consider further opti-

mizations which may be made if these assumptions are relaxed.

� We assume all tables (including intermediate results) are materialized.

the registered information for f does not permit us to infer which function produces which attribute. In an

alternative design, the user might specify the precise names of the attributes in the image and inverse image.

However, such a design limits the degree to which weak inversion and veri�cation functions may be easily
reused, forcing the user to explicitly register weak inversion and veri�cation functions for every attribute

that is to be inverted.



47

� We assume there is a per-tuple cost of applying an f�wk or an f�vk (as opposed to,

e.g., a �xed or per-byte cost).7

� We assume that the planner is trying to �nd the closest possible veri�ed inverse image.

� We assume that the desired properties as speci�ed by the user are the same for all

veri�ed inverse images in a chain.

3.4.1 Preservation of properties

We have already discussed several properties of sets (complete, pure, user-de�ned).

Some combinations of sets preserve such properties and some do not. We begin our dis-

cussion of the preservation of properties by detailing inversion of a single function (simple

attributes and complex attributes). Next, we discuss inversion of multiple functions.

Preservation of properties during the inversion of simple attributes

This subsection covers two primary types of combinations. First, for a given

dimension k, I�wk s or I�vk s may be combined to improve the closeness of the inversion of k.8

Second, to this point, we have only considered weak inversion and veri�cation of attributes

in the image. However, after all individual attributes have been fully inverted, a higher-level

combination may also be performed. Speci�cally, the results of the inversion of multiple

attributes may be combined to assemble the inverse image of an entire tuple. (Similarly, the

results of the inversion of multiple dimensions within a complex attribute may be combined

to assemble the inverse image of the complex attribute.) In the latter part of this subsection,

we describe how such combinations may be advantageous.

We begin by considering the case in which Rout contains exactly one attribute, y.

Recall that multiple weak inversion functions f�wy may be registered for a single attribute

(i.e., the inversion planner may have the choice of several weak inversion functions). We

have already observed that it is desirable to have di�erent weak inversion functions that

have di�erent properties. However, it is also desirable to have multiple weak inversion

functions with the same property to increase the closeness of the weak inversion. There

7Note that these are not the only alternatives, e.g., a function that has cost quadratic in its input does

not have a �xed per-tuple cost.
8In general, we use the term dimension to refer to either an attribute that is being weakly inverted and

veri�ed or a dimension within an array that is being weakly inverted and veri�ed.



48

are two interesting cases. First, suppose we have two weak inversion functions, each of

which returns a pure set (call them A and B).9 If A 6= B, the union of A and B yields

a strictly larger pure set (the larger a pure set, the more accurate it is). Second, if the

weak inversion functions yield complete sets, the intersection of A and B yields a strictly

smaller complete set (the smaller a complete set, the more accurate it is). Observe that

these rules of combination apply whether fy is scalar or aggregate. Figure 3.5a shows the

hypothetical inverse of a given image I . Figure 3.5b shows two di�erent weak inversions

and their results A and B. Note that because A and B are complete, their intersection

contains the hypothetical inverse (shown in black).

Now consider the combination of the weak inverse images of multiple dimensions.

First, we discuss the case in which the fks are scalar. If a tuple in I�1 is relevant to a

tuple in I , it must be relevant to each attribute of I , i.e., for all k, it must be a member

of I�1k . Therefore, in general, if multiple attributes are scalar, the weak inverse images of

these should be intersected to �nd the weak inverse image of the entire tuple (or if multiple

dimensions are contained in a complex attribute, the intersection of the weak inverse images

of each dimension �nds the weak inverse image of that complex attribute).

As a concrete example, consider the case in which Rout contains precisely two

attributes x and y. Suppose the image I consists of exactly one tuple that we wish to

invert.

Now suppose that I�wx is complete in relation to x. (This does not guarantee that

it is complete in relation to y.) Also assume that I�wy is complete in relation to y. (Again,

this does not guarantee that it is complete in relation to x). Observe that any tuple that is

relevant to I must be relevant to both the x and y values in I ; since both I�wx and I�wy are

complete, all relevant tuples must appear in both sets. Therefore, I�wx \ I�wy contains all

possible tuples that may be relevant to I , i.e., I�wx \I�wy is complete in terms of I . However,

some of the tuples in the intersection may not be relevant. Figure 3.5c shows two functions

f�wx and f�wy . The weak inverses they create, I�wx and I�wy , are complete. Therefore, the

intersection of these inverses contains the hypothetical inverse (shown in black).

Pure sets follow the same combination rules, although the logic is slightly di�erent.

Suppose that I�wx is pure in relation to x and I�wy is pure in relation to y. Any tuple that

appears in both sets is guaranteed to be relevant to both x and y. The intersection therefore

9Examples in this section refer to the combination of I�w
k

s. The same rules apply to D�w
k

s and I�v
k

s.



49

contains only relevant tuples, although it may not contain all relevant tuples.

Next, we discuss the case in which fks are aggregate. Suppose Rout contains two

attributes x and y. In this situation, there is no guarantee that a single tuple in Din must

be relevant to I . For example, suppose x is the maximum of an attribute a in Din and

y is the maximum of an attribute b in Din. The weak inverse images of x and y may be

disjoint; however, both are relevant to I . Therefore, all weak inverse images associated with

aggregate fks (whether complete or pure) should be unioned.

Finally, consider the case in which some fks are scalar and some are aggregate.

All weak inverse images associated with scalar fks should be intersected as speci�ed. Then,

all weak inverse images associated with aggregate fks should be unioned. As the last step,

both of the resulting sets should be unioned. Observe that whether the system is combining

sets within one attribute or combining sets for multiple attributes, there is no case in which

it is desirable to combine a pure set with a complete set.

In some cases, the system may invert a subset of the attributes in an image (either

because the user has speci�ed that only those attributes are of interest or because interesting

weak inversion and veri�cation functions are not available for all attributes). Notationally,

if a set has certain properties with respect to multiple attributes 1...k in the image, we say

that it has those properties with respect to I1:::k.

Example of weak inversion and veri�cation of multiple scalar attributes

Returning to our cyclone track extraction example, consider the weak inversion and

veri�cation of an image in the Tracks table. Suppose that weak inversion and veri�cation

functions have been registered for the attributes Time and Location. Observe that fT ime

and fLocation are scalar. Also note that each of these attributes has trivial weak inversion

and veri�cation functions that yield sets that are complete and pure with respect to the

individual attributes Time and Location (the values in Minima are identical to those in

Tracks). Therefore, since the forward functions are scalar, the system intersects I�vT ime and

I�vLocation. The result is complete and pure with respect to IT ime; Location. 2

Preservation of properties during the inversion of complex attributes

Recall from Section 3.3.1 that the weak and veri�ed inverse images of an image

can exist at multiple levels. In this subsection, we consider the properties of these di�erent

levels in the weak and veri�ed inverse images. First, we discuss the properties of a single



50

R
out

D
in

If -1

f

I -1

R
out

D
in

(a) Inversion of an attribute.

R
out

D
in

A

B

f

fy
-w

fy
-w

R
out

D
in

(b) Combination of two complete I�wy s.

R
out

D
in

f

f
x
-w

fy
-w

R
out

D
in

(c) Combination of a complete I�wx and a complete I�wy .

Figure 3.5: Combination of weak inverse images.



51

level in the weak and veri�ed inverse images. Second, we discuss the properties of multiple

levels in the weak and veri�ed inverse images.

In Section 3.4.2, we present the speci�c process by which the weak and veri�ed

inverse images are identi�ed. For now, it is su�cient to understand that each level in the

weak and veri�ed inverse images is calculated by a set of independent weak inversion and

veri�cation functions. The weak inversion and veri�cation functions for a single level in

the inverse image may invert di�erent levels in the image. For example, one function may

weakly invert an attribute in the image to tuples in the weak inverse image; another function

may weakly invert an element in the image to tuples in the weak inverse image as well. In

general, the resulting weak or veri�ed inverses are combined according to the combination

rules described in Section 3.4.1 above.

Since each level in the inverse image is computed separately, each level in the

inverse image can have di�erent properties with respect to the various levels in the image.

However, the properties of a level in the inverse image a�ect the properties of all levels

below it. Speci�cally, the weak or veri�ed inverse image of a lower level can only have a

given property with respect to a level in the image if all higher levels in the inverse image

have that same property. This implies that levels in the inverse image are computed in a

top-down manner, which in turn implies that each level in the inverse image is a subset of

the higher levels.

For example, suppose that in Figure 3.4b, f�va identi�es tuples containing satellite

images that contributed to an aggregate satellite image Ia and that the output of f�va is

complete with respect to Ia. Now suppose that f�wx identi�es the region of each satellite

image that contributed to Ex and that its output E�w
x is pure with respect to Ex. Observe

that f�wx might be applied to a member of I�va that is not relevant to Ia; the resulting E
�w
x

is therefore not relevant to Ia. Consequently, E
�w
x is not pure with respect to Ia (it would

be pure only if I�va were pure).

Example of preservation of properties during inversion of complex attributes

Consider the inversion of an image I in the Minimum table of the cyclone track

extraction example. This inversion is performed in two steps.

First, the system weakly inverts and veri�es the top level of AGCM. We as-

sume weak inversion and veri�cation functions are available for Minima.Time and Min-

ima.Location. The system applies weak inversion and veri�cation functions to identify



52

D
in

f

II -1 f -1f -1

I -1

f

D
out 

/ D
in

D
out

D
in

(a) Inversion of two functions.

D
in

f

II -1 f -1
f -1

f -w

f -w

f -w

I -w

I -1

f

D
out 

/ D
in

D
out

D
in

(b) Weak inversion of two functions.

Figure 3.6: Weak inversion of a chain.

Î�vT ime (both D̂
�w
Time and f̂

�v
T ime restrict AGCM.Time). Î�vT ime is complete and pure. Applying

the weak inversion function to ÎLocation yields a complete set Î�wLocation that consists of all

tuples in AGCM. Applying the veri�cation function to Î�wLocation yields a complete and pure

set Î�vLocation that also consists of all tuples in AGCM (the veri�cation function is able to

verify that the array in each tuple contains ÎLocation). At this point the system uses the

combination rules: it intersects Î�vT ime and Î
�v
Location to �nd a veri�ed inverse image Î�v that

is complete and pure with respect to ÎT ime; Location.

Next, the system weakly inverts and veri�es the second level of AGCM. It uses

the weak inversion function described in Section 3.3.1 to generate a �lter ~��wLocation. It

applies this �lter to every member of Î�v. The result ~E�w
Location is complete with respect

to ÎLocation. It then applies the veri�cation function ~f�vLocation to ~E�w
Location, which yields a

complete and pure set ~E�v
Location. Since the weak inversion and veri�cation of both levels

is complete and pure, the result of the second level inversion is complete and pure with

respect to ÎT ime; Location. 2

Preservation of properties during the inversion of multiple functions

In this section, we show how our abstract model generalizes to chains. Observe

that the properties of weak and veri�ed inverse images are transitive.



53

For example, consider a chain with two functions f̂ and f in which the output of

f̂ is input to f . Suppose that an expert user has registered functions that provide weak

inversion and veri�cation of each of these functions.

Now suppose an end user wishes to �nd the inverse image of an image in Rout

(see Figure 3.6a). The user would like to identify the relevant inputs in both Din and D̂in.

Ideally, the system would use f�1 to invert the image and identify I�1 in Din. Then, it

would treat I�1 in Din as an image in R̂out and �nd its inverse image Î�1 in D̂in.

The system can apply its weak inversion functions in this situation as follows (we

assume these weak inversion functions are complete). It begins by �nding a weak inverse

image in Din.
10 However, the user wishes to see the relevant inputs from D̂in as well. This

is accomplished by using I�w as an image in R̂out. Recall that the weak inverse image can

di�er from the actual inverse image. Chaining weak inversion functions together ampli�es

this inaccuracy. Figure 3.6b shows the image from Figure 3.6a extended to show the results

of applying weak inversion functions. Observe that applying f̂�w to I�w yields a larger

(and more inaccurate) set than applying f̂�w to I�1.

Despite this loss of accuracy, the system can still make certain guarantees about

the relationship of weak inverse images to inverse images in these situations. The key

observation is that completeness and purity are both transitive properties. Speci�cally, if

both f�w and f̂�w are complete, so are their outputs. In Figure 3.6b, therefore, both f̂�w

applied to I�1 and f̂�w applied to I�w are complete, though neither is pure.

Example of preservation of properties during inversion of multiple functions

Consider the data
ow diagram in Figure 3.1a. In Section 3.4.1, we showed that

the weak inversion and veri�cation of certain attributes in Tracks yields a complete and

pure veri�ed inverse image in Minima. Similarly, in Section 3.4.1 we showed that the weak

inversion and veri�cation of certain attributes in Minima yields a complete and pure veri�ed

inverse image in AGCM. Therefore, the weak inversion and veri�cation of an image in Tracks

yields complete and pure veri�ed inverse images in both Minima and AGCM. 2

10It would also be possible to �nd a �lter or a veri�ed inverse image and use it as the image. Each of
these cases has di�erent performance implications, as discussed in Section 9.2.1. For simplicity, we assume

that we are using the weak inverse image for the remainder of this section.



54

3.4.2 Inversion planner algorithm

In this subsection, we �rst discuss ordering constraints for weak inversion and

veri�cation. We then present an algorithm that follows these constraints as well as those

presented in Section 3.4.1.

We have discussed several stages of weak inversion and veri�cation of a chain. If

weakly inverting or verifying some part of the chain impacts the weak inversion or veri�-

cation of some other part, we say the former part a�ects the latter. For example, consider

Figure 3.6b. If the weak inversion and veri�cation of f were more accurate, then I�w would

be more accurate. The improved I�w could be used as an image input to f̂�w resulting in a

more accurate Î�w. Therefore, we say that the weak inversion and veri�cation of f a�ects

the weak inversion and veri�cation of f̂ .

There are two critical observations about which parts of the chain can a�ect others:

1. The inversion of a step can a�ect the inversion of any step to its left (although it can

not a�ect the inversion of steps to its right).

2. Within a step, one inversion can a�ect another inversion that yields a lower level in

the inverse image (since the lower levels in the inverse image are a subset of the higher

levels). Conversely, one inversion can not a�ect another inversion that yields a higher

level in the weak or veri�ed inverse image.

These observations suggest a natural ordering of the inversion process:

1. Steps should be weakly inverted and veri�ed proceeding from right to left.

2. Within a step, each level in the inverse image should be computed (weakly inverted,

veri�ed, and combined) before the levels below it are computed.

Combining the constraints of Section 3.4.1 (preservation of properties) and Sec-

tion 3.4.2 (ordering) we arrive at the algorithm presented in Figure 3.7.

Example application of algorithm

We have discussed all the weak inversions and veri�cations necessary to trace the

relevant inputs of the cyclone track extraction scenario presented in Section 3.1. According

to the algorithm for the inversion planner, the complete weak inversion and veri�cation of

an image I in Tracks would consist of the following steps:



55

� Weakly invert and verify I , yielding a complete and pure veri�ed inverse image I�v

in Minima (as described in Sections 3.3.1 and 3.4.1). Speci�cally, the system will:

1. Weakly invert and verify the attributes Tracks.Time and Tracks.Location.

2. Intersect I�vT ime and I�vLocation (see Figure 3.8a11).

� Weakly invert and verify I�v yielding a complete and veri�ed inverse image Î�v in

AGCM (as described in Sections 3.3.1 and 3.4.1). Speci�cally, the system will:

3. Weakly invert and verify the attributes Minima.Time and Minima.Location, �nd-

ing the top level of the veri�ed inverse image.

4. Intersect Î�vT ime and Î�vLocation. The result is Î
�v in AGCM. Î�v is the set of the

members of AGCM that are relevant to I�v (see Figure 3.8b).

5. Weakly invert the attribute Minima.Location, �nding the second level of the

weak inverse image. The result is ~E�w
Location which is complete but not pure.

6. Verify ~E�w
Location yielding

~E�v
Location (the result of applying the veri�cation function

is shown in Figure 3.8c). ~E�v
Location is both complete and pure (as discussed in

Section 3.4.1). 2

3.5 Conclusions

We have proposed a method to support �ne-grained data lineage. Rather than

relying on metadata, our approach computes lineage on demand using a limited amount

of information about the processing steps. This approach incorporates weak inversion and

veri�cation. While the system does not perfectly invert the data, it provides a number of

guarantees about the lineage it generates on the 
y.

We have proposed a design for the implementation of weak inversion and veri�ca-

tion in an object-relational DBMS. While we have not had the opportunity to implement

this design, the functionality it describes has a number of interesting applications. For

example, in the context of this dissertation, when users perform data lineage queries, weak

inversion/veri�cation can eliminate irrelevant source data, thereby reducing clutter in the

display.

11For clarity, Figure 3.8 illustrates only attributes that are in the weak and veri�ed inverse images rather

than the entire tuple. As mentioned in Section 3.3.1, a small amount of bookkeeping is done to facilitate
such a presentation to the user.



56

for each step num steps to 1

for each left level 1 to num left levels

for each right level

for each dimension k in 1 to num attributes

�nd all f�vk s that have the desired property

�nd all f�wk s with matching application conditions

remove the f�v
k

s that can't be satis�ed

end;

end;

end;

for each left level 1 to num left levels

for each right level k in 1 to num attributes

for each dimension

apply all f�wk s

apply the �lters to get the I�wk s

combine the I�wk s for the dimension

for each right level

apply all f�vk s

combine the I�vk s within each dimension

end;

combine the I�vk s across dimensions

end;

end;

Figure 3.7: Algorithm for inverting a chain.



57

12:00

LocationTime Array

AGCM

Time

Minima
Wind
Vel.

Wind
Direct.

38N 100W

38N 100W

LocationTime

Tracks

12:00 38N 100W

Track

12:00

12:00

fTime

f
Location

2

1 II -v

-w

-w

(a) Identifying the veri�ed inverse image of the track extraction.

LocationTime Array

AGCM

Time

Minima
Wind
Vel.

Wind
Direct.

38N 100W

LocationTime

Tracks

12:00 38N 100W

Track

12:0012:00

fTime

II -vI -v

4

3

fLocation

-w

-w

(b) Identifying the top-level veri�ed inverse image of the minima extraction.

LocationTime Array

AGCM

Time

Minima
Wind
Vel.

Wind
Direct.

38N 100W

LocationTime

Tracks

12:00 38N 100W

Track

12:0012:00 II-vI -v

5

f
Location

6

-w

f
Location

-v~

~

(c) Identifying the second-level veri�ed inverse image of the minima extraction.

Figure 3.8: Inversion of cyclone track extraction.



58

Part II

Constant information density in

zoomable interfaces



59

Chapter 4

Pilot study

4.1 Introduction

In Part I, we addressed data lineage, the �rst of two main problems Earth scien-

tists identi�ed in existing visualization systems. In the work described in this part of the

dissertation, we address the second problem: achieving appropriate information density in

visualizations. Our solution uses a cartographic principle to guide the construction of vi-

sualizations. The Principle of Constant Information Density, drawn from the cartographic

literature [16, 45], states that the number of objects per display unit should be constant.

A more general formulation posits that the amount of information (as de�ned by metrics

discussed below) should remain constant as the user pans and zooms.

To investigate the usefulness of this principle in database visualization, we per-

formed a small, informal study of user navigation behavior in applications with and without

constant information density. To our knowledge there have been no similar studies. There-

fore, our purpose in this study was to gain intuition about navigation patterns and to

identify interesting directions for future research. Note that our intent was not to exam-

ine density metrics and appropriate values for these metrics, but rather to examine user

response to density variance according to a given metric.

The rest of this chapter is organized as follows. We �rst describe our method,

apparatus, participants, procedure, and task. We then present the results of the study and

discuss them. We next describe user response and limitations of the study, and �nally, we

conclude.



60

4.2 Method

Visualizations of data for Fortune 500 and Global 500 companies were used in the

study. The visualizations displayed scatterplots with % pro�t and number of employees on

the x and y axes, respectively.

We wished to present participants with displays that were uniform in the x and

y dimensions, because non-uniformity could have biased their behavior, e.g., they could

have shown more interest in areas with more data. Therefore, we sampled the data such

that it was distributed nearly uniformly in the x and y dimensions. (Certain areas of the

scatterplot had no data whatsoever, so our spatial sampling did not result in a perfectly

uniform distribution.)

Using this spatial sampling, we produced a a total of four data sets, containing

436, 350, 100, and 48 members. Each smaller data set was a strict subset of all larger data

sets.

For each of the data sets, we created a layer that contained exactly one object (a

circle) for each member of its data set. The x axis represents the percent pro�t (pro�t dollars

divided by revenue dollars) of the company during a given year. The y axis represents the

number of employees of the company. The color of the circle represents the pro�t of the

company in dollars.

We used our extensions to DataSplash (described below in Chapter 5) to create

four visualizations that contained these layers. Each visualization had a top layer that was

visible at higher elevations and a bottom layer that was visible at lower elevations. The top

layer in each visualization contained either 48 objects (low density) or 350 objects (high

density). The bottom layer in each visualization contained either 100 objects (low density)

or 436 objects (high density). All possible combinations of top and bottom layers with low

or high density yielded four versions of the visualization. Note that while this design varied

the number of objects visible in di�erent layers, it did not vary the type of information

visible in di�erent layers, e.g., no text labels appeared as the user zoomed. This control

was included to allow us to focus on participants' responses to di�erent numbers of objects.

The active elevation ranges of the top and bottom layers were the same in all visu-

alizations. Therefore, the transition (the elevation at which the top layer became invisible

and the bottom layer became visible) was the same in all visualizations. At the highest

elevation, the entire native data space was visible in the display. At any other elevation,



61

Layer Low Low (LL) Low High (LH) High Low (HL) High High (HH)

Top Vis. at top 48 48 48 48 350 350 350 350

Vis. at transition 31 31 224 224

Bottom Vis. at transition 100 64 436 279 100 64 436 279

Vis. at bottom 36 157 36 157

Table 4.1: Number of objects visible at di�erent elevations in visualizations.

participants who wished to examine the entire native data space at that elevation could do

so by panning.

Table 4.1 presents details about the number of objects visible in the display in

each layer in each visualization. Each group shows the base number of objects in the

layer as well as the number of objects visible at the highest and lowest elevations of the

layer. Observe that signi�cant discontinuities in density occur at the transition point in

all visualizations except High/High. (Hereafter, we will refer to each visualization by its

two-letter abbreviation.)

4.3 Apparatus

We wished to reach as wide an audience as possible. Therefore, we developed a

simple Java applet that displays visualizations generated in DataSplash. For purposes of

this experiment, the applet was embedded in a World-Wide Web page so that anyone with

World-Wide Web access could easily participate.

The applet supports only simple navigation tasks. Speci�cally, it only supports

pan and zoom functionality. To pan, the user clicks in the display; the point on which

they click becomes the center of the visualization. To zoom, the user presses one of two

buttons, \Zoom In" and \Zoom Out." In this experiment, these buttons took users to one

of nine possible elevations. Dynamic labels on the x and y axes indicated the current range

of values of visible objects. In the study, the applet displayed one of the versions of the

visualization described above. A screenshot of the applet appears in Figure 4.1. In this

�gure, the user is at the highest possible elevation and the canvas shows a top layer of high

density.

The applet recorded data about each of the panning and zooming commands made

by the participants. Data collected included the command type, the x, y, and z location at

which the command was made, and the time of the command.



62

Figure 4.1: The applet used in the pilot study.

4.4 Participants

Seventy-nine participants were recruited through technical mailing lists and news

groups. Participants' ages, levels of education, and self-reported levels of exposure to graph-

ical representations of data varied widely.

4.5 Procedure

The recruitment instructions stated that we were conducting a study of how people

interpret visualizations of data. It asked volunteers to visit a site on the World-Wide Web.

Visitors to this site viewed a \Welcome" page. As an incentive, we stated that respondents

would be entered in a drawing for a free T-shirt. We also stated that respondents who got

the correct answer would be entered in a drawing for an additional T-shirt. If individuals

decided to participate in the study, they proceeded to the next page.

At this point, participants were provided written instructions about the functional-

ity of the applet. The spatial metaphor and panning and zooming operations were described



63

in detail. The instructions explicitly stated that when participants zoomed in or out, the

contents of the display might change. Speci�cally, they were told that objects might appear,

disappear, or change form when they used the zoom operation.

Participants were told the visualization represented data about selected companies

from Fortune Magazine's Fortune 500 and Global 500 lists. The meaning of the axes and

color assignments were described.

Each participant viewed exactly one version of the visualization. The version

presented was chosen randomly. Instructions were the same for all versions. All users

began the experiment centered in the x,y coordinates of the data space and positioned at

the highest possible elevation.

4.6 Task

Participants were asked to locate the company they thought had the highest rev-

enue growth (revenue growth is expressed as percent change from the previous year). Be-

cause this information was not explicitly present, they were expected to infer it from the

other data displayed in the visualizations; the inferential nature of the task is discussed

further below.

When participants identi�ed a company they thought might have the highest rev-

enue growth, they were to press the \Select" button. When they did so, the x,y values

of that company appeared in a text box to the right of the \Select" button. Participants

were allowed to perform the select operation as many times as they wished. When they

were �nished, they pressed the \Submit" button and proceeded to an exit survey in which

they answered brief questions about the visualization and provided limited demographic

information.

4.7 Results and discussion

Out of the seventy-nine participants, �fty-seven zoomed to the transition point

at least once. Because users who did not zoom to the transition point could not have

been a�ected by the variation in density between the two layers, we present the data from

those �fty-seven traces only. These traces are relatively evenly distributed among the four



64

Version LL LH HL HH

% Participants 80% 89% 71% 80%

Table 4.2: Percentage of participants returning to top layer.

Version LL LH HL HH

Top 20.5 17 11.5 11

Bottom 11.5 3 5 1

Table 4.3: Median number of pan operations.

versions.1

To assess the e�ect of constant information density on zooming behavior, we mea-

sured the percentage of participants who zoomed back to the top layer after visiting the

bottom layer. Results appear in Table 4.2.

Zooming appears to be in
uenced by constant information density. Observe from

the data in Table 4.2 that users of the LL and HH visualizations were equally likely to

return to the top layer. This suggests that the constant information density increased the

likelihood that users would move between layers. By contrast, users of the LH visualization

were disproportionately likely to return to the top layer. A probable explanation is that

they did not like the clutter in the lower elevation and therefore wanted to return to the

higher elevation that we hypothesize is more visually appealing. Similarly, users of the HL

visualization seemed reluctant to return to the high elevation; we hypothesize they preferred

staying in a visually appealing lower elevation to returning to a cluttered higher elevation.

To assess the e�ect of density on panning, we measured the number of pan op-

erations in both the top and bottom layers. Nearly all pan operations were performed at

one of two elevations: the highest elevation in the top layer and the lowest elevation in the

bottom layer. Table 4.3 shows the median number of pan operations in these layers at these

elevations.

Our data do not suggest that panning is in
uenced by constant information density.

It appears to be more strongly in
uenced by the properties of individual layers. Table 4.3

illustrates that participants were more likely to pan in the top layer than in the bottom

1The LL version had 10 participants, the LH version had 18 participants, the HL version had 14 partici-
pants, and the HH version had 15 participants.



65

layer. It also shows that users panned more often in low density layers than high density

layers. An interesting observation is that the ratio of panning in the top and the bottom

layers of the LL visualization is comparable to that in the HL visualization. Similarly, the

ratios in LH and HH are similar. This suggests that the ratios are driven more strongly by

the density of the bottom layer than by other factors.

Since information density appears to a�ect user navigation, designers of zoomable

applications should take density measurements into account when designing applications.

If they do not, users may be in
uenced by the information density and behave in ways not

intended by the designer.

4.8 User response

Many users responded positively to the applet, saying for example that the visu-

alization was \Easier to read than most 3D graphs." However, there were two recurring

complaints. First, quite a few users found the panning mechanism di�cult to use. Several

articulated that they would have preferred scroll bars. Second, several users stated that

they found the task confusing. Our intent was that participants would infer a relationship

between the variables presented and the variable they were supposed to predict (revenue

growth). For example, they might infer that companies with fewer employees would be

smaller and therefore more likely to experience rapid growth. We hoped that they would

infer this relationship by exploring the relationships that were explicitly present in the

graph. The participants who said they had been confused appeared from their comments

to have performed this inferential task, but were not certain they had been correct in doing

so. In retrospect, the inferential nature of the task should have been made more clear.

4.9 Limitations

There are a number of obvious limitations in this pilot study. While the World-

Wide Web was a good way to reach a broad spectrum of users, the participants and the

testing conditions were not controlled. Further, the speed of the computer was not con-

trolled. Based on user comments, e.g., one of the users of the HH version said the applet

was \nicely responsive," we do not have reason to believe computer speed in
uenced the

results. However, a more formal study should minimally ensure that all layers within a



66

visualization are equally responsive.

4.10 Conclusions

We have performed an informal study of user navigation in applications with and

without constant information density. Our preliminary results suggest that information

density a�ects user navigation and should therefore be taken into account during the con-

struction of visualizations.



67

Chapter 5

End-user control of information

density

5.1 Introduction

Previously, we introduced DataSplash, a direct-manipulation interface for con-

structing zoomable database visualizations [2].1 In DataSplash, objects appear in a two-

dimensional canvas. Users view the canvas as if with a camera that moves in three-

dimensional space but always points straight down at the canvas. Users can pan across

the canvas (changing the x,y location of the camera). Users can also zoom in and out above

the canvas (changing the z location, or elevation, of the camera). Because a given set of ob-

jects looks di�erent when seen from di�erent elevations, a visualization that is appealing at

one elevation is likely to be unappealing at another. Therefore, DataSplash objects change

representation as users zoom closer to them (recall that this functionality is known as se-

mantic zoom). For example, when a user zooms closer to a circle representing a city, the

name of the city may appear next to the circle. DataSplash provides a unique mechanism,

the layer manager, which allows users to visually program the way objects behave during

1Much of the material in this chapter appears in [51]. Copyright 1997 by the Association for Computing

Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for pro�t or commercial advantage

and that copies bear this notice and the full citation on the �rst page or initial screen of the document.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1

(212) 869-0481, or permissions@acm.org.



68

zooming. The resulting program is called an application.

However, as we discussed, programming the behavior of objects during zooming is

a challenging task. As a result, objects in semantic zoom applications may have inappro-

priate visual complexity. Additionally, the amount of information in the display can vary

signi�cantly as the user pans and zooms.

A guiding principle that helps users construct visualizations with appropriate de-

tail can be derived from the Principle of Constant Information Density, drawn from the

cartographic literature [16, 45]. This principle states that the number of objects per display

unit should be constant. A more general formulation posits that the amount of informa-

tion (as de�ned by metrics discussed below) should remain constant as the user pans and

zooms. To maintain constant information density, either (1) objects should be shown at

greater detail when the user is closer to them, or (2) more objects should appear as the user

zooms into the canvas, or (3) both.

We de�ne a well-formed application as one that conforms to the Principle of Con-

stant Information Density. By de�nition, as the user pans and zooms in a well-formed ap-

plication, the number of objects visible in the display should remain constant. We present a

system that interactively guides users in the construction of well-formed applications. The

system not only provides the user with feedback about speci�c applications, but also teaches

the user about the properties of density functions in general. For example, a user who has

not thought explicitly about the relationship between zooming and the number of visible

objects receives an intuitive introduction to the concept by using our system, which we call

VIDA0. VIDA is an acronym for Visual Information Density Adjuster; we use the notation

VIDA0 to distinguish this version of the system from the one discussed in Chapter 6.

We believe our system is the �rst environment that interactively instructs and

guides users in the construction of applications with constant information density. It has

the added advantages of being a direct manipulation interface and of producing general-

purpose applications, rather than being limited to a speci�c domain such as cartography.

In the following sections, we discuss how we have modi�ed the DataSplash environ-

ment to provide visual feedback about the density of applications, and we draw conclusions.



69

5.2 Density feedback

Users of the original DataSplash layer manager �nd it di�cult to construct visu-

alizations that have appropriate detail at all elevations. In this section, we describe how

users can express their preferences for application information density, how the system lets

them know when these preferences are not being met, and how the user can correct such

conditions. We then brie
y discuss alternative schemes for density measurement.

We begin by considering data that is distributed uniformly in the x and y dimen-

sions. At the end of this section, we discuss skewed distributions.

5.2.1 Measuring information density

We have designed a software framework in which we can explore generalizations

of the Principle of Constant Information Density. Since it is likely that di�erent density

metrics will be appropriate for di�erent applications, we do not limit ourselves to a single

speci�c metric. Instead, we provide extension interfaces so that expert users can customize

density metrics for their applications. We support two such interfaces, one to measure

density and the other to bound it.

Information density metrics are expressed using density functions. Density func-

tions return the associated density metric value for a given layer at a given elevation. Expert

users may write C++ code to de�ne new density functions to supplement those already in-

cluded in the system.

Since we have assumed uniform distribution in the x and y dimensions, the density

of a layer is well-de�ned at all elevations. Therefore, for each elevation, the system sums the

density values of all the active layers to �nd a cumulative density. The system maintains

maximum and minimum bounds on this cumulative density.2 These bounds, which can be

modi�ed by the expert user at run-time, de�ne a range of acceptable densities; therefore,

rather than being literally constant, the application's information density at each elevation

is expected to fall within this range. We use this technique rather than de�ning accept-

able density in terms of a single constant value because the latter approach would require

changing the displayed information every time the elevation changed.

2Note that the system does not enforce the density bounds. Instead, it provides users with feedback using

the mechanisms described below.



70

5.2.2 Providing visual density feedback

We have modi�ed two of the display objects contained in the layer manager so that

their visual properties give the user an indication of the application's information density.

Speci�cally, we have changed the shape of the layer bars and the color of the layer manager

trim to provide such feedback.

First, the width of each layer bar now re
ects the density of the corresponding

layer at the given elevation. The original DataSplash layer manager does not associate

the layer bar width with any property of the layer. We have extended the layer manager

so that the width of a layer bar at a given elevation is exactly proportional to the layer's

density at that elevation. The scale is relative to the maximum cumulative density, such

that a single layer bar of maximum width represents a layer with 100% of the maximum

cumulative density. (This implies that the cumulative layer bar widths at a given elevation

in a well-formed application are no greater than this maximum width.)

Exceptional conditions can occur because the system does not enforce the cumu-

lative density bounds. We crop layer bars at the maximum width to allow the bars to

have �xed horizontal spacing. We also enforce a minimum width to prevent layer bars from

becoming invisible.

Second, the layer manager now relates the cumulative density value at each eleva-

tion to the density bounds. Notice the tick marks along the left side of the layer manager

display in Figure 5.1. There are three possible conditions for a given elevation: it may lie

within the density bounds, it may fall below the minimum density bound, or it may exceed

the maximum density bound. Each tick mark is assigned one of three colors to indicate

which condition pertains to a given elevation.

Figure 5.1 shows a visualization of selected companies from Fortune Magazine's

Fortune 500 and Global 500 lists. These companies are displayed as circles in an interactive

scatterplot. The x axis represents the percent pro�t (pro�t dollars divided by revenue

dollars) of the company during a given year. The y axis represents the number of employees

of the company. The color of the circle represents the pro�t of the company in dollars.

The density function in the current implementation measures density by counting

the number of objects visible in the display at a given elevation. This metric is that used by

cartographers in the original formulation of the Principle of Constant Information Density

[45]; as we have mentioned before, many other density metrics are possible. In Figure 5.1,



71

Figure 5.1: A visualization of selected companies from the Fortune 500 and Global 500.

the minimum and maximum density bounds are set to 10 and 100 objects, respectively. The

colors of the tick marks (shown in this reproduction as shades of gray) on the left side of

the layer manager indicate the density values for this metric at given elevations. Elevations

40%-60% are too dense, elevations 14%-38% and 62%-100% have appropriate density, and

elevations 0%-12% are too sparse.

Figure 5.1 highlights some of the interesting properties of the object density metric.

First, note that the width of each of the layer bars in Figure 5.1 grows quadratically. To

understand this, assume for the moment that the number of objects per unit area in the

native data space remains the same. The area of the native space visible in the display

increases quadratically as the elevation increases. Consequently, the number of objects

visible in the display, and therefore the object density, increases quadratically as well.

Second, observe that the rate of change in width is more pronounced for the layer bar on

the right. Because the right-hand layer bar contains more objects, its density increases

more quickly. While these properties are complex, our graphical illustrations make them

more accessible by eliminating the need for users to compute them mentally.



72

5.2.3 User interaction with the new layer manager

Based on the feedback provided by the extensions described above, users can

modify applications as they are constructing them. As the layer manager is currently

implemented, there are two primary ways users can change the density of their applications.

(In Chapter 7, we propose an extension to the layer manager with which users can prompt

the system to create layers with speci�ed densities.) First, users can modify the layer

manager, i.e., change the elevations at which layers are active. Second, they can change

the contents of layers.

In the DataSplash environment, users may graphically modify the layer manager

in two ways. First, they may adjust the top or bottom elevation of a layer bar. When this

happens, the shape is extended (according to the width calculation function) as the user

makes the adjustment. Users may also graphically drag the entire layer bar up and down

to shift the elevation range at which the layer is visible. When this happens, the shape of

the bar changes as the user drags it. Additionally, as the user modi�es the bar in either

of the ways just described, the colors of the tick marks change to re
ect the modi�cation.

Intuitively, the user moves the bar around, trying to maximize the number of green tick

marks (by default our interface uses green to indicate appropriate density).

Second, users can modify the contents of layers. To do this, they may use the paint

program interface. For example, to modify the number of objects, they may add or delete

objects. If other density metrics (e.g., the number of vertices) are considered, a variety

of other operations, such as changing the shapes or colors of objects, a�ect the density

values as well. Users may also modify the contents of layers by using the visual select and

join mechanisms described in [30]. These operations a�ect the number of rows in the table

associated with a layer, thereby a�ecting the number of objects rendered. When the user

modi�es the contents of a layer using either the paint program interface or the visual select

and join mechanisms, the layer bars and tick marks are automatically updated to re
ect

the change.

5.2.4 Density metrics

Our system currently supports two density metrics, number of objects and number

of vertices. There are a number of other metrics that could be used, e.g., Tufte's data density

(a count of the number of data values represented by a visualization) [47]. For a thorough



73

review see [29]. Because the focus of our work is on maintaining constant information

density for a given metric rather than on determining good density metrics, we have not yet

implemented any additional metrics. However, the interface is independent of the density

metric and we have designed the system such that expert users may register their own

density functions.

It is our belief that the interface will be particularly useful in teaching application

developers about the properties of di�erent density metrics under zooming conditions. For

example, the ink metric (the percentage of live pixels) is not elevation-sensitive in the case of

uniformly distributed data. As an illustrative example, imagine that the canvas contains a

chessboard and that black pixels are live. Since half the pixels are white and half are black,

50% of the pixels are live. Now imagine zooming closer to the chessboard. The view changes

considerably, but the pixel distribution remains the same. Therefore, in visualizations that

have this type of self-similarity, e.g., fractal visualizations, the information density according

to the ink metric is constant at all elevations, which is shown graphically by constant-width

layer bars.

5.2.5 Non-uniform data

Recall that the width bars and the cumulative density values are based on the

average density of each layer. For this reason, they are most appropriate for uniform

data sets. However, our techniques can improve visualizations of non-uniform data sets as

well. In this subsection, we present an example application of width bars to a non-uniform

distribution and discuss its advantages and disadvantages.

Figure 5.2 shows the application of Figures 1.3 and 1.4 augmented with width bars

and tick marks colored according to cumulative density. The four layer bars to the right

reference cities of di�erent populations. The shapes of the bars indicate that there are few

cities in the higher layer bars (the ones associated with larger cities). They illustrate that

there are many cities in the two rightmost layers (the ones associated with smaller cities).

The width bars and tick marks suggest that this application is cluttered not only at the

current elevation, but at other elevations as well. The user can easily adjust the tops and

the bottoms of the layer bars based on interactive visual feedback, yielding Figure 5.3. This

visualization is a signi�cant improvement over the original.

However, it still contains some regions that are too dense or too sparse. To ad-



74

Figure 5.2: A cluttered application.

dress this problem, we augment VIDA0 with additional mechanisms to handle non-uniform

distributions. These are discussed in Chapter 6.

5.3 Conclusions

We have introduced the notion of well-formed applications, ones that display an

appropriate amount of information (as de�ned by user-parameterized constraints) at any

given elevation. The notion of well-formedness applies not only in our system, but in other

visualization systems that support multiple representations as well, e.g., Pad [32, 5]. We

have introduced a system, VIDA0, that helps users construct well-formed applications in

the DataSplash database visualization environment, both by providing visual feedback on

application density and by suggesting modi�cations to user-constructed applications.



75

Figure 5.3: A less cluttered application.



76

Chapter 6

Constant density visualizations of

non-uniform distributions of data

6.1 Introduction

In Chapter 5, we presented a system, VIDA0, which helps users manually construct

applications in which overall display density remains constant.1 Although the total amount

of information in the display remains constant as the user zooms, the information within the

display may not be distributed uniformly. In other words, this approach ensures uniformity

in the z dimension, given a �xed x, y center, but does not ensure uniformity in the x and

y dimensions, given a �xed z, nor does it extend naturally to providing such uniformity.

Because many naturally occurring data sets have non-uniform distributions, clutter and

sparsity commonly occur in subdivisions of the display in VIDA0 visualizations.

In this chapter, we present a new system that automatically creates displays that

are uniform in the x, y, and z dimensions. In the new system, users express constraints

about visual representations that should appear in the display. The system applies these

constraints to subdivisions of the display such that each subdivision meets a target density

1Much of the material in this chapter appears in [50]. Copyright 1998 by the Association for Computing

Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for pro�t or commercial advantage

and that copies bear this notice and the full citation on the �rst page or initial screen of the document.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1

(212) 869-0481, or permissions@acm.org.



77

Figure 6.1: DataSplash visualization of census data. x axis shows housing cost and y axis

shows income.

value. Henceforth, we continue to refer to the system presented in Chapter 5 as VIDA0,

and we refer to the new version simply as VIDA.

Figures 6.1 - 6.3 illustrate the approaches used by DataSplash, VIDA0, and VIDA.

Each �gure shows an interactive scatterplot of selected states in the United States. On the

x and y axes are housing cost and income, respectively. Each state may be graphically

represented by a dot or by its polygonal outline. Figure 6.1 shows a visualization of this

data that was created in DataSplash. The visualization is obviously cluttered.

Figure 6.2 shows a visualization of this data that was manually constructed based

on VIDA0's feedback about the density of the visualization. In this example, the num-

ber of vertices is used as the density metric; density metrics were discussed previously in

Section 5.2.1. Because the polygonal representation has high density, VIDA0 recommends

changing the display. In response, the user employs the graphical mechanism described in

Chapter 5 to replace the polygonal representation with the dot representation. Note that

in both Figures 6.1 and 6.2, all objects in a given display are shown with a single graph-

ical representation (a few of the smaller polygons in Figure 6.1 appear to be dots in this

reproduction, but they are actually small state outlines).

Figure 6.3 shows VIDA's automatically generated constant information density

visualization of this data. Note that di�erent representations are chosen for di�erent objects



78

Figure 6.2: VIDA0 visualization of census data. x axis shows housing cost and y axis shows

income.

Figure 6.3: VIDA visualization of census data. x axis shows housing cost and y axis shows

income.



79

based on local density. Speci�cally, VIDA displays dots for objects that appear in dense

regions; objects in less dense regions are displayed as polygonal outlines.

In the remainder of this chapter, we discuss VIDA in more detail. In Section 6.2,

we elaborate on our technique. We discuss its advantages and disadvantages in Section 6.3,

and we conclude in Section 6.4.

6.2 Technique

Recall that the Principle of Constant Information Density states that the amount

of information per area should remain constant. Our general approach is to break the screen

into subdivisions and �ll each subdivision with graphical information such that some target

information density value is met.

In this section, we discuss general processes by which density can be changed. We

then describe our speci�c algorithm for creating visualizations and discuss its computational

complexity. Finally, we discuss our implementation and provide a number of illustrative

examples.

6.2.1 Processes for modifying density

VIDA uses the same method as VIDA0 to measure density (this method is dis-

cussed in detail in Chapter 5). There are two general processes by which this density may

be modi�ed. These approaches may be used individually or in combination.

First, di�erent graphical representations of objects appropriate for di�erent eleva-

tions, known as multiscale representations [18], can be selected according to their density.

There are several interesting ways multiscale representations can decrease density (corre-

sponding actions exist to increase density):

� The glyph used to represent an object can be replaced with one of lower density. As

one example, a river represented by a polyline with many vertices can be replaced by

a simpli�ed representation with fewer vertices.

� Part of the graphical representation of an object may be omitted, e.g., the text labels

for a city can be removed, leaving only a dot to represent the city.

� A number of objects can be aggregated. For example, a number of dots in a scatterplot

can be replaced by a single larger dot.



80

Second, objects may be omitted to decrease density. (Correspondingly, objects

may be included to increase density.) This is actually a special case of the �rst item above,

in which a glyph is replaced with a glyph of 0 density. However, because this type of

replacement has a dramatically di�erent visual e�ect, we consider it separately.

As described in Chapter 5, the layer manager in VIDA0 applies these processes

uniformly to all objects of a given type. For example, all cities might appear as dots in the

display. Alternatively, all cities might be excluded from the display.

However, if we are to provide a uniform display of non-uniform data, objects that

di�er only in their location in the display must be displayed di�erently. As an example

of non-uniformly applied multiscale representations, a large number of dots in one part

of a scatterplot can be replaced with a large circle, while dots in other parts of the same

scatterplot can be left in the display. As an example of non-uniformly applied omission, in a

traditional map, small cities might not be shown in areas with large populations. However,

cities of the same size might appear in less populous areas in the same map. We call this

technique selective omission.

6.2.2 Algorithm

We have developed an algorithm that controls the display of layers in subdivisions

of the screen based on density. (Recall that a layer consists of a data set and a speci�cation

of the graphical representation of that data set.) The algorithm �rst divides the visible

screen into a regular nxn grid (n is a parameter, typically set to 10). Every cell in the grid

has a goal density. Goal density is the same for every cell in the grid and is con�gurable.

For a given cell, our algorithm calculates the density of each layer.

The algorithm next chooses the layers to �ll each cell. We began our experiments

with a fairly na��ve algorithm that �nds the combination of layers yielding the density value

closest to the goal density for a given cell. It renders those layers within the boundaries of

that cell. While this approach is e�ective for some applications, it is highly inappropriate

for many others. For example, in one application, in some parts of the screen state outlines

are rendered without cities while in other parts of the screen cities are rendered without

state outlines.

Based on our experience with the na��ve algorithm, we decided to allow the user

to specify the combinations of layers that are semantically meaningful. We identi�ed two



81

possible approaches. In the �rst approach, the user could explicitly register all valid combi-

nations of layers with the system. This is an extensional approach. In the second approach,

the user could register rules for combining layers. This is an intensional approach. Be-

cause typical DataSplash applications range from 5 to 15 layers, we decided extensional

speci�cation would be prohibitively time-consuming for the user. Therefore, we chose the

intensional speci�cation mechanism, which we describe in the remainder of this subsection.

To simplify the user's task, we developed intuitive and composable constraints with

which the user can express the relationships between layers. Each unit to which constraints

may be applied is called a bundle; the simplest bundle is a single layer. When a constraint

is applied to two bundles, it generates a new bundle to which additional constraints may

be applied. If the user wishes to characterize the relationship between two bundles, they

specify it using one of the constraints below.

� Constraint 1 (mutual exclusivity): The user can state that two bundles are mutually

exclusive. In this case, only one of the two bundles may be displayed within a given

subdivision of the screen. This can be useful when one layer is an alternative rep-

resentation of another. For example, suppose two layers exist for representing cities,

one of which represents cities as a dot and one of which represents cities as a circle.

For a given city, only one such representation should be displayed. The user speci�es

a density ordering of the two bundles, i.e., they specify which has higher density.

� Constraint 2 (additivity): The user can state that one bundle may be added to

another. In this case, the �rst bundle may appear alone or with the second bundle

in a given subdivision of the screen. For example, the state outline layer may appear

alone, or with the city layer. Note that the relationship is not symmetric, e.g., cities

may not appear without state outlines.

We illustrate the algorithm with the following example.

Example constraints for cities and labels

Constraint 1 can be used to generate a bundle that speci�es that cities may be

represented as dots or circles. It can also be used to generate a bundle that speci�es that

city labels may be represented with a small font or with a large font. Constraint 2 can then

be used to specify that the city dots/circles bundle can appear alone or with the city labels

bundle. 2



82

We call a set of layers chosen for display a con�guration. Applying the constraints

in our example of cities and labels results in six con�gurations: (1) a dot, (2) a circle, (3)

a dot plus a small-font text label, (4) a dot plus a large-font text label, (5) a circle plus a

small-font text label, and (6) a circle plus a large-font text label.

From this set of con�gurations, our algorithm chooses an ordered list of con�gu-

rations such that the density of each of the con�gurations in the list is guaranteed to be

non-decreasing. This is desirable because we want to make the choice of representation as

consistent and stable as possible (we discuss this issue further in Section 6.3.2). Addition-

ally, we wish to limit the number of con�gurations to avoid unnecessary visual complexity.

Generation of a density-ordered list is simpli�ed by two observations. First, recall

that the density ordering of a mutually exclusive bundle is known from the user's speci�ca-

tion. Second, observe that the density ordering of an additive bundle is obvious; a bundle

appearing alone has density lower than or equal to that of the same bundle appearing with

another bundle.

These observations immediately result in a partial ordering of the set of potential

con�gurations listed above. In the example presented above, (1) has lower density than (2).

However, the relative density of, for example, (2) and (3) is not known. VIDA's algorithm

proceeds in a depth-�rst fashion, producing a fully ordered list consistent with the partial

ordering. In this example, it chooses (1), (2), (5), and (6).

Note that the constraints are lower-level concepts than multiscale representations

and selective omission, which were described in Section 6.2.1. The constraints support these

higher-level concepts, as illustrated in Section 6.2.4.

6.2.3 Computational complexity

The current density computations are fast enough that performance is not a�ected

visibly when rendering current main-memory-resident data sets (typical sizes range from

hundreds to tens of thousands of objects). In fact, in many cases our techniques improve

performance, since they signi�cantly reduce the number of objects that must be rendered.

The current algorithm for computing the density of an individual layer runs in

linear time (using number of objects or number of vertices as the density metric). The

algorithm that selects the layers to display is more computationally intensive. (In fact, the

na��ve algorithm that does not consider constraints is provably NP-Complete. This can be



83

shown by a polynomial reduction from Subset-sum [20] to our problem of choosing a set of

layers that sum to a given density. In Subset-sum, given a set S of positive integers, we

wish to determine whether there is a subset of S such that the sum of the subset is equal

to a given value. Similarly, in our problem of choosing layers, given a set of layers L, each

with a density value, we wish to determine whether there is a subset of L such the sum

of their densities is equal to a target density value.) In practice, we have found that the

number of layers is generally low enough that performance is not a�ected noticeably.

There are at least two situations in which computation costs can be prohibitive.

First, user-de�ned density metrics can be arbitrarily expensive to compute. Second, larger

data sets can increase computation time signi�cantly (albeit linearly). In these situations,

the following three techniques can be used to reduce computation time:

� The density values can be stored during or across browsing sessions (currently they

are dynamically computed each time the user moves).

� Heuristics can be used to estimate density. Because the density metrics are used to

choose representations, approximations are acceptable. This can be particularly useful

when updates are frequent.

� More advanced data structures can be used to compute or estimate density values.

For example, R-Trees can be modi�ed so that internal nodes contain both bounding

rectangles and counts of the number of objects contained in each rectangle. A related

technique is used in [3].

6.2.4 Implementation and examples

We have implemented our algorithm as part of VIDA0, which is an extension to the

DataSplash database visualization environment [2, 35]. We call the resulting system VIDA.

VIDA is implemented in C++, the Mesa graphics programming language [31], XForms [57],

and POSTGRES [43], and runs on most UNIX platforms.

In this section, we present three sample visualizations of non-uniform distributions

of data. These examples illustrate a number of advantages and disadvantages of VIDA's

technique for displaying non-uniform data. These issues are discussed in Section 6.3.

We begin by revisiting Figures 6.1 - 6.3, interactive scatterplots of selected states in

the United States. On the x and y axes are housing cost and income, respectively. Each state



84

Figure 6.4: VIDA visualization of Fortune 500 data at a high elevation. x axis shows %

pro�t growth and y axis shows number of employees.

may be graphically represented by a dot or by its polygonal outline (each representation

is associated with a layer). Previously we discussed Figures 6.1 and 6.2. At this time, we

provide more detail about Figure 6.3, which shows VIDA's automatically generated constant

information density visualization of this data. In this example, VIDA uses the number of

vertices as the density metric. There is a mutually exclusive relationship between the

two representations (dot and polygonal outline), so that within a grid cell all states are

represented by either a dot or a polygonal outline, but not both.

The second example, pictured in Figures 6.4 and 6.5, shows interactive scatterplots

of selected Fortune 500 companies. On the x and y axes are % pro�t growth and number of

employees, respectively. Each company has three potential representations (each associated

with one layer): (1) a dot; (2) an icon of the general category of industry to which the

company belongs; and (3) an icon of the speci�c type of industry to which the company

belongs. Figure 6.4 shows VIDA's constant information density visualization of this data.

As in Figures 6.1 - 6.3, VIDA uses the number of vertices as the density metric. There is

a mutually exclusive relationship between the three representations (dot, general category

icon, and speci�c category icon), so that within a grid cell all companies are represented by

exactly one of the three possible representations. Figure 6.5 shows a zoomed-in view. Note

that if the user zooms in on a �xed set of objects, each object that remains in the display



85

Figure 6.5: Zoomed-in view of visualization of Fortune 500 data. x axis shows % pro�t

growth and y axis shows number of employees.

occupies more screen space. Therefore, when the user zooms in, each object is shown with

a more detailed representation.

The third example, shown in Figures 6.6 and 6.7, is a map of cities in the United

States (aspects of this visualization were discussed previously in Chapter 5). On the x

and y axes are longitude and latitude, respectively. One layer contains the outline of the

United States. Four additional layers contain cities partitioned by population. In the na��ve

DataSplash visualization shown in Figure 6.6, many regions of the visualization are too

sparse. In this example, VIDA uses the number of objects as the density metric. The

additive relationship pertains among these layers, so that any given grid cell may contain

only the outline of the United States, the outline of the United States plus the largest cities,

the outline of the United States plus the largest and second largest groups of cities, etc. In

Figure 6.7, VIDA's use of additivity makes the display more uniform by showing cities of

lesser populations in regions where no large cities exist.

Multiscale representations are illustrated in Figures 6.1 - 6.5. In each of these

visualizations, a given data point is always visible. Density is modi�ed by changing the rep-

resentation of the object representing that data point, e.g., from a dot to a polygonal outline.

Selective omission is illustrated in Figures 6.6 and 6.7. In each of these visualizations, not all

objects are visible at a given elevation. Density is modi�ed by selectively omitting objects,



86

Figure 6.6: Na��ve DataSplash visualization of population data.

Figure 6.7: VIDA visualization of population data.



87

e.g., smaller cities are not visible from higher elevations. In these examples, it happens to be

the case that multiscale representations are supported by mutual exclusivity and selective

omission is supported by additivity. However, each of these processes can be generated by

either constraint.

6.3 Discussion

In this section, we discuss the e�ectiveness of constant information density displays

in non-cartographic domains. We then assess our methods for choosing representations to

create uniform density displays.

6.3.1 E�ectiveness in non-cartographic domains

Historically, the Principle of Constant Information Density has been used in the

cartographic domain. In VIDA, we have applied this principle to non-uniform data in both

cartographic and non-cartographic domains. In this subsection, we discuss our informal

observations of its e�ectiveness for di�erent tasks.

We begin by discussing the utility of constant information density displays. We

then assess individual characteristics of the two processes by which constant information

density displays are created, multiscale representation and selective omission. For each

technique, we discuss advantages and disadvantages, as well as potential improvements.

Constant information density displays

Constant information density displays have a number of advantages. For example,

if the target density value is chosen appropriately, overplotting is minimized and use of the

available display space is maximized. Further, the displays are visually appealing, according

to informal discussions with viewers.

A potential disadvantage of the technique is that it might give users a distorted

perception of the actual density of the underlying data space. We have two responses to

this argument.

First, we observe that because cluttered visualizations contain overplotting, they

do not give an accurate representation of the distribution of the data. Arguably, the cur-

rent VIDA representations are at least as clear as traditional representations. However,



88

both traditional displays and VIDA displays can be improved according to the following

observation: enumeration (by simply plotting all items) is not the best way to characterize

density. Therefore, we recommend developing visualizations compatible with the Principle

of Constant Information Density to show density distributions. For example, a scatterplot

can use aggregation in the following manner: when a region of the screen contains more

than a given number of dots, these dots can replaced by a single, larger dot of a di�erent

color.

Second, we observe that one can apply the Principle of Constant Information

Density only to those dimensions in which the user is not explicitly studying distribution.

For example, if the user is looking for high-density areas in the x and y dimensions, it

might be appropriate to apply the Principle of Constant Information Density only in the z

dimension using the technique described in Chapter 5.

Multiscale representation

Note that multiscale representation of data according to density shows outliers

with more detail (and therefore often with more screen space). We argue that showing more

detail for outliers assists in the detection and investigation of anomalies. However, because

this technique makes outliers disproportionately prominent, there is a danger that this

technique will overemphasize outliers, which may be inappropriate for some applications.

Selective omission

While omission does achieve constant information density displays, it can be fairly

misleading. Consider Figure 6.7. This visualization is consistent with the common carto-

graphic convention of omission in paper maps. However, if this same technique were applied

to a di�erent type of visualization, e.g., a scatterplot, the user might incorrectly infer that

no data existed in a speci�c region when in fact such data did exist.

It is our belief the display could be signi�cantly improved by the addition of visual

cues that indicate that objects have been removed. Such cues fall into two general categories.

First, cues can indicate the regions from which objects have been omitted. For

example, Magic Lenses might be placed over regions in the display to indicate that they are

being shown at a di�erent level of detail [8, 15].

Second, cues can encode information about the distortion that has been applied.



89

For example, the background of the visualization can be colored to indicate density in

various regions (note that it would be interesting to color the backgrounds of a set of Magic

Lenses in this way). Alternately, objects can be blurred to indicate the accuracy of the

representation; blurrier areas can represent areas in which higher distortion has occurred.

Similar techniques are used in [3].

6.3.2 Choice of representations for display

In general, the gridding mechanism and simple constraints have proven quite pow-

erful, supporting a number of diverse applications. Much of this utility is evident in the

examples provided above. In this subsection, we discuss the limitations we have identi�ed

with the gridding and constraint mechanisms and suggest potential improvements.

Perceptible grid boundaries

VIDA generally uses a 10x10 regular grid, and we �nd that boundaries are not

easily perceptible in visualizations of non-uniform data. However, when the data distribu-

tion is highly regular, repeating patterns occur, making the boundaries more obvious (see

for example Figure 6.8). In cases in which it is desirable to use a less perceptible grid,

alternative subdivisions such as hexagonal and non-regular grids could be used.

Flickering representations in the grid

Despite the fact that the grid boundaries are not readily apparent, there is a sig-

ni�cant drawback to the grid-based approach. In our current implementation, the grid

boundaries are relative to the screen (one can imagine a transparent grid that moves inde-

pendently above the two-dimensional canvas). In this model, the contents of a given grid

cell change as the user pans or zooms.

Consider the case when the user pans. Suppose an object is in a grid cell that

has high density. In this position, it is displayed with a low-density representation. If the

user pans slightly, the grid shifts. In the new subdivision of the screen, the object may

be in a grid cell that has low density and therefore may be displayed with a high-density

representation. A similar problem exists when the user zooms. For example, during one

continuous inward zoom, a low density representation might be replaced by a high density

representation and then be replaced by the original low density representation.



90

Figure 6.8: Visualization of an arti�cially-created data set with a regular distribution

pattern.

Such 
ickering representations are highly distracting and create undesirable visual

e�ects. Panning 
icker can be solved easily by registering the grid to the canvas, i.e., by

embedding it in the underlying x,y space. Unfortunately, zooming 
icker can not be solved

easily because no single size for a grid cell is appropriate for all elevations. A spatial data

structure such as a quad tree that subdivides the space might seem appropriate. With such

a structure, di�erent grid-cell sizes could be chosen for di�erent elevations. However, at each

transition from one cell size to another, 
ickering could still occur. Possible solutions include

choosing representation on a per-object rather than a per-grid-cell basis. Fortunately, the

zooming case is not as visually obtrusive as the panning case.

Aggregated objects in the grid

Our current implementation chooses layers to render within each grid cell. It does

not explicitly take into account the semantic relationship between objects in di�erent layers.

For example, it does not explicitly consider that the United States is a single object that

contains each of the individual states. We would like the system to render either the United

States, or all the individual states. However, these semantics are not enforced in the current

implementation; in some situations in which the objects are in multiple grid cells, states

are rendered in some cells but not in others. An object-based model for display would



91

ameliorate this problem.

Allocation

In some situations, the user may wish to specify the relative visual resources to

be allocated to given bundles. For example, suppose an application has two bundles, one

for political boundaries and one for cities. Each of these bundles may contain a number of

di�erent representations with widely varying density; the political boundaries bundle may

range from a country outline to county outlines, while the city bundle may contain a number

of layers with di�erent numbers of cities. It would be useful to provide a mechanism with

which the user could specify that at any given time, n% of the visual density should be

allocated to the political boundaries and the remainder should be allocated to the cities.

One possible interface would be to provide the user with sliders representing the resources

allocated to each bundle. This mechanism could be used, for example, to ensure that a

certain type of feature is always present in the display.

6.4 Conclusions

We have presented VIDA, a system that creates visualizations that have uniform

information density in the x, y, and z dimensions. VIDA visualizations have this uniformity

even when the data sets being displayed are non-uniformly distributed. We have discussed

the advantages and disadvantages of the visualizations created by VIDA, particularly in non-

cartographic domains. VIDA visualizations are automatically constructed using constraints

speci�ed by the user. We have described these constraints and discussed their potential

usefulness.



92

Chapter 7

Semi-automated adjustment of

density

7.1 Introduction

In the previous two chapters, we discussed using the Principle of Constant Infor-

mation Density to choose when to display given layers.1 In this chapter, we consider using

the same principle to determine the contents of layers.

We �rst consider the case of adjusting the contents of a single layer. We present a

taxonomy of data manipulation and graphical operations that can be performed to adjust

the density of a given layer. We next discuss ways to generate new visualizations using

these operations. Finally, we describe an interface with which users can browse these new

visualizations. Note that while this work is designed in the context of the VIDA model, it

has not been implemented.

1Much of the material in this chapter appears in [51]. Copyright 1998 by the Association for Computing

Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for pro�t or commercial advantage

and that copies bear this notice and the full citation on the �rst page or initial screen of the document.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1

(212) 869-0481, or permissions@acm.org.



93

7.2 Changing layer density

In this section, we describe modi�cation functions that can be applied to a layer

to modify its density. These functions operate on one of two components of the layer, the

rows in the database table and the graphical representation of the data. Functions come in

pairs, one that decreases density and one that increases density.

To modify the data, VIDA can create views of the table. Basic views include

simple selection or aggregation queries. Because more complex views may be desirable,

VIDA can also consider views created by expert users as potential modi�cations to the

database table. To modify the graphical representation, VIDA can change the glyph for an

object.

Table 7.1 details modi�cation functions that decrease visual density. The table

uses the following visualization of cities in the United States as an example. Suppose the

user has created a layer based on a table of cities that includes �elds for latitude, longitude,

and population of each city. The graphical representation of the user-created layer is a gray

circle placed at the longitude, latitude location of each city. The circle is assigned a size

based on the population of the city. This original representation appears in the �rst row of

the table. The visible area is a zoomed-in view of Baltimore and Washington, D.C., in the

United States.

The following rows in the table show how that visualization changes in response to

the application of various modi�cation functions. For each modi�cation function, the table

presents an example of a speci�c modi�cation, an example of a density metric a�ected by

that modi�cation (in many cases multiple metrics are a�ected; for brevity we identify only

one per modi�cation function), and the visualization resulting from the application of that

modi�cation to the original visualization.

The �rst three modi�cations (select, aggregate, and reclassify) apply to the data.

When the given select operation is applied, only the largest cities remain visible. When the

given aggregate operation is applied, the system aggregates cities by states. Chesapeake Bay

can be seen in the resulting visualization (the water is white, while the land is gray). Both

select and aggregate reduce the number of visible objects. The given reclassify operation

classi�es cities into two groups according to their population; the resulting visualization has

fewer sizes than the original.

The remaining four operations (change shape, change size, remove attribute asso-



94

Original visualization

Select

Restrict to cities with population > n

Decreases number of visible objects

Aggregate

Aggregate cities by state

Decreases number of visible objects

Reclassify

Assign to population brackets

Decreases number of sizes

Change shape

Change circles to triangles

Decreases amount of ink

Change size

Scale circle radius

Decreases amount of ink

Remove attribute association

Disassociate size from population

Decreases data density

Change color

Change color from gray to black

Decreases number of colors

Table 7.1: Modi�cation functions to decrease density.



95

ciation, and change color) are modi�cations to the graphical representation of each object.

When the shapes are changed from circles to triangles, or when the size of the circles is

changed, the amount of ink is decreased. When the association between population and

circle size is removed, the data density (the number of data values represented) is decreased.

Finally, changing the color may a�ect the total number of colors in the visualization (in

this example, this e�ect only occurs when other layers are considered as well).2

Observe that not every modi�cation function decreases/increases density for a

given metric. For example, the size of an object can be decreased (to reduce the amount of

ink) or increased (to increase the amount of ink). However, this operation may have little

or no e�ect on the number of objects being displayed. Also observe that in some cases a

modi�cation function may in fact decrease density according to one metric while increasing

it according to another metric.

As mentioned above, expert users may register new density functions. When

they do so, they may also identify modi�cation functions that will a�ect the corresponding

metric. If they perform this task, VIDA will be able to suggest modi�cations based on the

new density metric.

7.3 Complexity of transformation space

In Section 7.2, we described a system that suggests modi�cations to individual

layers. In this section, we consider the generation of applications that are well-formed for

all layers at all elevations. We call such a new application a transformation.

The space of potential transformations is very large. Consider that the user has

provided n layers. Suppose that using the modi�cation functions described above we can

generate m versions of each layer (including the original version and the null version).

Consider the calculation of a transformation that is well-formed at a speci�c ele-

vation. Assume we may choose only one version of each user-provided layer at a time. Then

there are mn possible groups of layers. Since ordering is signi�cant, there are a total of mn!

possible con�gurations at each elevation.

2The graphical representation manipulation functions represent a fairly comprehensive set in the context

of our system. Note Bertin's observation that there are eight variables that provide information in two-

dimensional graphics (x and y position, size, value, texture, color, orientation, and shape) [7]. Our system

does not modify value, texture, or orientation as the former two do not pertain in VIDA, and the latter is

not clearly desirable.



96

The con�gurations for each elevation must then be combined to form a single

application. Obviously, there are a number of rules for this composition, e.g., if a single

layer appears at multiple elevations, these elevations should be contiguous.

Fortunately, we do not need to generate an optimal solution. Instead, we propose

to allow the user to browse the search space. To support the user in this task, we propose

one mechanism to limit the search space and another to organize it. We describe each of

these methods in turn.

7.3.1 Rule system

In this subsection, we propose a rule system with which users can limit the space

of possible transformations.

In general, rules take the form

If Condition, Then Action

In the design, the system provides a number of rules. Expert users may register

additional rules.

Our primary conditions pertain to the Principle of Constant Information Density.

In general, these conditions compare information density of a visualization (as measured by

some criteria) to some value:

Density Operator Value

For example, a speci�c condition might be:

Number of objects < 50

As discussed above, the system provides a number of functions that can be used

to assess density. Additionally, expert users may register such functions. Potential actions

are those enumerated in Table 7.1.

Using these rules, applications are modi�ed to adhere to speci�c resource con-

straints, e.g., \there should no fewer than 20 objects on the screen at a given time" or \at

least 20% of the pixels should be colored at a given time." The user is provided a simple

forms interface in which they may tune the speci�c values assigned to these constraints.



97

7.3.2 Edit distance

We de�ne edit distance to be the degree to which the system has modi�ed the

original application of the user (each action may have an associated edit distance). There

are a number of ways edit distance might be de�ned. One such metric is the number of

modi�cation operations applied to the original visualization. Another possible metric is

the number of pixels that change. Experimentation will be necessary to identify a good

metric(s).

Recall that we wish to allow the user to browse the solution space. Edit distance

is a natural mechanism with which to organize this space. For example, the initial set of

transformations presented to the user could be chosen to represent disparate edit distance

values. This would ensure that the user would have a broad range of alternatives from

which to choose. The user could then incrementally re�ne their search. A possible interface

is discussed further below.

7.4 Interface

We propose that the user interact with the system in the following three phases:

edit (user); transform (system); and select (user). In this section, we describe each of these

phases in turn.

7.4.1 Edit

The user begins by editing an application as in the current system. Speci�cally,

they may graphically resize layers, changing the elevations at which they are visible. Ad-

ditionally, they may add, delete, reorder, or modify the contents of layers. The result may

be a visualization such as that presented in Figure 5.2, repeated here as Figure 7.1.

7.4.2 Transform

To request feedback on an application they have constructed, the user makes an

explicit gesture in the interface. For example, they might press a \Transform" button.

Alternately, recall that we have extended the layer manager so that the width of a layer

bar represents its density. To invoke the semi-automated adjustment of a layer, users could

graphically adjust the width of that layer.



98

Figure 7.1: A cluttered application.

In response to the user's gesture, the system generates transformations using the

approach detailed in Section 7.3. Recall that a transformation is a well-formed application

derived by modifying a user-created application.

7.4.3 Select

The system presents a small number of transformations to the user in a trans-

formation canvas. Each transformation in the canvas appears as a portal. (The user may

con�gure the number of transformations displayed; four is the default, since that is roughly

the number of portals that �ts conveniently on a VIDA canvas when they contain a large

amount of detail.)

The user may go through the portal of any of the proposed transformations and

explore it. If the user wishes to view other transformations they may press the \Transform"

button while in the new canvas; the system creates a new transformation canvas in response.

Alternatively, they may go back to the previous transformation canvas and enter a di�erent

transformation. In this way, the user can incrementally re�ne their search for a desirable

transformation. When the user �nds an option they like, they indicate that they accept it.

Because the portal representation of each transformation is used to direct the

search, it is desirable for this representation to provide as much information about the

transformation as possible. A particularly dense representation is a picture of the layer

manager for the application. Therefore, each portal contains a visualization of the layer

manager of a transformation. When the user zooms closer to the transformation canvas,

the visualization displayed for each transformation appears.



99

Figure 7.2: The transformation canvas.

Figure 7.2 shows a sample transformation canvas. Each visualization shows pop-

ulation data for the United States. A variety of disparate choices are available to the user.

In the options on the left, the state outlines have been removed to reduce density. The

option in the upper-right is particularly interesting. Circles (cities) in the original applica-

tion were associated with population. In this transformation, the association between circle

radius and population has been removed. However, an association between state color and

population has been added.

7.5 Conclusions

In Chapters 5 and 6, we discussed using the Principle of Constant Information Den-

sity to choose when to display given layers. In this chapter, we presented a method for using

the same principle to determine the contents of layers, including a taxonomy for modifying

density using data manipulation and graphical representation operators and mechanisms



100

and interfaces for modifying density of individual layers and entire visualizations.



101

Chapter 8

Goal-directed zoom

8.1 Introduction

In Chapters 5, 6, and 7, we considered ways to construct visualizations with con-

stant information density.1 In this chapter, we discuss a new navigation method that is

generally useful and is particularly appropriate for constant information density visualiza-

tions.

As we have discussed previously, visualization systems commonly represent objects

in a two-dimensional canvas over which the user may pan and zoom. In such systems,

zooming changes the user's distance from the canvas, also known as the perceived elevation.

Because the amount of display space available to an object varies with elevation, a graphical

representation of an object that has appropriate visual complexity at one elevation may have

inappropriate visual complexity at other elevations. Many zooming systems address this

issue by supporting multiple graphical representations of objects.

Existing systems re
ect this balance between elevation and object representation

in one of two ways. In na��ve systems, elevation and representation are decoupled; the user

chooses a representation and then zooms until the display \looks right." More sophisticated

1Much of the material in this chapter appears in [52]. Copyright 1998 by the Association for Computing

Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for pro�t or commercial advantage

and that copies bear this notice and the full citation on the �rst page or initial screen of the document.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1

(212) 869-0481, or permissions@acm.org.



102

systems couple elevation and representation using semantic zoom, so that when the end

user zooms to a given elevation, the system displays each object using the representation

valid at that elevation.

Consider the relationship between zooming and choice of representation in such

systems. In na��ve systems, elevation and choice of representation are controlled indepen-

dently by the user. In semantic zoom systems, the elevation determines the choice of

representation. An alternative is a system in which the choice of representation determines

the elevation. We call the functionality provided by such a system goal-directed zoom.

In the next section, we describe the desirable characteristics of goal-directed zoom.

We then present our design and implementation of a system to support the end-user con-

struction of goal-directed zoom visualizations. Finally, we present an extended example and

conclude.

8.2 Characteristics of goal-directed zoom

We propose that a goal-directed zoom system ideally possesses at least the follow-

ing three properties:

1. Menus. The system presents the user with a selection of possible object represen-

tations. (The user should be able to invoke this selection using some lightweight

mechanism, e.g., a simple mouse click.)

2. Previews. The selection mechanism graphically depicts the possible representations.

For example, suppose a city can be displayed at several levels of detail ranging from

a dot to a display of all the buildings in the city. An icon of a house could indicate

the most detailed representation.

3. Automatic zoom. When the user selects a representation, the system zooms to an

elevation \appropriate" to that representation. (This elevation may be determined

by ranges speci�ed in a semantic zoom system, or it may be calculated in some other

manner. One such method is described below.)

Note that each of these properties can apply either to a set of objects present in

a visualization or to individual objects in a visualization. Ideally, these properties apply to

an individual object of interest, yielding the following additional guidelines:



103

4. The menu is appropriate for the speci�c type of object selected.

5. The graphical options presented to the user are based on the speci�c object selected.

6. The elevation to which the system zooms depends on the speci�c object selected.

A number of systems provide some subset of the functionality listed above, but to

our knowledge, no system meets all of these criteria. For example, BigBook [22] an online

directory, provides maps with iconic zoom buttons. However, the buttons zoom to �xed

elevations and the icons are abstract scale indicators. Speci�cally, they are pine trees of

di�erent sizes, which indicate di�erent scales but fail to provide any information about the

contents of each layer. As another example, our work has some similarities to Magic Lenses

[8] or portal �lters [32]. However, while these mechanisms show di�erent representations of

objects, they do not zoom automatically to display appropriate detail for a given object.

Finally, Pad provides primitives that could be used to support goal-directed zooming, but

does not support it directly. The Pad++ web browser, for example, partially supports

property 3, automatic zoom [6].

8.3 A goal-directed zoom system

We have designed and implemented goal-directed zoom in VIDA. When users click

on an object in a visualization, VIDA presents a menu of the possible graphical represen-

tations of that object. When the user selects a representation, the system automatically

pans so the selected object appears in the center of the visualization and then zooms to

the elevation at which the selected representation has appropriate visual density. (Appro-

priate visual density is de�ned using the metrics described in Chapter 5.) The current

implementation supports all of the listed properties but 5.

Figure 8.1 shows an example user interaction. The visualization is an interactive

scatterplot of selected Fortune 500 companies; on the x and y axes are %pro�t growth and

number of employees, respectively. (This visualization also appears in Figures 6.4 and 6.5,

without the navigational functionality provided by goal-directed zoom.) Each company has

three potential representations: (1) a dot; (2) an icon of the general category of industry to

which the company belongs; and (3) an icon of the speci�c type of industry to which the

company belongs.



104

Figure 8.1: Sample goal-directed zoom interaction.

Suppose the user is browsing the visualization and wants more information about

companies with high pro�t growth and a small number of employees. When the user selects

such a company in the visualization, a menu of the possible graphical representations of that

company appears above it (Figure 8.1, left side). In this case, the factory icon in the middle

of the menu indicates that the selected company belongs to the heavy industry sector and

the benzene ring at the bottom of the menu indicates more speci�cally that the company

is a chemical company.

Now suppose the user selects the most detailed representation (the benzene ring).

The system automatically pans and zooms so that the selected company is centered in the

screen and zooms until the benzene ring becomes visible (Figure 8.1, right side). From this

vantage point, the user learns that, unexpectedly, only a small number of the high growth

companies with few employees are high-technology companies (many of them are timber,

service, or heavy industry companies). Note that because VIDA chooses representations

based on local density, the objects are presented at varying levels of graphical detail. In

this case, some of the companies surrounding the benzene ring are represented as a general

category, while others are represented as a speci�c industry. Companies in slightly denser

regions are represented as dots.

8.4 Conclusions

We have presented a novel zoom method. This method, goal-directed zoom, al-

lows users to directly control the choice of graphical representation of an object. We have



105

implemented goal-directed zoom in VIDA.



106

Part III

Future work and conclusions



107

Chapter 9

Future work

We have identi�ed a number of issues that would be interesting to study in the fu-

ture. In this chapter, we present future directions for bu�ering, weak inversion/veri�cation,

and constant information density.

9.1 Bu�ering

There are many potential directions for further research. Certainly a variety of

other heuristics could be examined. Additionally, extending our model and simulator to

consider modi�cation in addition to search queries would be straightforward. Further, we

could consider optimal bu�er allocation for a multiuser bu�er pool, i.e., when the amount

of bu�er space for a recipe can vary over the course of the query path.

A more complex extension would consider bu�ering of partial results. First, mod-

i�cations may a�ect only part of a box result. Second, since browsers can display a subset

of a box result, it may not be necessary to calculate an entire box result. In the context

of bu�ering of partial results, slaved browsers [55] raise an additional complication. When

two browsers are slaved together, examining a partial result in one browser spawns a pro-

cess that generates a corresponding partial result in another browser. The model could be

extended to consider this type of dependency in the access pattern.



108

9.2 Weak inversion and veri�cation

We are currently exploring several ways in which weak inversion and veri�cation

can be applied to optimization problems such as e�cient rematerialization of intermediate

results, e�cient materialization of partial results, and reuse of common subexpressions.

9.2.1 E�cient rematerialization of intermediate results

In Chapter 3, we made the simplifying assumption that all intermediate results in

a given chain of data
ow operators had been materialized. However, many data
ow systems

cache their intermediate results (e.g., Data Explorer [25]). Suppose the user of a caching

system �nds an anomaly and attempts to view an intermediate datum that contributed

to it. In the worst case, the system must rematerialize all intermediate results simply to

recreate one datum in one intermediate step.

Weak inversion enables us to recreate lost intermediate results e�ciently. Previ-

ously, we discussed invoking f�ws on either user-speci�ed attribute values of interest (i.e.,

the original image) or attribute values that contributed to the computation of those inter-

esting values (i.e., the veri�ed inverse images in the intermediate results). However, the

system could also invoke f�ws on the constant values found in the ��w �lters (which were

generated by f�ws operating on images to their right in the data
ow diagram). Using this

fact, the system can generate a sequence of ��w �lters all the way to the base table of

our data
ow chain. It can then apply these ��w �lters as additional selections at each

intermediate step in the chain, reducing the amount of data that must be processed.

9.2.2 E�cient materialization of partial results

The technique described above extends trivially to the e�cient materialization of

partial results. For example, if the system allows the user to specify bounds on the (end

result) regions to be visualized, the coordinates of that bounded region become another

set of constants to which the system can apply f�ws. This implies that it can generate a

chain of weak-inverse selections similar to that described in Section 9.2.1, again reducing

the amount of data that must be processed.



109

9.2.3 Reuse of common subexpressions

The process of breaking data
ow graphs into linear components may produce

components with shared steps. This is undesirable because I�ws and I�vs may be computed

redundantly. However, the problem is not as simple as �nding overlapping steps because the

system can only share inverse images between two components if, for example, the inverse

images would result from applying the same f�w . The problem is further complicated

if components require di�erent properties. If the system allows the user to specify that

one data
ow graph source must be pure and another must be complete, then overlapping

components may require I�ws and I�vs that have been produced using di�erent properties.

Sharing then becomes more di�cult, if not impossible.

9.3 Constant information density

We have identi�ed several interesting areas for further research on constant infor-

mation density visualizations. We summarize these ideas in this section.

9.3.1 Movement optimization

As users pan and zoom, they may require less detail on the screen than when

they are not moving. The user interface should allow the user to di�erentiate between

appropriate detail for movement versus still conditions. For example, the user may require

fewer objects while panning and zooming than when viewing a still image. This information

can be used to reduce rendering time.

9.3.2 User studies

Further studies of user response to applications with constant information density

are plainly warranted. Additionally, although we have focused in this work on preserving

constant information density for a given metric rather than comparing density metrics and

studying appropriate values for such metrics, such studies would plainly be useful. A formal

taxonomy of density metrics would also be of signi�cant interest.



110

9.3.3 Display and constraint mechanisms

Potential improvements of the mechanism described in Chapter 6 include replacing

the grid-based model with an object-based model, adding an allocation mechanism, and

developing a graphical mechanism with which users can specify constraints.



111

Chapter 10

Conclusions

We have presented novel solutions for two key problems in data visualization:

data lineage and information density. We have shown how our solutions can be applied in

a database visualization environment, signi�cantly improving its usability.

In the �rst part of the dissertation, we de�ned and addressed the data lineage

problem. In Chapter 2, we discussed a e�cient method to support data lineage queries.

In Chapter 3, we introduced the general principles of weak inversion and veri�cation and

showed how they can be used to reconstruct the (approximate) lineage of derived data with-

out explicit metadata. These techniques eliminate irrelevant source data, thereby reducing

clutter in the display.

In the second part of the dissertation, we used the Principle of Constant Infor-

mation Density to reduce the visual complexity of graphical representations of data. In

Chapter 4, we presented a pilot study that indicates that users navigate di�erently in vi-

sualizations with and without constant information density. In Chapter 5, we presented a

number of techniques for creating visualizations with constant information density. These

techniques are most appropriate to uniformly-distributed data sets. In Chapter 6, we ex-

tended our work to non-uniformly-distributed data sets. In Chapter 7, we discussed tech-

niques for semi-automatically modifying the graphical representations of data. Finally, in

Chapter 8, we introduced a novel navigation method appropriate to constant information

density visualizations.



112

Bibliography

[1] C. Ahlberg and B. Shneiderman. Visual information seeking: tight coupling of dynamic

query �lters with star�eld displays. In Proc. ACM SIGCHI '94, pages 313{317, Boston,

April 1994.

[2] A. Aiken, J. Chen, M. Stonebraker, and A. Woodru�. Tioga-2: a direct manipulation

database visualization environment. In Proc. 12th Int. Conf. on Data Engineering,

pages 208{17, New Orleans, Louisiana, February 1996.

[3] R. Avnur, J.M. Hellerstein, B. Lo, C. Olston, B. Raman, V. Raman, T. Roth, and

K. Wylie. CONTROL: Continuous Output and Navigation Technology with Re�ne-

ment On-Line. In Proc. ACM SIGMOD '98, pages 567{569, Seattle, Washington, June

1998.

[4] E. Bainto, J. Dozier, J. Frew, J. Gray, R. Mechoso, and S. Miley. Requirements for Se-

quoia database system. Sequoia 2000 technical memorandum, University of California,

Berkeley, California, September 1993.

[5] B.B. Bederson and J.D. Hollan. Pad++: a zooming graphical interface for exploring

alternate interface physics. In Proc. ACM UIST 94, pages 17{26, Marina del Rey, CA,

November 1994.

[6] B.B. Bederson, J.D. Hollan, J. Stewart, D. Rogers, A. Druin, and D. Vick. A zooming

web browser. In SPIE Multimedia Computing and Networking (Proceedings of the

SPIE, San Jose, CA, January, 1996), volume 2667, pages 260{271, 1996.

[7] J. Bertin. Semiology of Graphics. The University of Wisconsin Press, Madison, Wis-

consin, 1983. J. Berg, translator.



113

[8] E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose. Toolglass and magic lenses:

the see-through interface. In Proc. ACM SIGGRAPH '93, pages 73{80, Anaheim,

California, August 1993.

[9] P. Brown and M. Stonebraker. BigSur: a system for the management of Earth science

data. In Proc. 21st Int. Conf. on Very Large Data Bases, pages 720{728, Z�urich,

Switzerland, September 1995.

[10] B.P. Butten�eld and R.B. McMaster, editors. Map Generalization: Making Rules for

Knowledge Representation. Longman, London, England, 1991.

[11] H.-T. Chou and D. DeWitt. An evaluation of bu�er management strategies for rela-

tional database systems. In Proc. 11th Int. Conf. on Very Large Data Bases, pages

127{141, Stockholm, Sweden, August 1985.

[12] C. Cleverdon and M. Keen. Factors Determining the Performance of Indexing Systems.

ASLIB Cran�eld Research Project, Cran�eld, Bedsford, England, 1966.

[13] P. Denning. Virtual memory. ACM Computing Surveys, 2(3):153{189, September 1970.

[14] Federal Geographic Data Committee. Content standards for digital spatial metadata

(�nal draft), June 1994.

[15] K. Fishkin and M.C. Stone. Enhanced dynamic queries via movable �lters. In Proc.

ACM SIGCHI '95, pages 415{420, Denver, May 1995.

[16] A.U. Frank and S. Timpf. Multiple representations for cartographic objects in a multi-

scale tree - an intelligent graphical zoom. Computers & Graphics, 18(6):823{829,

November-December 1994.

[17] G.W. Furnas. Generalized �sheye views. In Proc. ACM SIGCHI '86, pages 16{23,

Boston, 1986.

[18] G.W. Furnas and B.B. Bederson. Space-scale diagrams: understanding multiscale

interfaces. In Proc. ACM SIGCHI '95, pages 234{241, Denver, May 1995.

[19] W.O. Galitz. User-Interface Screen Design. QED Pub. Group, Boston, 1993.

[20] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York, 1979.



114

[21] M.M. Gorlick and R.R. Razouk. Using weaves for software construction and analysis.

In Proc. 13th International Conference on Software Engineering, pages 23{34, Austin,

Texas, May 1991. IEEE Computer Society Press.

[22] GTE New Media Services. BigBook, 1995-1998. http://bigbook.com.

[23] Y.E. Ioannidis, M. Livny, J. Bao, and E.M. Haber. User-oriented visual layout at mul-

tiple granularities. In Proc. 3rd International Workshop on Advanced Visual Interfaces,

pages 184{193, Gubbio, Italy, May 1996.

[24] D. P. Lanter. Design of a lineage-based meta-data base for GIS. Cartography and

Geographic Information Systems, 18(4):255{261, 1991.

[25] B. Lucas, G. Abram, N. Collins, D. Epstein, et al. An architecture for a scienti�c

visualization system. In Proc. 1992 IEEE Visualization Conference, pages 107{114,

Boston, October 1992.

[26] J. Mackinlay. Automating the design of graphical presentations of relational informa-

tion. ACM Transactions on Graphics, 5(2):110{141, April 1986.

[27] E. Mesrobian, R.R. Muntz, J.R. Santos, E.C. Shek, C.R. Mechoso, J.D. Farrara, and

P. Stolorz. Extracting spatio-temporal patterns from geoscience datasets. In Proc.

IEEE Workshop on Visualization and Machine Vision, pages 92{103, Seattle, Wash-

ington, June 1994.

[28] National Institute of Standards and Technology. Federal Information Processing Stan-

dard (FIPS PUB) 173-1: Spatial Data Transfer Standard (SDTS), 1994.

[29] J.V. Nickerson. Visual programming. Ph.D. dissertation, New York University, New

York, 1994.

[30] C. Olston, A. Aiken, J. Hellerstein, and M. Stonebraker. VIQING: Visual Interactive

QueryING. In Proc. 14th IEEE Symp. on Visual Languages, Halifax, Nova Scotia,

September 1998. To appear.

[31] B. Paul. Mesa, 1995-1996. ftp://iris.ssec.wisc.edu/pub/Mesa/.

[32] K. Perlin and D. Fox. Pad: an alternative approach to the computer interface. In Proc.

SIGGRAPH '93, pages 57{64, Anaheim, California, August 1993.



115

[33] R.J. Phillips and L. Noyes. An investigation of visual clutter in the topographic base

of a geological map. Cartographic Journal, 19(2):122{132, 1982.

[34] J. Rasure and M. Young. An open environment for image processing software develop-

ment. In Proc. 1992 SPIE Symposium on Electronic Image Processing, pages 300{310,

San Jose, California, February 1992.

[35] Regents of the University of California. DataSplash, 1997.

http://datasplash.cs.berkeley.edu.

[36] S.F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. Interactive graphic design

using automatic presentation knowledge. In Proc. ACM SIGCHI '94, pages 112{117,

Boston, April 1994.

[37] M. Schi�. Designing graphic presentations from �rst principles. Ph.D. dissertation,

University of California, Berkeley, Berkeley, CA, 1998.

[38] A. Smith. Cache memories. ACM Computing Surveys, 14(3):473{530, September 1982.

[39] C.J. Springer. Retrieval of information from complex alphanumeric displays: screen

formatting variables' e�ects on target identi�cation time. In G. Salvendy, editor, Cog-

nitive Engineering in the Design of Human-Computer Interaction and Expert Systems,

pages 375{382. Elsevier, Amsterdam, the Netherlands, 1987. Published as Proceedings

of the Second International Conference on Human-Computer Interaction (August 1987,

Honolulu, Hawaii), volume 2.

[40] P. Steenkiste. Advanced register allocation. In P. Lee, editor, Advanced Language

Implementation. MIT Press, Cambridge, Massachusetts, 1991.

[41] M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu. Tioga: providing data

management for scienti�c visualization applications. In Proc. 19th Int. Conf. on Very

Large Data Bases, pages 25{38, Dublin, Ireland, August 1993.

[42] M. Stonebraker and J. Dozier. Sequoia 2000: large capacity object servers to support

global change research. Sequoia 2000 Technical Report 91/1, University of California,

Berkeley, CA, March 1992.

[43] M. Stonebraker and G. Kemnitz. The POSTGRES next-generation database manage-

ment system. Comm. of the ACM, 34(10):78{92, October 1991.



116

[44] Surveys and Resource Mapping Branch, Ministry of Environment, Lands and Parks.

Spatial Archive and Interchange Format (SAIF), release 3.1, 1994.

[45] F. T�opfer and W. Pillewizer. The principles of selection, a means of cartographic

generalization. Cartographic Journal, 3(1):10{16, 1966.

[46] K. Tsui, P. Fletcher, and M. Hutchins. PISTON: a scalable software platform for imple-

menting parallel visualization algorithms. In Proc. Computer Graphics International,

Melbourne, Australia, June 1994.

[47] E.R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,

Connecticut, 1983.

[48] T.S. Tullis. Screen design. In Martin Helander, editor, Handbook of Human-Computer

Interaction, pages 377{411. Elsevier Science Publishers (North-Holland), Amsterdam,

1988.

[49] C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,

and A. VanDam. The Application Visualization System: a computational environment

for scienti�c visualization. IEEE Computer Graphics and Applications, 9(4):32{40, July

1989.

[50] A. Woodru�, J. Landay, and M. Stonebraker. Constant density visualizations of non-

uniform distributions of data. In Proc. UIST '98, pages 19{28, November 1998.

[51] A. Woodru�, J. Landay, and M. Stonebraker. Constant information density in

zoomable interfaces. In Proc. Advanced Visual Interfaces '98, pages 57{65, L'Aquila,

Italy, May 1998.

[52] A. Woodru�, J. Landay, and M. Stonebraker. Goal-directed zoom. SIGCHI '98 Sum-

mary, pages 305{6, April 1998.

[53] A. Woodru� and M. Stonebraker. Bu�ering of intermediate results in data
ow dia-

grams. In Proc. 1995 IEEE Symposium on Visual Languages, pages 187{94, Darmstadt,

Germany, 5-9 Oct. 1995.

[54] A. Woodru� and M. Stonebraker. Supporting �ne-grained data lineage in a database

visualization environment. In Proc. 13th Int. Conf. Data Engineering, pages 91{102,

Birmingham, England, April 1997.



117

[55] A. Woodru�, P. Wisnovsky, C. Taylor, M. Stonebraker, C. Paxson, J. Chen, and

A. Aiken. Zooming and tunneling in Tioga: supporting navigation in multidimensional

space. In Proc. 10th IEEE Symposium on Visual Languages, pages 191{3, St. Louis,

Missouri, October 1994.

[56] H. Yamana, J. Kohdate, T. Tasue, and Y. Muraoka. An environment for data
ow

program development of parallel processing system-Harray. Systems and Computers

in Japan, 22(8):26{38, 1991.

[57] T.C. Zhao and Mark Overmars. XForms, 1996. http://bragg.phys.uwm.edu/xforms.


