
File System Performance and Transaction Support

by

Margo Ilene Seltzer

A.B. (Harvard/Radcliffe College) 1983

A dissertation submitted in partial satisfaction of the

requirements of the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Michael Stonebraker, Chair
Professor John Ousterhout
Professor Arie Segev

1992

File System Performance and Transaction Support

copyright 1992

by

Margo Ilene Seltzer

1
Abstract

File System Performance and Transaction Support

by

Margo Ilene Seltzer

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Michael Stonebraker, Chair

This thesis considers two related issues: the impact of disk layout on file system throughput
and the integration of transaction support in file systems.

Historic file system designs have optimized for reading, as read throughput was the I/O per-
formance bottleneck. Since increasing main-memory cache sizes effectively reduce disk read
traffic [BAKER91], disk write performance has become the I/O performance bottleneck
[OUST89]. This thesis presents both simulation and implementation analysis of the performance
of read-optimized and write-optimized file systems.

An example of a file system with a disk layout optimized for writing is a log-structured file
system, where writes are bundled and written sequentially. Empirical evidence in [ROSE90],
[ROSE91], and [ROSE92] indicates that a log-structured file system provides superior write per-
formance and equivalent read performance to traditional file systems. This thesis analyzes and
evaluates the log-structured file system presented in [ROSE91], isolating some of the critical
issues in its design. Additionally, a modified design addressing these issues is presented and
evaluated.

Log-structured file systems also offer the potential for superior integration of transaction pro-
cessing into the system. Because log-structured file systems use logging techniques to store files,
incorporating transaction mechanisms into the file system is a natural extension. This thesis
presents the design, implementation, and analysis of both user-level transaction management on
read and write optimized file systems and embedded transaction management in a write optim-
ized file system.

This thesis shows that both log-structured file systems and simple, read-optimized file systems
can attain nearly 100% of the disk bandwidth when I/Os are large or sequential. The improved
write performance of LFS discussed in [ROSE92] is only attainable when garbage collection
overhead is small, and in nearly all of the workloads examined, performance of LFS is compar-
able to that of a read-optimized file system. On transaction processing workloads where a steady
stream of small, random I/Os are issued, garbage collection reduces LFS throughput by 35% to
40%.

iii
Dedication

To Nathan Goodman
for believing in me when I doubted myself, and for
helping me find large mountains and move them.

iv
Table of Contents

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1. Introduction ... 1
2. Related Work .. 3

2.1. File Systems ... 3
2.1.1. Read-Optimized File Systems .. 3

2.1.1.1. IBM’s Extent Based File System ... 3

2.1.1.2. The UNIX1 V7 File System ... 4
2.1.1.3. The UNIX Fast File System ... 4
2.1.1.4. Extent-like Performance on the Fast File System 4
2.1.1.5. The Dartmouth Time Sharing System ... 4
2.1.1.6. Restricted Buddy Allocation .. 5

2.1.2. Write-Optimized File Systems ... 5
2.1.2.1. DECorum ... 5
2.1.2.2. The Database Cache ... 6
2.1.2.3. Clio’s Log Files ... 6
2.1.2.4. The Log-structured File System .. 6

2.2. Transaction Processing Systems .. 8
2.2.1. User-Level Transaction Support ... 8

2.2.1.1. Commercial Database Management Systems 9
2.2.1.2. Tuxedo ... 9
2.2.1.3. Camelot .. 9

2.2.2. Embedded Transaction Support .. 9
2.2.2.1. Tandem’s ENCOMPASS ... 10
2.2.2.2. Stratus’ Transaction Processing Facility .. 10
2.2.2.3. Hewlett-Packard’s MPE System .. 10
2.2.2.4. LOCUS .. 11
2.2.2.5. Quicksilver ... 11

2.3. Transaction System Evaluations .. 11
2.3.1. Comparison of XDFS and CFS ... 11
2.3.2. Operating System Support for Databases ... 12
2.3.3. Virtual Memory Management for Database Systems 12
2.3.4. Operating System Transactions for Databases 12
2.3.5. User-Level Data Managers v.s. Embedded Transaction Support 13

2.4. Conclusions .. 13
3. Read-Optimized File Systems .. 14

3.1. The Simulation Model ... 14
3.1.1. The Disk System ... 15
3.1.2. Workload Characterization ... 15

3.2. Evaluation Criteria ... 17
3.3. The Allocation Policies .. 17

v
3.3.1. Binary Buddy Allocation .. 18
3.3.2. Restricted Buddy System .. 20

3.3.2.1. Maintaining Contiguous Free Space .. 20
3.3.2.2. File System Parameterization .. 20
3.3.2.3. Allocation and Deallocation .. 21
3.3.2.4. Exploiting the Underlying Disk System .. 22

3.3.3. Extent-Based Systems ... 26
3.3.4. Fixed-Block Allocation ... 27

3.4. Comparison of Allocation Policies .. 29
3.5. Conclusions .. 30

4. Transaction Performance and File System Disk Allocation ... 31
4.1. A Log-Structured File System ... 31
4.2. Simulation Overview ... 33
4.3. The Simulation Model ... 33
4.4. Transaction Processing Models ... 36

4.4.1. The Data Manager Model ... 37
4.4.2. The Operating System Model ... 37
4.4.3. The Log-Structured File System Models .. 38
4.4.4. Model Summary ... 39

4.5. Simulation Results ... 40
4.5.1. CPU Boundedness .. 40
4.5.2. Disk Boundedness ... 42
4.5.3. Lock Contention ... 44

4.6. Conclusions .. 50
5. Transaction Support in a Log-Structured File System ... 52

5.1. A User-Level Transaction System ... 52
5.1.1. Crash Recovery ... 52
5.1.2. Concurrency Control ... 53
5.1.3. Management of Shared Data ... 53
5.1.4. Module Architecture ... 54

5.1.4.1. The Log Manager ... 54
5.1.4.2. The Buffer Manager ... 55
5.1.4.3. The Lock Manager ... 55
5.1.4.4. The Process Manager ... 55
5.1.4.5. The Transaction Manager .. 55
5.1.4.6. The Record Manager .. 56

5.2. The Embedded Implementation ... 56
5.2.1. Data Structures and Modifications .. 58

5.2.1.1. The Lock Table .. 58
5.2.1.2. The Transaction State .. 59
5.2.1.3. The Inode ... 59
5.2.1.4. The File System State .. 59
5.2.1.5. The Process State ... 60

5.2.2. Modifications to the Buffer Cache .. 60

vi
5.2.3. The Kernel Transaction Module ... 60
5.2.4. Group Commit .. 60
5.2.5. Implementation Restrictions ... 61

5.2.5.1. Support for Long-Running Transactions ... 62
5.2.5.2. Support for Subpage Locking .. 62
5.2.5.3. Support for Nested Transactions and Transaction Sharing 63
5.2.5.4. Support for Recovery from Media Failure 63

5.3. Performance ... 64
5.3.1. Transaction Performance .. 64
5.3.2. Non-Transaction Performance .. 66
5.3.3. Sequential Read Performance ... 66

5.4. Conclusions .. 69
6. Redesigning LFS ... 70

6.1. A Detailed Description of LFS .. 70
6.1.1. Disk Layout ... 70
6.1.2. File System Recovery ... 72

6.2. Design Issues ... 74
6.2.1. Memory Consumption .. 76
6.2.2. Block Accounting ... 77
6.2.3. Segment Structure and Validation .. 77
6.2.4. File System Verification ... 78
6.2.5. The Cleaner ... 79

6.3. Implementing LFS in a BSD System ... 82
6.3.1. Integration with FFS ... 82

6.3.1.1. Block Sizes .. 84
6.3.1.2. The Buffer Cache ... 84

6.3.2. The IFILE .. 86
6.3.3. Directory Operations ... 87
6.3.4. Synchronization .. 89
6.3.5. Minor Modifications ... 89

6.4. Conclusions .. 89
7. Performance Evaluation .. 91

7.1. Extent-like Performance Using the Fast File System 91
7.2. The Test Environment ... 92
7.3. Raw File System Performance ... 93

7.3.1. Raw Write Performance .. 94
7.3.2. Raw Read Performance ... 96

7.4. Small File Performance ... 97
7.5. Software Development Workload .. 98

7.5.1. Single-User Andrew Performance .. 98
7.5.2. Multi-User Andrew Performance .. 99

7.6. OO1 -- The Object Oriented Benchmark ... 101
7.7. The Wisconsin Benchmark .. 103
7.8. Transaction Processing Performance ... 106

vii
7.9. Super-Computer Benchmark ... 107
7.10. Conclusions .. 108

8. Conclusions ... 110
8.1. Chapter Summaries .. 110
8.1. Future Research Directions .. 112
8.2. Summary .. 112

viii
List of Figures

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2-1: Clio Log File Structure .. 7
2-2: Log-Structured File System Disk Allocation .. 7
3-1: Allocation for the Binary Buddy Policy .. 19
3-2: Fragmentation for the Restricted Buddy Policy .. 23
3-3: Application and Sequential Performance for the Restricted Buddy Policy 24
3-4: Interaction of Contiguous Allocation and Grow Factors .. 26
3-5: Application and Sequential Performance for the Extent-based System 28
3-6: Sequential Performance of the Different Allocation Policies 29
3-7: Application Performance of the Different Allocation Policies. 29
4-1: A Log-Structured File System ... 32
4-2: Simulation Overview ... 34
4-3: Additions and Deletions in B-Trees .. 38
4-4: CPU Bounding Under Low Contention .. 41
4-5: Effect of the Cost of System Calls .. 42
4-6: Disk Bounding Under Low Contention ... 43
4-7: Effect of CPU Speed on Transaction Throughput ... 44
4-8: Effect of Skewed Access Distribution ... 45
4-9: Effect of Access Skewing on Number of Aborted Transactions 46
4-10: Effect of Access Skewing with Subpage Locking .. 46
4-11: Distribution of Locked Subpages .. 47
4-12: Effect of Access Skewing with Variable Page Sizes ... 48
4-13: Effect of Access Skewing with Modified Subpage Locking 49
4-14: Effect of Modified Subpage Locking on the Number of Aborts 50
5-1: Library Module Interfaces ... 54
5-2: User-Level System Architectures .. 57
5-3: Embedded Transaction System Architecture .. 57
5-4: The Operating System Lock Table .. 58
5-5: File Index Structure (inode) .. 59
5-6: Transaction Performance Summary .. 65
5-7: Performance Impact of Kernel Transaction Support ... 67
5-8: Sequential Performance after Random I/O ... 68
5-9: Elapsed Time for Combined Benchmark .. 68
6-1: Physical Disk Layout of the Fast File System ... 72
6-2: Physical Disk Layout of a Log-Structured File System .. 73
6-3: Partial Segment Structure Comparison Between Sprite-LFS and BSD-LFS 78
6-4: BSD-LFS Checksum Computation ... 78
6-5: BLOCK_INFO Structure used by the Cleaner .. 80
6-6: Segment Layout for Bad Cleaner Behavior .. 81
6-7: Segment Layout After Cleaning .. 81

ix
6-8: Block-numbering in BSD-LFS .. 86
6-9: Detail Description of the IFILE ... 87
6-10: Synchronization Relationships in BSD-LFS ... 90
7-1: Maximum File System Write Bandwidth .. 94
7-2: Effects of LFS Write Accumulation .. 95
7-3: Impact of Rotational Delay on FFS Performance ... 96
7-4: Maximum File System Read Bandwidth .. 96
7-5: Small File Performance ... 97
7-6: Multi-User Andrew Performance .. 100
7-7: Multi-User Andrew Performance (Blow-Up) .. 100

x
List of Tables

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3-4: Fragmentation and Performance Results for Buddy Allocation 19
3-5: Allocation Region Selection Algorithm .. 22
3-6: Extent Ranges for Extent-Based File System Simulation. ... 26
3-7: Average Number of Extents per File ... 29
4-1: CPU Per-Operation Costs .. 35
4-2: Simulation Parameters ... 36
4-3: Comparison of Five Transaction Models .. 39
6-3: Design Changes Between Sprite-LFS and BSD-LFS ... 75
6-4: The System Call Interface for the Cleaner .. 80
6-5: Description of Existing BSD vfs operations .. 82
6-6: Description of existing BSD vnode operations ... 83
6-7: Summary of File system Specific vnode Operations ... 85
6-8: New Vnode and Vfs Operations .. 85
7-1: Hardware Specifications .. 92
7-2: Summary of Benchmarks Analyzed .. 93
7-3: Single-User Andrew Benchmark Results .. 98
7-4: Database Sizing for the OO1 Benchmark ... 101
7-5: OO1 Performance Results ... 102
7-6: Relation Attributes for the Wisconsin Benchmark ... 102
7-7: Wisconsin Benchmark Queries ... 104
7-8: Elapsed Time for the Queries of the Wisconsin Benchmark .. 105
7-9: TPC-B Performance Results ... 106
7-10: Supercomputer Applications I/O Characteristics .. 107
7-11: Performance of the Supercomputer Benchmark .. 109

xi
Acknowledgements

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
I have been fortunate to have had many brilliant and helpful influences at Berkeley. My advi-

sor, Michael Stonebraker, has been patient and supportive throughout my stay at Berkeley. He
challenged my far-fetched ideas, encouraged me to pursue whatever caught my fancy, and gave
me the freedom to make my own discoveries and mistakes. John Ousterhout was a member of
my thesis and qualifying exam committees. His insight into software systems has been particu-
larly educating for me and his high standards of excellence have been a source of inspiration. His
thorough reading of this dissertation improved its quality immensely. Arie Segev was also on my
qualifying exam and thesis committees and offered sound advice and criticism.

The interactions with Professors Dave Patterson and Randy Katz rounded out my experience
at Berkeley. They have discovered how to make computer science into ‘‘big science’’ and to
create enthusiasm in all their endeavors. I hope I can do them justice by carrying this trend for-
ward to other environments.

I have also been blessed with a set of terrific colleagues. Among them are my co-authors:
Peter Chen, Ozan Yigit, Michael Olson, Mary Baker, Etienne Deprit, Satoshi Asami, Keith Bos-
tic, Kirk McKusick, and Carl Staelin. The Computer Science Research Group provided me with
expert guidance, criticism, and advice, contributing immensely to my technical maturation. I
owe a special thanks to Kirk McKusick who gave up many hours of his time and his test machine
to make BSD-LFS a reality. Thanks also go to the the Sprite group of Mary Baker, John Hart-
man, Mendel Rosenblum, Ken Shirriff, Mike Kupfer, and Bob Bruce who managed to develop
and support an operating system while doing their own research as well! They were a constant
source of information and assistance.

Terry Lessard-Smith and Bob Miller saved the day on many an occasion. It seemed that no
matter what I needed, they were always there, willing to help out. Kathryn Crabtree has also
been a savior on many an occasion. It has always seemed to me that her job is to be able to
answer all questions, and I don’t think she ever let me down. Th transition to graduate school
would have been impossible without her help and reassuring words. Those who claim that gradu-
ate school is cold and impersonal didn’t spend enough time with people like Kathryn, Bob, and
Terry.

There are many other people who have offered me guidance and support over the past several
years and they deserve my unreserved thanks. My officemates, the inhabitants of Sin City: Anant
Jhingran, Sunita Sarawagi, and especially Mark Sullivan, have been constant sources of brain
power, entertainment, and support. Mike Olson, another Sin City inhabitant, saved the day on
many papers and my dissertation by making troff sing. Mary Baker, of the Sprite project, has
been a valued colleague, devoted friend, expert party planner, chef extraordinairre, and excep-
tionally rigorous co-author. If I can hold myself to the high standards Mary sets for herself, I am
assured a successful career.

Then there are the people who make life just a little more pleasant. Lisa Yamonaco has
known me longer than nearly anyone else and continues to put up with me and offer uncondi-
tional love and support. She has always been there to share in my successes and failures, offer
words of encouragement, provide a vote of confidence, or just to make me smile. I am grateful
for her continued friendship.

Ann Almgren, my weekly lunch companion, shared many of my trials and tribulations both in
work and in play. Eric Allman was always there when I needed him to answer a troff question,
fix my sendmail config files, provide a shoulder, or invite me to dinner. His presence made
Berkeley a much more pleasant experience. Sam Leffler was quick to supply me with access to

xii
Silicon Graphics’ equipment and source code when I needed it, although I’ve yet to finish the
research we both intended for me to do! He has also been a devoted soccer fan and and a good
source of diversions from work. My friends and colleagues at Quantum Consulting were always
a source of fun and support.

Life at Berkeley would have been dramatically different without the greatest soccer team in
the world, the Berkeley Bruisers, particularly Cathy Corvello, Kerstin Pfann, Brenda Baker,
Robin Packel, Yvonne Gindt, and co-founder Nancy Geimer. They’ve kept my body as active as
my mind and helped me maintain perspective during this crazy graduate school endeavor. A spe-
cial thanks goes to Jim Broshar for over four years of expert coaching. More than teaching soccer
skills, he helped us craft a vision and discover who we were and who we wanted to become.

Even with all my support in Berkeley, I could never have survived the last several years
without my electronic support network, the readership of MISinformation. The occasional pieces
of email and reminders that there was life outside of graduate school helped to keep me sane. I
look forward to their continued presence via my electronic mailbox.

And finally, I would like to thank Keith Bostic, my most demanding critic and my strongest
ally. His technical expertise improved the quality of my research, and his love and support
improved the quality of my life.

This research has been funded by the National Science Foundation grants NSF-87-15235 and
IRI-9107455, the National Aeronautics and Space Administration grant NAG-2-530, the Defense
Advanced Research Projects Agency grants DAALO3-87-K-0083 and DABT63-92-C-0007, and
the California State Micro Program.

1

Chapter 1

Introduction

hh

As CPU speeds have increased dramatically over the past decade, I/O performance is becom-
ing more and more of a system bottleneck [PATT88]. Therefore, improving system throughput
has become the task of the designers of I/O subsystems and file systems. While I/O subsystem
designers improve the hardware with disk arrays, faster busses, and larger caches, software
designers can try to use the existing systems more efficiently. This thesis addresses how file sys-
tems can be modified to use existing I/O systems more efficiently.

Maximum disk performance can be achieved by reading and writing the disk sequentially,
avoiding costly disk seeks. The traditional wisdom has been that data is read far more often than
it is written, and therefore, files should be allocated sequentially on disk so that they can be read
sequentially. However, today’s large main memory caches effectively reduce disk read traffic,
but do little to reduce write traffic [OUST89]. Anticipating the growing importance of write per-
formance on I/O performance and overall system performance, a great deal of file system
research is focused on improving write performance.

Evidence suggests that as systems become faster and disks and memories become larger, the
need to write data quickly will also increase. The file system trace data in [BAKER91] demon-
strates that in the past decade, files have become larger. At the same time, CPUs have become
dramatically faster and high-speed networks have enabled applications to move large quantities
of data very rapidly. These factors make it increasingly important that file systems be able to
move data to and from the disk quickly.

File system performance is normally tied to the intended application workload. In the works-
tation and time-sharing markets, where files are read and written in their entirety, the Berkeley
Fast File System (FFS) [MCKU84], with its rotation optimization and logical clustering, has been
relatively satisfactory. In the database and super-computing worlds, the tendency has been to
choose file systems that favor the contiguous disk layout offered by extent-based systems. How-
ever, when the workload is diverse, including both of these application types, neither file system
is entirely satisfactory. In some cases, demanding applications such as database management
systems manage their own disk allocation. This results in static partitioning of the available disk
space and maintaining two or more separate sets of utilities to copy, rename, or remove files. If
the initial allocation of disk space is incorrect, the result is poor performance, wasted space or
both. A file system that offers improved performance across a wide variety of workloads would
simplify system administration and serve the needs of the user community better.

This thesis examines existing file systems, searching for one that provides good performance
across a wide range of workloads. The file system design space can be divided into read-
optimized and write-optimized systems. Read-optimized systems allocate disk space contigu-
ously to optimize for sequential accesses. Write-optimized systems use logging to optimize writ-
ing large quantities of data. One goal of this research is to characterize how these different stra-
tegies respond to different workloads and use this characterization to design better performing file
systems.

This thesis also examines using the logging of a write-optimized file system to integrate tran-
saction support with the file system. This embedded support is compared to traditional user-level

2

transaction support. A second goal of this research is to analyze the benefit of integrating transac-
tion support in the file system.

Chapter 2 presents previous work related to this dissertation. It begins with a discussion of
how file systems have used disk allocation policies to improve performance. Next, several alter-
native transaction processing implementations are presented. The chapter concludes with a sum-
mary of some evaluations of file systems and transaction processing systems.

Chapter 3 presents a simulation study of several read-optimized file system designs. The
simulation uses three stochastically generated workloads that model time-sharing, transaction
processing, and super-computing workloads to measure read-optimized file systems that use mul-
tiple block sizes. The file systems are evaluated based on effective disk utilization (how much of
the total disk bandwidth the file systems can use), internal fragmentation (the amount of allocated
but unused space), and external fragmentation (the amount of unallocated, but usable space on the
disk).

Chapter 4 focuses on the transaction processing workload. It presents a simulation study that
compares read-optimized and write-optimized file systems for supporting transaction processing.
It also contrasts the performance of user-level transaction management with operating system
transaction management. The specific write-optimized file system analyzed is the log-structured
file system first suggested in [OUST89]. This chapter shows that a log-structured file system has
some characteristics that make it particularly attractive for transaction processing.

Chapter 5 presents an empirical study of an implementation of transaction support embedded
in a log-structured file system. This implementation is compared to a conventional user-level
transaction implementation. This chapter identifies several important issues in the design of log-
structured file systems.

Chapter 6 presents a new log-structured file system design based on the results of Chapter 5.

Chapter 7 presents the performance evaluation of the log-structured file system design in
Chapter 6. The file system is compared to a the Fast File System and an extent-based file system
on a wide range of benchmarks. The benchmarks are based upon database, software develop-
ment, and super-computer workloads.

Chapter 8 summarizes the conclusions of this work.

3

Chapter 2

Related Work

hh

This chapter discusses several classes of research, related to this dissertation. As this thesis
presents an evaluation of file system allocation policies and transaction processing support, there
are three main categories of related work: file systems, transaction systems, and evaluations. The
file system sections discuss a number of different allocation policies and how the state of the art
has evolved over time. The transaction processing section presents several alternative implemen-
tation strategies for providing transaction support to the user. Some of these different strategies
will be analyzed in Chapters 4 and 5 of this dissertation. The evaluation section summarizes five
studies that analyze transaction processing performance.

2.1. File Systems

The file systems are sub-divided into two classes: read-optimized and write-optimized file sys-
tems. Read-optimized systems assume that data is read more often than it is written and that per-
formance is maximized when files are allocated contiguously on disk. Write-optimized file sys-
tems focus on improving write performance, sometimes at the expense of read performance. This
division of allocation policies will be used throughout this work to describe different file systems.
The examples presented here provide an historical background to the evolution of file system
allocation strategies.

2.1.1. Read-Optimized File Systems

Read-optimized systems focus on sequential disk layout and allocation, attempting to place
files contiguously on disk to minimize the time required to read a file sequentially. Simple sys-
tems that allocate fixed-sized blocks can lead to files becoming fragmented, requiring reposition-
ing the disk head for each block read, leading to poor performance when blocks are small.
Attempting to allocate files contiguously on disk reduces the head movement and improves per-
formance, but requires more sophisticated bookkeeping and free space management. The six sys-
tems described present a range of alternatives.

2.1.1.1. IBM’s Extent Based File System

IBM’s MVS system provides extent-based allocation. An extent is a unit of contiguous on-
disk storage, and files are composed of some number of extents. When a user creates a new file,
she specifies a primary extent size and a secondary extent size. The primary extent size defines
how much disk space is initially allocated for the file while the secondary extent size defines the
size of additional allocations [IBM]. If users know how large their files will become, they can
select appropriate extent sizes, and most files can be stored in a few large contiguous extents. In
such cases, these files can be read and written sequentially and there is little wasted space on the
disk. However, if the user does not know how large the file will grow, then it is extremely
difficult to select extent sizes. If the extents are too small, then performance will suffer, and if
they are too large, there will be a great deal of wasted space. In addition, managing free space
and finding extents of suitable size becomes increasingly complex as free space becomes more
and more fragmented. Frequently, background disk rearrangers must be run during off-peak
hours to coalesce free blocks.

4

2.1.1.2. The UNIX1 V7 File System

Systems with a single block size (fixed-block systems), such as the original UNIX V7 file sys-
tem [THOM78] solve the problems of keeping allocation simple and fragmentation to a
minimum, but they do so at the expense of efficient read and write performance. In this file sys-
tem, files are composed of some number of 512-byte blocks. An unsorted list of free blocks is
maintained and new blocks are allocated from this list. Unfortunately, over time, as many files
are created, rewritten, and deleted, logically sequential blocks within a file are scattered across
the entire disk, and the file system requires a disk seek to retrieve each block. Since each block is
only 512 bytes, the cost of the seek is not amortized over a large transfer. Increasing the block
size reduces the per-byte cost, but it does so at the expense of internal fragmentation, the amount
of space that is allocated but unused. As most files are small [OUST85], they fit in a single, small
block. The unused, but allocated space in a larger block is wasted. Sorting the free list allows
small blocks to be accessed more efficiently by allocating them in such a way as to avoid a disk
seek between each access. However, this necessitates traversing half of the free list, on average,
for every deallocation.

2.1.1.3. The UNIX Fast File System

The BSD Fast File System (FFS) [MCKU84] is an evolutionary step forward from the simple
fixed-block system. Files are composed of a number of fixed-sized blocks and a few smaller frag-
ments. Small fragments alleviate the problem of internal fragmentation described in the previous
system. The larger blocks, on the order of 8 or 16 kilobytes, provide for more efficient disk utili-
zation as more data is transferred per seek. Additionally, the free list is maintained as a bit map
so that blocks may be allocated in a rotationally optimal fashion without spending a great deal of
time traversing a free list. The rotational optimization makes it possible to retrieve successive
blocks of the same file during a single rotation, thus reducing the disk access time. File alloca-
tion is clustered so that logically related files, those created in the same directory, are placed on
the same or a nearby cylinder to minimize seeks when they are accessed together.

2.1.1.4. Extent-like Performance on the Fast File System

McVoy suggests improvements to the Fast File System in [MCVO91]. He uses block cluster-
ing to achieve performance close to that of an extent-based system. The FFS block allocator
remains unchanged, but the maxcontig parameter, which defines how many blocks can be placed
contiguously on disk, is set equal to 64 kilobytes divided by the block size. The 64 kilobytes,
called the cluster size, was chosen not to exceed the maximum transfer allowed on any controller.

When the file system translates logical block numbers into physical disk requests, it deter-
mines how many logically sequential blocks are contiguous on disk. Using this number, the file
system can read more than one logical block in a single I/O operation. In order to write clusters,
blocks that have been modified (dirty blocks) are cached in memory and then written in a single
I/O. By clustering these relatively small blocks into 64 kilobyte clusters, the file system achieves
performance nearly identical to that of an extent-based system, without performing complicated
allocation or suffering severe internal fragmentation.

2.1.1.5. The Dartmouth Time Sharing System

In an attempt to merge the fixed-block and extent-based policies, the DTSS system described
in [KOCH87] is a file system that uses binary buddy allocation [KNUT69]. Files are composed
of extents, each of whose size is a power of two (measured in sectors). Files double in size when-
ever their size exceeds their current allocation. Periodically (once every day in DTSS), a reallo-
cation algorithm runs. This reallocator changes allocations to reduce both the internal and exter-
nal fragmentation. After reallocation, most files are allocated in 3 extents and average under 4%
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5

internal fragmentation. While this system provides good performance, the reallocator necessi-
tates quiescing the system each evening which is impractical in many environments.

2.1.1.6. Restricted Buddy Allocation

The restricted buddy system is a file system with multiple block sizes, initially described and
simulated in [SELT91], that does not require a reallocator. Instead of doubling allocations and
fixing them later as in DTSS, a file’s block size increases gradually as the file grows. Small files
are allocated from small blocks, and therefore do not suffer excessive internal fragmentation.
Large files are mostly composed of larger blocks, and therefore offer adequate sequential perfor-
mance. Simulation results discussed in [SELT91] and Chapter 3, show that these systems offer
performance comparable to extent-based systems and small internal fragmentation comparable to
fixed-block systems. Restricted buddy allocation systems do not require reorganization, avoiding
the down time that DTSS requires.

2.1.2. Write-Optimized File Systems

Write-optimized systems focus on improving the performance of writes to the file system.
Because large, main-memory file caches more effectively reduce the number of disk reads than
disk writes, disk write performance is becoming the system bottleneck [OUST89]. The trace
driven analysis in [BAKER91] shows that client workstation caches reduce application read
traffic by 60%, but only reduce write traffic by 10%. As write performance begins to dominate
I/O performance, write-optimized systems will become more important.

The following systems focus on providing better write performance rather than improving
disk allocation policies. The first two systems described in this section, DECorum and The Data-
base Cache, have disk layouts similar to those described in the read-optimized systems. They
improve write performance by logging operations before they are written to the actual file system.
The second two systems, Log Files and The Log-structured File System, change the on-disk lay-
out dramatically, so that data can be written directly to the file system efficiently.

2.1.2.1. DECorum

The DECorum file system [KAZ90] is an enhancement to the Fast File System. When FFS
creates a file or allocates a new block, several different on-disk data structures are updated (block
bit maps, inode bit maps, and the inode). In order to keep all these structures consistent and
expedite recovery, FFS performs may operations (file creation, deletion, rename, etc) synchro-
nously. These synchronous writes penalize the system in two ways. First, they increase latency
as operations wait for the writes to complete. Secondly, they result in additional I/Os since data
that is frequently accessed may be repeatedly written. For example, each time a file is created or
deleted, the directory containing that file is synchronously written to disk. If many files in the
same directory are created/deleted, many additional I/Os are issued. These additional I/Os can
take up a large fraction of the disk bandwidth.

The DECorum file system uses a write-ahead logging technique to improve the performance
of operations that are synchronous in the Fast File System. Rather than performing synchronous
operations, DECorum maintains a log of the modifications that would be synchronous in FFS.
Since FFS semantics allow the system to lose up to 30 seconds worth of updates [MCKU84], and
DECorum is supporting the same semantics, the log need only be flushed to disk every 30
seconds. As a result, DECorum avoids many I/Os entirely, by not repeatedly writing indirect
blocks as new blocks are appended to the file and by never writing files which are deleted within
the 30 second window. In addition, all writes, including those for inodes and indirect blocks, are
asynchronous. Write performance, particularly appending to the end of a file, improves. Read
performance remains largely unchanged, but since the file system is performing fewer total I/O’s,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

UNIX is a trademark of Unix System Laboratories.

6

overall disk utilization should decrease leading to better read response time. In addition, the log-
ging improves recovery time, because the file system can be restored to a logically consistent
state by reading the log and aborting or undoing any partially completed operations.

2.1.2.2. The Database Cache

The database cache, described in [ELKH84], extends the idea in DECorum one step further.
Instead of logging only meta-data operations in memory, the database cache technique improves
write performance by logging dirty pages sequentially to a large cache, typically on disk. The
dirty pages are then written back to the conventional file system asynchronously to make room in
the cache for new pages. On a lightly loaded system, this will improve I/O performance because
most writes will occur at sequential speeds and blocks accumulate in the cache slowly enough
that they may be sorted and written to the actual file system efficiently. However, in some appli-
cations such as those found in an online transaction processing environment this writing from the
cache to the database can still limit performance. At best, the database cache technique will sort
I/O’s before issuing writes from the cache to the disk, but simulation results show that even
well-ordered writes are unlikely to achieve utilization beyond 40% of the disk bandwidth
[SELT90].

2.1.2.3. Clio’s Log Files

The V system’s [CHER88] Clio logging service extends the use of logging to replace the file
system entirely [FIN87]. Rather than keep a separate operation log or database cache, this file
system is designed for write-once media and is represented as a readable, append-only log. Files
are logically represented as a sequence of records in this log, called a sublog. The physical
implementation gathers a number of log records from one or more files to form a block. In order
to access a file, index information, called an entry map, is stored in the log. Every N blocks, a
level 1 entry map is written. The level 1 entry map contains a bit map for each file found in the
preceding N blocks, indicating in which blocks the file has log records. In order to find particular
records within a block, the block is scanned sequentially. Every N 2 blocks a level 2 entry map is
written. Level 2 entry maps contain per-file bit maps indicating in which level 1 entry map the
files appear. In general, level i entry maps are written every N i blocks and indicate in which
level i −1 entry maps a particular file can be found. Figure 2-1 depicts this structure, where
N = 4.

Entry maps can grow to be quite large. In the worst case, where every file is composed of one
record, entry maps require an entry for every file represented. If records of the same file are scat-
tered across many blocks, then many blocks are sequentially scanned to find the file’s records.
As a result, while the Clio system provides good write performance as well as logging and history
capabilities, the read performance is hindered by the hierarchical entry maps and sequential scan-
ning within each map and block.

2.1.2.4. The Log-structured File System

The Log-Structured File System, as originally proposed by Ousterhout in [OUST89], provides
another example of a write-optimized file system. As in Clio, a log-structured file system (LFS)
uses a log as the only on-disk representation of the file system. Files are represented by an inode
that contains the disk addresses of data blocks and indirect blocks. Indirect blocks contain disk
addresses of other blocks providing an index tree structure to access the blocks of a file. In order
to locate a file’s inode, a log-structured file system keeps an inode map which contains the disk
address of every file’s inode. This structure is shown in Figure 2-2.

Both LFS and Clio can accumulate a large amount of data and write it to disk sequentially,
providing good write performance. However, the LFS indexing structure is much more efficient
than Clio’s entry maps. Files are composed of blocks so there is no sequential scanning within
blocks to find records. Furthermore, once a file’s inode is located, at most three disk accesses are

7

hhh

.

File 1: 1101

File 2: 1001

File 3: 0010

File 4: 0011

File 1: 0001

File 2: 1000

File 4: 0110

File 1: 1111

File 5: 0011

File 2: 1100

File 5: 1111

File 6: 0111

File 2: 1100

File 3: 1000

File 4: 1100

File 5: 0011

File 6: 0001

Level 2 Entry Map

Level 1 Entry Maps

Data blocks

File 1: 1110

Figure 2-1: Clio Log File Structure. This diagram depicts a log file structure with N=4. Each data block
contains a sequence of log records. The entry maps indicate which blocks contains records for which files. For exam-
ple, the level 2 entry map indicates that file 1 has blocks in the first three level 1 entry maps, but file 3 has blocks only
in the first level 1 entry map. Since the bit map for file 1 in the first level 1 entry map contains the value ‘‘1101’’, file 1
has records located in the first, second, and fourth blocks described by that entry map. It also has records in the fourth
block described by the second level 1 entry map and all the blocks described by the third level 1 entry map.
hhh

.
100 124 132 133 229 237 261 269 277 278

100

116
124

108

133
141
. . .

221
229

269

237
245
253
261

132
277

Disk Addresses
Data Blocks

Indirect Blocks

Inode Blocks

Inode Map

Figure 2-2: Log-Structured File System Disk Allocation. This diagram depicts the on-disk representa-
tion of files in a log-structured file system. In this diagram, two inode blocks are shown. The first contains blocks that
reside at disk addresses 100, 108, 116, and 124. The second contains many direct blocks, allocated sequentially from
disk address 133 through 268, and an indirect block, located at address 269. While the inode contains references to the
data blocks from disk address 133 through 236, the indirect block references the remainder of the data blocks. The last
block shown is part of the inode map and contains the disk address of each of the two inodes.
hhh

8

required to find any particular item in the file, regardless of the file system size. In contrast, the
number of disk accesses required in Clio grows as the number of allocated blocks increases.
While Clio keeps all records to provide historical retrieval, LFS uses a garbage collector to
reclaim space from files that have been modified or deleted. Therefore an LFS file system is usu-
ally more compact (as space is reclaimed), but the cleaner competes with normal file system
activity for the disk arm.

2.2. Transaction Processing Systems

The next set of related work discusses transaction systems. Although the goal of this thesis is
to find a file system design which performs well on a variety of workloads, the transaction pro-
cessing workload is examined most closely. In particular, two fundamentally different transac-
tion architectures are discussed. In the first, user-level, transaction semantics are provided
entirely as user-level services, while in the second, embedded, transaction services are provided
by the operating system.

The advantage of user-level systems is that they usually require no special operating system
support and may be run on different platforms. Although not a requirement of the user-level
architecture, these systems are typically offered only as services of a database management sys-
tem (DBMS). As a result, only those applications that use the DBMS can use transactions. This
is a disadvantage in terms of flexibility, but can be exploited to provide performance advantages.
When the data manager is the only user of transaction services, the transaction system can use
semantic information provided by database applications. For example, locking and logging
operations may be performed at a logical, rather than physical, granularity. This usually means
that less data is logged and a higher degree of concurrency is sustained.

There are three main disadvantages of user-level systems. First, as discussed above, they are
often only available to applications of the DBMS and are therefore, somewhat inflexible.
Second, they usually compete with the operating system for resources. For example, both the
transaction manager and the operating system buffer recently-used pages. As a result, they often
both cache the same pages, using twice as much memory. Third, since transaction systems must
be able to recover to a consistent state after a crash, user-level systems must implement their own
recovery paradigm. The operating system must also recover its file systems, so it too implements
a recovery paradigm. This means that there are multiple recovery paradigms. Unfortunately,
recovery code is notoriously complex and is often the subsystem responsible for the largest
number of system failures [SULL91]. Supporting two separate recovery paradigms is likely to
reduce system availability.

The advantages of embedded systems are that they provide a single system recovery para-
digm, and they typically offer a general purpose mechanism available to all applications, not just
the clients of the DBMS. There are two main disadvantages of these systems. First, since they
are embedded in the operating system, they usually have less detailed knowledge of the data and
cannot perform logical locking and logging. This can result in performance penalties. Second, if
the transaction system interferes with non-transaction applications, overall system performance
suffers.

The next two sections introduce each architecture in more detail and discuss systems
representing the architecture.

2.2.1. User-Level Transaction Support

This section considers several alternatives for providing transaction support at user-level. The
most common example of these systems are the commercial database management systems dis-
cussed in the next section. Since commercial database vendors sell systems on a variety of dif-
ferent platforms and cannot modify the operating systems on which they run, they implement all
transaction processing support in user-level processes. Only DBMS applications, such as data-
base servers, interactive query processors and programs linked with the vendor’s application

9

libraries, can take advantage of transaction support. Some research systems, such as ARGUS
[LISK83] and Eden [PU86], provide transactions through programming language support, but in
this section, only the more general mechanisms that do not require new or modified languages are
considered.

2.2.1.1. Commercial Database Management Systems

Oracle and Sybase represent two of the major players in the commercial DBMS market. Both
companies market their software to end-users on a wide range of platforms, and they both provide
a user-level solution for data management and transaction processing. In order to provide good
performance, Sybase takes exclusive control of some part of a physical device, which it then uses
for extent-based allocation of database files [SYB90]. The Sybase SQL Server provides hierarch-
ical locking for concurrency control and logical logging for recovery. Oracle has a similar archi-
tecture. It can either take control of a physical device or allocate files in the file system. Oracle
also takes advantage of the knowledge that only database applications will be using the con-
currency control and recovery mechanisms, so it performs locking and logging on logical units as
well [ORA89]. This is the architecture used for user-level transaction management in this thesis.

2.2.1.2. Tuxedo

The Tuxedo system from AT&T is a transaction manager which coordinates distributed tran-
saction commit across heterogeneous local transaction managers. While it provides support for
distributed two-phase commit, it does not actually include its own native transaction mechanism.
Instead, it could be used in conjunction with any of either the user-level or embedded transaction
systems described here or in [ANDR89].

2.2.1.3. Camelot

Camelot’s distributed transaction processing system [SPE88A] provides a set of Mach
[ACCE86] processes which provide support for nested transaction management, locking, recover-
able storage allocation, and system configuration. In this way, most of the mechanisms required
to support transaction semantics are implemented at user-level, but the resulting system can be
used by any application, not just clients of a data manager.

Applications can make guarantees of atomicity by using Camelot’s recoverable storage, but
requests to read and write such storage are not implicitly locked. Therefore, applications must
make requests of the disk manager to provide concurrency control [SPE88B]. The advantage of
this approach is that any application can use transactions, but the disadvantage is that such appli-
cations must make explicit lock requests to do so.

2.2.2. Embedded Transaction Support

The systems described in the next section provide examples of the ways in which transactions
have been incorporated into operating systems. Computer manufacturers like IBM, Tandem,
Stratus, and Hewlett-Packard include transaction support directly in the operating system. The
systems described present a range of alternatives. The first three systems, Tandem’s ENCOM-
PASS, Stratus TPF, and Hewlett-Packard’s MPE, provide general purpose operating system tran-
saction mechanisms, available to any applications. In these systems, specific files are identified
as being transaction protected and whenever they are accessed, appropriate locking and logging is
performed. These systems are most similar to those discussed in Chapters 3 and 4.

The next system, LOCUS, uses atomic files to make the distributed system recoverable. This
is similar to Camelot’s recoverable storage, but is used as the system-wide data recovery mechan-
ism. The last system, Quicksilver, takes a broader perspective, using transactions as the single
recovery paradigm for the entire system.

10

2.2.2.1. Tandem’s ENCOMPASS

Tandem Computers manufactures a line of fault tolerant computers called NonStop Systems2,
designed expressly for online transaction processing [BART81]. Guardian 90 is their message-
based, distributed operating system which provides services required for high performance online
transaction processing [BORR90]. Although this is an embedded system, it was designed to pro-
vide all the flexibility that user-level systems provide. Locking is performed by processes that
manage the disks (disk servers) and allows for hierarchical locking on records, keys, or fragments
(parts of a file) with varying degrees of consistency (browse, stable reads, and repeatable reads).
In order to provide recoverability in the presence of fine-grain locking, Guardian performs logical
UNDO logging and physical REDO logging. This means that a logical description of the opera-
tion (e.g. field one’s value of 10 was overwritten) is recorded to facilitate aborting a transaction,
and the complete physical image of the modified page is recorded to facilitate recovery after a
crash. Application designers use the Transaction Monitoring Facility (TMF) application interface
to build client/server applications which take advantage of the concurrency control and recovery
present in the Guardian operating system [HELL89].

2.2.2.2. Stratus’ Transaction Processing Facility

Stratus Computer offers both embedded and user-level transaction support [STRA89]. They
support a number of commercial database packages which use user-level transaction manage-
ment, but also provide an operating system based transaction management facility to protect files
not managed by any DBMS. This is a very general purpose mechanism that allows a file to be
transaction-protected by issuing the set_transaction_file command. Once a file has been desig-
nated as transaction protected, it can only be accessed within the context of a transaction. It may
be opened or closed outside a transaction, but attempts to read and write the file when there is no
active transaction in progress will result in an error.

Locking may be performed at the key, record, or file granularities. Each file has an implicit
locking granularity which is the size of the object that will be locked by the operating system in
the absence of explicit lock requests by the application. For example, if a file has an implicit key
locking granularity, then every key accessed will be locked by the operating system, unless the
application has already issued larger granularity locks. In addition, a special end-of-file locking
mode is provided to allow concurrent transactions to append to files.

Transactions may span machines. A daemon process, the TPOverseer, implements two-phase
commit across distributed machines. At each site, the local TPOverseer uses both a log and sha-
dow paging technique [ASTR76]. During phase 1 commit processing (the preparation phase), the
application waits while the log is written to disk. When a site completes phase 1, it has
guaranteed that it is able to commit the transaction. During phase 2 (the actual commit), the sha-
dow pages are incorporated into the actual files.

This model is similar to the operating system model simulated in Chapter 4 and implemented
in Chapter 5. However, when this architecture is implemented in a log-structured file system, the
logging and shadow paging are part of normal file system operation as opposed to being addi-
tional independent mechanisms.

2.2.2.3. Hewlett-Packard’s MPE System

Hewlett-Packard integrates operating system transactions with their memory management and
physical I/O system. Transaction semantics are provided by means of a memory-mapped write-
ahead log. Those files which require transaction protection are marked as such and may then be
accessed in one of two ways. First, applications can open them for mapped access, in which case
the file is mapped into memory and the application is returned a pointer to the beginning of the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 NonStop and TMF are trademarks of Tandem Computers.

11

file. Hardware page protection is used to trigger lock acquisition and logging on a per-page basis.
Alternatively, protected files can be accessed via the data manager. In this case, the data manager
maps the files and performs logical locking and logging based on the data requested [KOND92].
This system demonstrates the tightest integration between the operating system, hardware, and
transaction management. The advantage of this integration is very high performance at the
expense of transaction management mechanisms permeating nearly every part of the MPE sys-
tem.

2.2.2.4. LOCUS

The LOCUS distributed operating system [WALK83] provides nested, embedded transactions
[MUEL83]. There are two levels to the implementation. The basic LOCUS operating system
uses a shadow page technique to support atomic file updates on all files. On top of this atomic
file facility, LOCUS implements distributed transactions which use a two-phase commit protocol
across sites. Locks are obtained both explicitly, by system calls, and implicitly by accessing data.
While applications may explicitly issue unlock requests, the transaction system retains any locks
that must be held to preserve transaction semantics. The basic atomic file semantics of LOCUS
are similar to the LFS embedded transaction manager that will be discussed in Chapter 5, except
that in LOCUS, the atomic guarantees are enforced on all files rather than on those optionally
designated. If LFS enforced atomicity on all its files, it could also be used as the basis for a distri-
buted transaction environment.

2.2.2.5. Quicksilver

Quicksilver is a distributed system which uses transactions as its intrinsic recovery mechan-
ism [HASK88]. Rather than providing transactions as a service to the user, Quicksilver, itself,
uses transactions as its single system-wide architecture for recovery. In addition to providing
recoverability of data, transaction protection is applied to processes, window management, net-
work interaction, etc. Every interprocess communication in the system is identified with a tran-
saction identifier. Applications can make use of Quicksilver’s built-in services by adding transac-
tion identifiers to any IPC message to associate the message and the data accessed by that mes-
sage with a particular transaction. The Quicksilver Log Manager provides a low-level, general
purpose interface that makes it suitable for different servers or applications to implement their
own recovery paradigms [SCHM91]. This is the most pervasive of the transaction mechanisms
discussed. While it is attractive to use a single recovery paradigm (e.g. transactions) this thesis
will focus on isolating transaction support to the file system.

2.3. Transaction System Evaluations

This section summarizes several evaluation studies that include file system transaction sup-
port, operating system transaction systems, and operating system support for database manage-
ment systems. The first study compares two transactional file systems. The functionality pro-
vided by these systems is similar to the functionality provided by the file system transaction
manager described in Chapter 5. The second, third, and fourth evaluations discuss the difficulties
in providing operating system mechanisms for transaction processing and data management. The
last evaluation presents a simulation study that compares user-level transaction support to operat-
ing system transaction support. This study is very similar to the one presented in Chapter 4.

2.3.1. Comparison of XDFS and CFS

The study in [MITC82] compares the Xerox Distributed File System (XDFS) and the Cam-
bridge File System (CFS), both of which provide transaction support as part of the file system.
CFS provides atomic objects, allowing atomic operations on the basic file system types such as
files and indices. XDFS provides more general purpose transactions, using stable storage to make
guarantees of atomicity. The analysis concludes that XDFS was a simpler system, but provided

12

slower performance than CFS, and that CFS’ single object transaction semantics were too res-
trictive. This thesis will explore an embedded transaction implementation with the potential for
providing the simplicity of XDFS with the performance of CFS.

2.3.2. Operating System Support for Databases

In [STON81], Stonebraker discusses the inadequate support for databases found in the operat-
ing systems of the day. His complaints fall into three categories: a costly process structure, slow
and suboptimal buffer management, and small, inefficient file system allocation, Fortunately,
much has changed since 1981 and many of these problems have been addressed. Operating sys-
tem threads [ANDE91] and lightweight processes [ARAL89] address the process structure issue.
Buffer management may be addressed by having a data base system manage a pool of memory-
mapped pages so that the data manager can control replacement policies, perform read-ahead, and
access pages as quickly as it can access main memory while still sharing memory equitably with
the operating system. This thesis will consider file system allocation policies which improve
allocation efficiency.

2.3.3. Virtual Memory Management for Database Systems

Since the days of Multics [BEN69], memory mapping of files has been suggested as a way to
reduce the complexity of managing files. Even so, database management systems tend to provide
their own buffer management. In [TRA82], Traiger looks at two database systems, System R
[ASTR76] and IMS [IBM80] and shows that memory mapped files do not obviate the need for
database buffer management. Although System R and IMS use different mechanisms for transac-
tion support (shadow-paging and write-ahead logging respectively), neither is particularly well
suited to the use of memory mapped files.

Traiger assumes that a mapped file’s blocks are written to paging store when they are evicted
from memory. However, today’s systems, such as those designs in [ACCE86] and [MCKU86],
treat mapped files as memory objects which are backed by files. Thus, when unmodified pages
are evicted from memory, they need not be written to disk, because they can later be reread from
their backing file. Additionally, modified pages can be written directly to the backing file, rather
than to paging store.

There are still difficulties in using memory-mapped files for databases and transactions. Con-
sider the write-ahead logging protocol of IMS. If the virtual memory system is responsible for
writing back pages, the transaction system needs some mechanism to guarantee that log records
are written to disk before their associated data pages. Similar problems are encountered in
shadow-paging. The page manager must be able to change memory-mappings to remap shadow
pages. The 1982 study correctly concludes that memory-mapped files do not obviate the need for
additional database or transaction buffer management.

2.3.4. Operating System Transactions for Databases

The criticisms of operating system transactions continue with [STON85] which reports on
experiences in trying to port the INGRES database management system [RTI83] on top of
Prime’s Recovery Oriented Access Method (ROAM) [DUBO82]. ROAM is designed to provide
atomic updates to files with all locking, logging, and recovery hidden from the user. However,
when INGRES was ported to this mechanism, several problems were encountered. First, a single
record update in INGRES modifies two sets of bytes on a page, the line table and the record itself.
In order for ROAM to properly handle this, it either had to log entire pages or perform two
separate log operations, both costly alternatives. Secondly, since ROAM did page level locking,
updates to system catalogs had extremely detrimental effects on the level of concurrency, as a
single modification to a catalog would lock out all other users. One approach to improving the
concurrency on the system catalogs is to allow short term locking. However, short term locking
makes recoverability more complicated since concurrent transactions may access the data

13

modified by an uncommitted transaction. Stonebraker concludes by suggesting the following
alternatives: allowing user processes to log events, designing database systems so that only phy-
sical events need to be rolled back, and leaving everything at user-level as traditional data
managers do today. The next study discusses the performance ramifications of the second alter-
native.

2.3.5. User-Level Data Managers v.s. Embedded Transaction Support

Kumar concludes that an operating system embedded transaction manager provides substan-
tially worse performance than the traditional user-level data manager [KUM87]. He cites the ina-
bility to perform logical locking and logging, the system call locking overhead, and the size of
the log as primary causes for a 30% difference in performance between the two systems. In
[KUM89], by introducing hardware-assisted locking and better locking protocols, he demon-
strates that the difference in performance may be reduced to 7-10%. However, Kumar’s simula-
tion failed to account for the required write when evicting dirty buffers from the cache. Since
these are random I/O’s, his results under-report the total I/O time. Specifically, in disk-bound
configurations, performance is dominated by the cost of random I/O’s. Since both the data
manager and embedded systems perform the same number of these random reads and writes, per-
formance should be virtually the same in both models, not dependent upon the log writes which
happen at sequential disk speeds.

2.4. Conclusions

The work in this dissertation will touch upon all the different areas discussed in this section.
Chapter 3 focuses on the read-optimized allocation policies. Chapter 4 presents a study similar to
Kumar’s, adding the simulation of a log-structured file system. Chapter 5 analyzes the tradeoffs
between user-level and embedded transaction systems with an implementation study. Chapter 6
presents a new design for a log-structured file system, and Chapter 7 analyzes the differences in
application performance of read-optimized and write-optimized file systems.

14

Chapter 3

Read-Optimized File Systems

hh

This chapter compares several read-optimized file system allocation policies. These file sys-
tems are designed to provide high bandwidth between disks and main memory by taking advan-
tage of parallelism in an underlying disk array and catering to large units of transfer. In this way,
when files are written in their entirety as they are in most UNIX environments [OUST85]
[BAKER91], these file systems may be competitive with write-optimized file systems. The goal
of these read-optimized designs is to utilize as much of the I/O bandwidth as possible when read-
ing sequentially, without sacrificing small-file efficiency in terms of disk capacity. Typically,
small blocks are preferred to minimize fragmentation for small files, and large blocks or contigu-
ous allocation is preferred to maximize throughput for large files.

In this chapter, the read-optimized file systems are divided into two categories: fixed-block
systems and extent-based systems. Fixed-block systems allocate files as collections of identically
sized blocks while extent-based systems allocate files as collections of a few large extents whose
sizes may vary from file to file. Traditionally, systems oriented towards general-purpose
timesharing (e.g. UNIX) have used fixed-block systems, while systems oriented towards transac-
tion processing (e.g. MVS) have chosen extent-based systems. Fixed-block file systems have
received much criticism from the database community. The most frequently cited criticisms are
discontiguous allocation and excessive amounts of meta-data [STON81]. On the other hand,
extent-based file systems are often criticized for being too brittle with regard to fragmentation
and too complicated in terms of allocation.

In Chapter 2, many styles of read-optimized file systems were discussed. The simulation
presented here focuses on three of the extent or multiple-block-sized systems and one fixed-block
system. The multiple-block-sized systems analyzed are an extent-based system similar to IBM’s
MVS system, a binary buddy system similar to DTSS [KOCH87], and a restricted buddy system.
The fourth system is a fixed-block system similar to FFS, but without fragments.

The goal of this chapter is to analyze how well different allocation policies perform without
the use of an external reallocation process. The file systems are compared in terms of fragmenta-
tion and disk system throughput. The rest of this chapter is organized as follows. Section 3.1
presents the simulation model and Section 3.2 establishes the evaluation criteria used throughout
the rest of the chapter. Section 3.3 introduces the different allocation policies and the simulation
results that characterize each, and Section 3.4 compares the policies against one another.

3.1. The Simulation Model

The four allocation policies are analyzed by means of an event driven, stochastic workload
simulator. There are three primary components to the simulation model: the disk system, the
workload characterization, and the allocation policies. The disk system and workload characteri-
zation are described in Sections 3.1.1 and 3.1.2, while the allocation policies are described in
detail in Section 3.3.

15

3.1.1. The Disk System

The disk system is an array of disks, viewed as a single logical disk. Although many such
systems use additional parity drives to improve system availability, for simplicity, the simulated
array does not contain parity. Blocks are numbered so that data written in large, contiguous units
to the logical disk will be striped across the physical disks. When data is striped across disks,
there are two parameters which characterize the layout of disk blocks, the stripe unit and the disk
unit. The stripe unit is the number of bytes allocated on a disk before allocation is performed on
the next disk. This unit must be greater than or equal to the sector sizes of all the disks. The disk
unit is the minimum unit of transfer between a disk and memory. This is the smaller of the smal-
lest block size supported by the file system and the stripe unit. Disk blocks are addressed in
terms of disk units.

Each disk is described in terms of its physical layout (track size, number of cylinders, number
of platters) and its performance characteristics (rotational speed and seek parameters). The seek
performance is described by two parameters, the one track seek time and the incremental seek
time for each additional track. If ST is the single track seek time and SI is the incremental seek
time, then an N track seek takes ST + N*SI ms. Table 3-1 contains a listing of the parameters
which describe one common disk and its default values for these simulations.

3.1.2. Workload Characterization

The workload is characterized in terms of file types and their reference patterns, similar to the
synthetic trace generator described in [WRI91]. A simulation configuration consists of any
number of file types, defined by their size characteristics, access patterns, and growth characteris-
tics. Table 3-2 summarizes those parameters which define a file type.

For each file type, initialization consists of two phases. In the first phase, nusers events are
created, and each is assigned a start time uniformly distributed in the range [0, (nusers * hfreq)],
where hfreq is the average time between requests from different users. The events are maintained
sorted in scheduled time order. During the second initialization phase, the files are created. The
initial file sizes are selected from a normal distribution with mean i_size and deviation i_dev.
Allocation requests are issued for each file until the file has reached its initial size.

hhh

ii
Disk Parameters

For the CDC 5 1⁄4" Wren IV Drives (94171-344)ii
actual simulatedii

N Disks NA 8
Total Capacity 2.8 G 2.8 G
Max Throughput 10.8 M/sec 10.8 M/sec
N Platters 9 9
N Cylinders 1549 1600
Bytes/Track 24 K 24 K
1 Track Seek Time 5.5 ms 5.5 ms
Inc. Seek Time 0.0320 ms 0.0320 ms
Rotational Latency 16.67 ms 16.67iic

c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3-1: Disk Parameters and Default Values
hhh

16

hhh

ii
File Parametersii

nfiles Number of files created
nusers Number of parallel events
ptime Milliseconds between requests from a single user
hfreq Milliseconds between requests from different users
rw_size Mean size of each read/write operation
rw_dev Standard deviation in read/write size
a_size For extent-based systems, mean extent size
t_size Mean size of deallocate requests
i_size Mean initial file size
i_dev Deviation in the mean file size.
r_ratio Percent read operations.
w_ratio Percent write operations.
e_ratio Percent extend operations.
d_ratio Percent deallocates which are file deletes.
t_ratio Percent deallocates which are truncates.iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3-2: File Parameters and Description
hhh

The simulation runs by selecting the next scheduled event, determining the type of event
(allocation, deallocation, read or write), processing that event, and scheduling a new request.
Events correspond to file types. For each file type, the read ratio (r_ratio), write ratio (w_ratio),
truncate ratio (t_ratio), extend ratio (e_ratio), and delete ratio (d_ratio) indicate what percent of
the requests are of the particular type. The size of an allocation, read, or write operation is
selected from a normal distribution with mean rw_size and deviation rw_dev. The size of a trun-
cation operation is also drawn from a normal distribution, but with a mean of t_size. After the
operation is completed, an exponentially distributed value with mean equal to ptime is added to
the time at which the operation completed, and an event is scheduled at that newly calculated
time. If an allocation request cannot be satisfied, a disk full condition is logged, and the current
event is rescheduled (exponentially distributed with mean ptime).

There are two types of simulations: allocation tests and throughput tests. Allocation tests are
used to determine the fragmentation in the file system and throughput tests report bandwidth utili-
zation. The two metrics are measured separately since allocation tests require filling the disk to
capacity while throughput tests need to run until the throughput has stabilized, and disk full con-
ditions would distort the measured throughput. Allocation tests are terminated the first time that
an allocation request fails. Throughput tests are terminated by one of two conditions, either a
specified number of milliseconds have been simulated or the throughput of the system has stabil-
ized. The system is assumed to stabilize when two conditions have been met: three successive
short-term measurements (throughput for a ten-second period) are the same and the short-term
measurement is equal to the long-term measurement (throughput for the entire simulation dura-
tion). Typically, the simulations stabilized within 24 simulated hours.

Three workloads are used to simulate a time-sharing or software development environment
(TS), a large transaction processing environment (TP), and a super-computer or complex query
processing environment (SC).

The time-sharing workload is based loosely on the trace driven analyses in [OUST85] and
[BAKER91] and is characterized by an abundance of small files (mean size 8 kilobytes) which

17

are created, read, and deleted. If a file is deleted, the next request to read that file will first create
it. Therefore, the workload which creates, reads, and deletes files is composed of 50% reads and
50% deletes with the creates caused implicitly. Five-sixths of all requests are to these small files,
while the remaining one-sixth are to larger files (mean size 96 kilobyte). The large files are usu-
ally read (60% of the time) and occasionally extended, written or truncated (15% writes, 15%
extends, 5% deletes and 5% truncates).

The transaction processing workload is based loosely on the TP/1 [ANON85] and TPC-B
benchmarks [TPCB90]. It is characterized by eight large files (210 megabytes each) representing
data files or relations, five small application logs (5 megabytes each), and one transaction log (10
megabytes). The relations are read and written randomly (60% reads, 30% writes), and infre-
quently extended and truncated (7% extends, 3% truncates). It is assumed that log files are never
deleted and that the abort rate is relatively low, so that log files are rarely read. The system log
receives a slightly higher read percentage to simulate transaction aborts.

The super-computer workload is based on the trace study presented in [MILL91]. The
environment is characterized by 1 large file (500 megabytes), 15 medium sized files (100 mega-
bytes each), and 10 small files (10 megabytes each). The large file and seven of the medium files
are all read and written in large, contiguous bursts (.5 megabyte) with a predominance of reads
(60% reads, 30% writes, 8% extends, and 2% truncates). The rest of the medium files and the
small files are read and written in 8 kilobyte bursts, but are periodically deleted and recreated
(60% reads, 30% writes, 5% extends, 5% deletes). Table 3-3 summarizes the different work-
loads.

3.2. Evaluation Criteria

The two evaluation criteria for each policy are disk utilization and throughput. The metrics
for measuring disk utilization are the external fragmentation (amount of space available when a
request cannot be satisfied) and internal fragmentation (the fraction of allocated space that does
not contain data). The allocation tests are run by performing only the extend, truncate, delete,
and create operations in the proportion expressed by the file type parameters. As soon as the first
allocation request fails, the external and internal fragmentation are computed.

The metrics for throughput are expressed as a percent of the sustained sequential performance
of the disk system. For example, the configuration shown in Table 3-1 is capable of providing a
sustained throughput of 10.8 megabytes/sec. Therefore, a throughput of 1.1 megabytes/sec is
expressed as 10% of the maximum available capacity.

Throughput is calculated for two sets of tests, the application performance test and the sequen-
tial performance test. For the application performance test, the application workloads described
in the previous section are applied. For the sequential test, files are read and written in their
entirety. Thus, the sequential test gives an upper bound on the performance provided by the disk
system for a particular allocation policy.

3.3. The Allocation Policies

This section describes the four file systems simulated, including a discussion of the selection
of the relevant parameters for each model. The first file system is a binary buddy system similar
to that described in [KOCH87]. Files are composed of a fixed number of extents, each of whose
size is a power of two (measured in sectors). Files double in size when they exceed their current
allocation. The next file system is a restricted buddy system which supports only a few different
block sizes. The third is the extent-based policy described in [STON89]. The fourth system is a
simple, fixed-block system. It uses rotational positioning and clustering like the FFS, but uses
only a single block size (i.e. it does not support fragments).

18

hhh

iii
Workload Characteristic File Type 1 File Type 2 File Type 3 File Type 4ii

Time type small medium
Sharing access pattern whole file whole file

% requests 87.0 13.0iii
num files 25000 12000
mean size 8 KB 96 KB
% reads 50.0 60.0
% writes 0.0 15.0
% truncates 0.0 5.0
% extends 0.0 15.0
% deletes 50.0 5.0ii

Transaction type data file application transaction
Processing log log

access pattern random append append
run length (4 KB) (256 bytes) (128 bytes)
% requests 62.5 12.5 25.0iii
num files 8 5 1
mean size 210 MB 5 MB 10 MB
% reads 60.0 2.0 5.0
% writes 30.0 0.0 0.0
% truncates 3.0 5.0 1.0
% extends 7.0 93.0 94.0
% deletes 0.0 0.0 0.0ii

Super type large medium medium small
Computer access pattern sequential sequential random random

run length (.5 MB) (.5 MB) (8 KB) (8 KB)
% requests 4.0 30.0 33.0 33.0iii
num files 1 7 8 10
mean size 500 MB 100 MB 100 MB 10 MB
% reads 60.0 60.0 60.0 60.0
% writes 30.0 30.0 30.0 30.0
% truncates 2.0 2.0 2.0 0.0
% extends 8.0 8.0 8.0 5.0
% deletes 0.0 0.0 0.0 5.0iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3-3: Workload Characterizations
hhh

3.3.1. Binary Buddy Allocation

The binary buddy allocation policy described in [KOCH87] includes both an allocation pro-
cess and a background reallocation process that runs during off-peak hours. This simulation con-
siders only the allocation and deallocation algorithm (i.e. not the background reallocation). This
will not impact performance, as the performance benefit is derived from the large extents, and
reallocation only runs when the file system is not being used. However, the resulting fragmenta-
tion numbers will be exaggerated relative to what they would be after relocation.

19

In the buddy allocation system, a file is composed of some number of extents. The size of
each extent is a power of two multiple of the sector size. Each time a new extent is required, the
extent size is chosen to double the current size of the file. Figure 3-1 depicts this allocation pol-
icy.

As previous work suggests [KNOW65] [KNUT69], such policies are prone to severe internal
fragmentation, and the simulation results, in Table 3-4, confirm this. However, since there are a
small number of extents, very high throughput is observed when large files are present. The
throughput results in Table 3-4 show that when large files are present, as in the super-computer
and transaction processing workloads, sequential access uses over 93% of the total bandwidth.
Since most of the accesses are quite large in the super-computer workload, even the application
tests are able to utilize 88% of the available throughput. When files are small, as in the time-
sharing environment, or when many accesses are random (as in transaction processing) the result-
ing throughput is much lower. Therefore, this policy works extremely well for workloads which
demand large, sequential accesses, but does little to improve random or small file performance.

hhh

. . .

A File’s Extents

Sectors

Figure 3-1: Allocation for the Binary Buddy Policy. Files are allocated by doubling their extent size
whenever the file exceeds the current allocation. The disk can initially be thought of as one large block. When an allo-
cation of size N is required, and no such free block currently exists, the smallest block of size greater than or equal to N
is divided into two equal blocks. The process repeats until a block of the appropriate size is created.
hhh

hhh

ii
Disk Usage Throughputiii

Workload Internal External Application Sequential
Fragmentation Fragmentation Performance Performance

(% allocated space) (% total space) (% max throughput) (% max throughput)ii
SC 43.1% 13.4% 88.0% 94.4%
TP 15.2% 9.0% 27.7% 93.9%
TS 18.4% 2.3% 8.4% 12.0%iicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 3-4: Fragmentation and Performance Results for Buddy Allocation.
hhh

20

3.3.2. Restricted Buddy System

As in the binary buddy system, the restricted buddy system uses the principle that a file’s unit
of allocation should grow as the file’s size grows. Additionally, logically sequential allocations
within a file are placed contiguously whenever possible. Therefore, when successive allocations
are placed contiguously on disk, multiple allocation units can be transferred in a single I/O. To
improve small file performance by reducing both the number and length of seeks, the disk is
divided into regions to allow clustering of blocks within a file when they cannot be allocated
sequentially.

The potential difficulties of such a system are threefold. Supporting multiple allocation sizes
makes maintaining free space and allocating disk space complex and could increase external frag-
mentation. Growing block sizes may increase internal fragmentation for files using only part of a
large block. It may be difficult to provide good performance for small files since the cost of a
seek between two logically sequential blocks will be amortized across very little data, and will
therefore make small-file performance poor.

Each of these problems can be addressed by limiting the complexity of the design. External
fragmentation is addressed by restricting the number of allocation sizes, allocating disk blocks in
a manner that favors keeping large contiguous regions unused, and selecting block sizes which
are multiples of each other. Minimizing internal fragmentation is addressed by carefully select-
ing the point at which the block size grows. Efficient access for small files is provided by taking
advantage of the underlying disk structure. In a single disk system, that means placing blocks in
rotationally optimal positions on the same cylinder so that multiple blocks may be retrieved in a
single rotation. On a multi-disk system, this means numbering blocks so that requests to sequen-
tial blocks can be serviced by multiple disks in parallel.

3.3.2.1. Maintaining Contiguous Free Space

Keeping track of free space can become complex when maintaining blocks of various sizes.
The two major questions to be answered are at what granularity free space should be recorded
(the largest blocks or the smallest blocks), and what data structure should be used. If free space is
maintained only in terms of maximum-sized blocks then a separate mechanism is required to
allocate small blocks within the larger blocks. If free space is maintained by bit maps in terms of
minimum sized blocks, then it becomes difficult to find larger sized blocks. One would have to
search the bit map for a potentially large number of contiguous free blocks. Furthermore, it is
difficult to maintain large contiguous free areas when servicing small allocations. These issues
have led to the adoption of a hierarchical free space strategy.

The disk system is divided into regions called bookkeeping regions. A bookkeeping region is
roughly analogous to the Fast File System’s cylinder groups and is described by a bookkeeper.
Each bookkeeping region has its own free space structures. It maintains a bit map that describes
the entire region in terms of maximum-sized blocks. When a smaller block is required, a large
block is allocated, its bit it toggled, and it is broken up into blocks of the next smaller size. Free
block information for these smaller blocks is maintained in a sorted, doubly-linked list. Within
each of these lists, the bookkeeper points to the next block to be allocated. Each disk unit of the
region is represented in the bit map (in terms of its associated maximum-sized block) and also in
one free list if it is unallocated. In this way, blocks of various sizes can be found quickly.

3.3.2.2. File System Parameterization

A restricted buddy file system may be parameterized to suit a particular environment. The
three main sets of parameters are: the block sizes, the bookkeeping unit size, and the grow pol-
icy.

The size of a bookkeeping region is the unit of clustering within the file system. It must be at
least as large as twice the largest block size and is usually much larger. If files are expected to

21

grow to be quite large, larger bookkeeping regions are desirable so that a large number of
maximum-sized blocks are available. However, if most files are not expected to require
maximum-sized blocks, smaller bookkeeping regions will realize more benefits of tight cluster-
ing. Since allocation becomes more difficult as the disk fills, at the time of file system creation,
one may specify how much of the file system space should be left free.

The grow policy determines when the size of the allocation unit is increased and is expressed
in terms of a multiplier. If g is the grow policy multiplier and the block sizes are ai , then the unit
of allocation increases from ai to ai +1 when the sum of the sizes of all blocks of size ai is equal
to g * ai +1. For example, a system with block sizes of 1 kilobyte and 8 kilobytes and a grow pol-
icy multiplier (grow factor) of 1 will allocate eight 1-kilobyte blocks before allocating any 8-
kilobyte blocks. If the next larger block size were 64 kilobytes, then eight 8-kilobyte blocks
would be allocated before growing the block size to 64 kilobytes. Intuitively, one expects that a
smaller grow factor will cause worse internal fragmentation (since bigger blocks are used in
smaller files), but might offer better performance (since fewer small block transfers are required).
However, if the small blocks are allocated contiguously, then the performance should be compar-
able, and the larger grow factor is desirable.

3.3.2.3. Allocation and Deallocation

When the allocation manager receives an allocation request, it attempts to satisfy that request
from the optimal bookkeeping region. The goal in selecting regions and blocks is similar to that
of the FFS, in that it attempts to select a block that is conveniently close to associated blocks.
Additionally, it must try to maintain large contiguous regions of unallocated space for large block
allocation requests. The definition of the optimal region depends on the type of request. If the
request is for a block of a file, the optimal region is that region that contains the most recently
allocated block for that file. If no blocks have been allocated, the optimal region is that region in
which the file’s index structure (inode) was allocated. If the allocation request is for an inode, the
optimal region is the region containing the inode’s parent directory. Finally, if the request is for
an inode, but that inode represents a directory (during directory creation), the inode is allocated to
that region containing the lowest free split ratio. The free split ratio is the ratio of the amount of
free space that cannot be used for maximum-sized blocks divided by the amount of free space
represented in contiguous maximum-sized blocks. If two regions have the same free split ratio,
the region with the greater amount of free space is selected. This balances three conflicting goals:
clustering related data, spreading new directories, and maintaining maximum-sized blocks.

If a request is made to a specific region, and there is adequate contiguous space, but no block
of the appropriate size, then a larger block is split. The larger block is removed from its free list
or bit map. A block of the desired size is allocated, and the remaining space is linked into the
free lists for the smaller blocks. If the request fails in the desired region, it is passed up to the
free split block algorithm which looks for a region with a free block of the appropriate size. If no
blocks of the appropriate size are found in any region, only then is a larger block split. Once a
split becomes necessary, the region with the best free split ratio is selected, unless the desired
allocation is for the largest sized block, in which case, the block with the lowest free split ratio is
selected. Table 3-5 summarizes the total allocation strategy.

When a block is deallocated, it is reattached onto the appropriate free list of the appropriate
bookkeeping region. Entries on free lists are maintained in sorted order so that coalescing may
be performed at deallocation time. Any block which is not of the smallest block size in the file
system is called a parent block, and is composed of N child blocks (blocks of the next smaller
allocation size). When block B is deallocated, if B’s remaining sibling blocks are unallocated and
present in the free list, then all N child blocks (B and its siblings) are coalesced and removed
from their free list, and the parent of B is added to its free list. In this way, blocks on the free list
will always be of the greatest possible size. Using this coalescing algorithm, the number of
entries in these free lists is expected to be quite low, as observed in the DTSS binary block

22

hhh

Select Optimal Region
g same as last
g same as inode
g same as directory
g max free split ratio

Select region with a free block of the correct size and the greatest free split ratio
Select the region with the greatest free split ratio
Select region with the most free space

Table 3-5: Allocation Region Selection Algorithm.
hhh

system [KOCH87]. In practice, the average list length was under 4 (3.63).

3.3.2.4. Exploiting the Underlying Disk System

In order to provide good performance in the presence of many small files, the file system
needs to use the underlying disk system efficiently, avoiding extraneous seeks on a single disk
system and exploiting parallelism on a multiple disk system. The Fast File System (FFS) and the
Log-structured File System (LFS) both provide effective mechanisms for optimizing the single
disk case, so this section will consider how to best exploit the parallelism in a multi-disk
configuration by spreading data across multiple disks. Simply speaking, to optimize for large
files, large blocks are automatically striped across the disks, and to optimize for small files, dif-
ferent files are explicitly scattered across the disks.

The disk system is addressed as a linear address space of disk units. Each block size is an
integral multiple of the disk unit and of all the smaller block sizes. In order to keep allocation
simple, a block of size N always starts at an address which is an integral multiple of N. If a sys-
tem supports block sizes of 1 kilobyte and 8 kilobytes, the 1-kilobyte blocks located at addresses
0 through 7 are considered buddies, together forming a block of size 8 kilobytes. Whenever pos-
sible, buddies are allocated sequentially to the same file and are coalesced at deallocation.

The parameters that define a file system in the restricted buddy policy are the number of block
sizes, the specific sizes, when to increase the block size (the grow policy), and whether or not to
attempt to cluster allocations for the same file. Four different sets of block sizes, two different
algorithms for choosing when to increase the block size, and both clustered and unclustered poli-
cies are considered. The four block size configurations are:

iii
Number of Block Sizes Block Sizesiii

2 1K, 8K
3 1K, 8K, 64K
4 1K, 8K, 64K, 1M
5 1K, 8K, 64K, 1M, 16Miiic

c
c
c
c
c

c
c
c
c
c
c

In order to group allocations within a file physically close to one another, the allocator
attempts to placed allocations of the same file in the same bookkeeping region. For each set of
block sizes, both a clustered configuration, with 32 megabyte bookkeeping regions, and an
unclustered configuration were considered.

The allocation and throughput tests were run on all the workloads described in Section 3.1.2.
Figure 3-2 shows the fragmentation results. The most striking result is that the attempt to

23

hhh

Supercomputer Workload

External Fragmentation Internal Fragmentation

5%
4%
3%
2%
1%

Block Sizes

1K/8K 1K/8K/64K 1K/8K/64K 1K/8K/64K
1M 1M/16M

Block Sizes
1M/16M

1K/8K/64K
1M

1K/8K/64K1K/8K/64K1K/8K

5%
4%
3%
2%
1%

Transaction Processing Workload

External Fragmentation Internal Fragmentation

Block Sizes
1M/16M

1K/8K/64K
1M

1K/8K/64K1K/8K/64K1K/8K

5%
4%
3%
2%
1%

Block Sizes
1M/16M

1K/8K/64K
1M

1K/8K/64K1K/8K/64K1K/8K

5%
4%
3%
2%
1%

Time Sharing Workload

External Fragmentation Internal Fragmentation

Block Sizes
1M/16M

1K/8K/64K
1M

1K/8K/64K1K/8K/64K1K/8K

5%
4%
3%
2%
1% 1%

2%
3%
4%
5%

1K/8K 1K/8K/64K 1K/8K/64K
1M

1K/8K/64K
1M/16M

Block Sizes

grow factor = 1, unclustered grow factor = 2, unclustered

grow factor = 2, clusteredgrow factor = 1, clustered

Figure 3-2: Fragmentation for the Restricted Buddy Policy. Each pair of graphs shows the internal
and external fragmentation for the indicated workload. None of the policies produce either internal or external frag-
mentation in excess of 6%.
hhh

24

hhh

Supercomputer Workload

Application Performance Sequential Performance

64K/1M/16M64K 64K/1M
1K/8K1K/8K1K/8K1K/8K

0%

20%

40%

60%

80%

100% 100%

80%

60%

40%

20%

0%

1K/8K 1K/8K 1K/8K 1K/8K
64K/1M64K 64K/1M/16M

Transaction Processing Workload

Application Performance Sequential Performance

100%

80%

60%

40%

20%

0%

1K/8K 1K/8K 1K/8K 1K/8K
64K/1M64K 64K/1M/16M

100%

80%

60%

40%

20%

0%

1K/8K 1K/8K 1K/8K 1K/8K
64K/1M64K 64K/1M/16M

Time Sharing Workload

Application Performance Sequential Performance

1K/8K 1K/8K 1K/8K 1K/8K
64K/1M64K 64K/1M/16M

0%

20%

40%

60%

80%

100% 100%

80%

60%

40%

20%

0%

1K/8K 1K/8K 1K/8K 1K/8K
64K/1M64K 64K/1M/16M

grow factor = 1, unclustered grow factor = 2, unclustered

grow factor = 2, clusteredgrow factor = 1, clustered

Figure 3-3: Application and Sequential Performance for the Restricted Buddy Policy.
hhh

25

coalesce free space and maintain large regions for contiguous allocation is successful. None of
the polices produce either internal or external fragmentation greater than 6%. Part of the explana-
tion for this lies in the static file population in the simulation. Since the ratio of large to small
files remains constant, small files continue to be allocated from small blocks, and the large blocks
remain available for large files. Still, the time-sharing workload, which has the blend of large and
small files, exhibits the greatest fragmentation, and fragmentation increases as the number of
blocks sizes and the block sizes themselves increase. Increasing the grow factor from one to two
reduces the internal fragmentation by approximately one-third (the difference between each pair
of adjacent bars in the upper right-hand graph). External fragmentation increases slightly in an
unclustered configuration since a larger selection of blocks is eligible for splitting (all blocks in
the disk system instead of just those in a specific region).

Figure 3-3 shows the results of the application and sequential tests for the three workloads
under each configuration of the restricted buddy policy. As expected, the configurations which
support the larger block sizes provide the best throughput, particularly where large files are
present (the top four graphs in Figure 3-3). The super-computer application in the first two
graphs shows up to 25% improvement for configurations with large blocks, while the transaction
processing environment shows an improvement of 20%. These same workloads are relatively
insensitive to either the grow policy or clustering. For the five-block-size configuration (the
rightmost on each graph), most show slightly better performance with an unclustered
configuration. The explanation of this phenomena lies in the movement of files between regions.
In a clustered configuration, when a change of region is forced, the location of the next block is
random with regard to the previous allocation. In an unclustered configuration, there are typically
only small seeks between subsequent allocations and the performance is slightly better.

The time-sharing workload reflects the greatest sensitivity to the clustering and grow policy.
Uniformly, clustering tends to aid performance, by as much as 20% in the sequential case (in the
lower right-hand graph of Figure 3-3, the first two bars of each set represent the clustered
configuration and the third and fourth bars represent the unclustered configuration). Since this
environment is characterized by a greater number of smaller files, data is being read from disk in
fairly small blocks even with the larger block sizes. As a result, the seek time has a greater
impact on performance, and the clustering policy which reduces seek time provides better
throughput.

The graph on the bottom right indicates that the higher grow factor provides better throughput
(the second and fourth bars in each set represent a grow factor of two, while the first and third
bars represent a grow factor of one). This is counter-intuitive since a higher grow factor means
that more small blocks are allocated. To understand this phenomena, one needs to analyze how
the attempt to allocate blocks sequentially interacts with the grow policy. Figure 3-4 shows a 1-
megabyte block that is subdivided into sixteen 64-kilobyte blocks, each of which is subdivided
into eight 8-kilobyte blocks. When the grow factor is one, any file over 72 kilobytes requires a
64-kilobyte block. However, when it is time to acquire a 64-kilobyte block, the next sequential
64-kilobyte block is not contiguous to the blocks already allocated. In contrast, when the grow
factor is two, the 64-kilobyte block isn’t required until the file is already 144 kilobytes. Since
most files in the timesharing workload are smaller than this, they never pay the penalty of per-
forming the seek to retrieve the 64-kilobyte block. Thus our grow policy and our attempts to lay
out blocks contiguously are in conflict with one another, and the grow policy should be modified
to allow contiguity between different sized blocks.

Using the results of this section, a configuration for comparison with the other allocation poli-
cies was selected. Since the larger blocks sizes did not increase fragmentation significantly, the
five-block-size configuration (1 kilobyte, 8 kilobytes, 64 kilobytes, 1 megabyte, 16 megabytes),
which is the rightmost group on each graph, is chosen. Clustering had little effect on the large
file environments and improved performance in the time-sharing environment, so the clustered
configuration was selected. In four of the six cases, the grow factor of one provided better

26

hhh

64K Allocations

8K Allocations

1K Allocations

Grow Factor = 2

Grow Factor = 1

64K64K64K64K

1M

Figure 3-4: Interaction of Contiguous Allocation and Grow Factors. Because the total file length is
not a multiple of the new block size, a seek is required when the block size grows.
hhh

throughput than the grow factor of two, so the policy with the grow factor of one is selected, with
the understanding that it will penalize sequential performance for the time-sharing workload. This
configuration is represented by the leftmost bar in the rightmost group of each graph.

3.3.3. Extent-Based Systems

In the extent-based models, every file has a single extent size associated with it. Each time a
file grows beyond its current allocation, additional disk storage is allocated in units of this extent
size. As in the restricted buddy policy, the disk system is viewed as a linear address space. How-
ever, in this model, an extent may begin at any disk offset. When an extent is freed, it is
coalesced with any adjoining free extents.

hhh

iii
Workload Number Range Means

of Rangesiii
TS 1 4K

2 1K, 8K
3 1K, 8K, 1M
4 1K, 4K, 8K, 1M
5 1K, 4K, 8K, 16K, 1Miii

TP/SC 1 512K
2 512K, 16M
3 512K, 1M, 16M
4 512K, 1M, 10M, 16M
5 10K, 512K, 1M, 10, 16Miiic

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3-6: Extent Ranges for Extent-Based File System Simulation..
hhh

27

The parameters which define a file system in the extent-based model are the allocation policy
and the variation in the sizes of the extents. The allocation policy indicates how to select the next
extent for allocation. Both a first-fit and best-fit algorithm are simulated.

In order to simulate the variation in the size of extents, extent ranges are used. In extent-
based systems, such as MVS [IBM] , users specify extent sizes when they create files. In the
simulations, when a file is created, its extent size is chosen from a distribution called an extent
range. An extent size range is a normal distribution with a standard deviation of 10% of the
mean. For example, an extent range around 1 megabyte with 1 kilobyte disk units would produce
a normal distribution of extent sizes with mean 1 megabyte and standard deviation of 102 kilo-
bytes. To assess the impact of the variation in extent-sizes, the simulation is run with varying
numbers of the extent ranges. Table 3-6 shows the extent ranges simulated.

As the number of extent ranges increases, one expects to see increased fragmentation since a
more diverse set of extent sizes are being allocated, but the results do not support this. Instead,
across all extent ranges, both internal and external fragmentation is below 4%, independent of the
number of extent ranges. One likely explanation is that the ratio of large files to small files is
constant in these simulations. As a result, once large extents are allocated they do not become
fragmented later, because requests for small extents may be satisfied by already fragmented
blocks. This also explains why best fit consistently result in less fragmentation.

One might expect throughput to be insensitive to the selection of best fit or first fit since, in
both cases, files are read in the same size unit. Figure 3-5 shows the application and sequential
performance results for the extent-based polices and confirms this intuition. In general, first fit
demonstrates better performance due to the clustering that results from the tendency to allocate
blocks toward the ‘‘beginning’’ of the disk system.

The key to the small changes in performance is the average number of extents per file for the
different workloads and extent ranges. These numbers are summarized in Table 3-7. Since the
workload with the minimum average number of extents requires the fewest seeks, one would
expect to see the best performance for that workload. The super-computer and transaction pro-
cessing workloads behave as expected (the first two graphs in the right-hand side of Figure 3-5),
but the time-sharing workload does not. Further inspection indicates that the ratio of small to
large files alters this result. Since most of the files in the time-sharing environment are small,
they can be allocated in one or two 4 kilobyte extents. The larger files require 24 extents (96 kilo-
byte files with 4 kilobyte extents). However, the larger files consume more disk space and take
longer to read and write. As a result, the time spent processing large files is greater than the time
spent processing small files. Therefore, in the configurations where the large files have fewer
extents (12 extents in the systems that use 8-kilobyte extents for these files), the overall
throughput is higher.

In selecting the configuration to compare in Section 3.5, first fit allocation is chosen since it
consistently provides better performance than best fit. For the transaction processing and super-
computer workloads simulated, the three range size configuration results in the highest sequential
performance. Although this configuration does not offer the best performance for the timesharing
workload, it is within 10% of the best performance. This configuration is represented by the
right-hand bar in the middle group of each graph.

3.3.4. Fixed-Block Allocation

The last of the allocation policies is a simple fixed-block algorithm used as a control to estab-
lish how much of an improvement may be derived from the multiple-block systems described.
When small files are the predominant part of the workload (as in the time-sharing workload), a
small block size of 4 kilobytes is used. Where an abundance of large files are present as in the
super-computing and transaction processing workloads, a larger, 16 kilobyte block size is used.

28

hhh

Supercomputer Workload

Application Performance Sequential Performance

0%

20%

40%

60%

80%

100%

1 2 3 4 5
Number of Extent Ranges

0%

20%

40%

60%

80%

100%

1 2 3 4 5
Number of Extent Ranges

Transaction Processing Workload

Application Performance Sequential Performance

0%

20%

40%

60%

80%

100%

1 2 3 4 5
Number of Extent Ranges

0%

20%

40%

60%

80%

100%

1 2 3 4 5
Number of Extent Ranges

Time Sharing Workload

Application Performance Sequential Performance

0%

20%

40%

60%

80%

100%

1 2 3 4 5
Number of Extent Ranges

0%

20%

40%

60%

80%

100%

1 2 3 4 5
Number of Extent Ranges

Best Fit First Fit

Figure 3-5: Application and Sequential Performance for the Extent-based System.
hhh

29

hhh

iii
Average Number of Extents Per Fileiii

Number of Extent Ranges SC TP TSiii
1 162 267 5
2 124 13 9
3 97 12 9
4 151 14 7
5 162 108 6iiicc

c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 3-7: Average Number of Extents per File.
hhh

3.4. Comparison of Allocation Policies

As we’ve seen in the preceding sections, all the allocation policies except for the buddy sys-
tem yield satisfactory fragmentation. As a result, this section focuses on the application and
sequential performance.

Figure 3-6 shows the sequential performance of the four allocation policies discussed in Sec-
tion 3.3. As expected, all of the multiblock policies perform better than the fixed-block policy
due to the ability to read and write large, contiguous blocks. On the large file applications (SC
and TP) all the large-block policies achieve close to the maximum throughput. In the time-
sharing environment, none of the policies succeed in pushing the system above 20% utilization
due to the presence of many small files. However, the extent-based policy can respond to this
burden most effectively since each file is limited to a small number of extents.

hhh

SC TP TS

20%

40%

60%

80%

100% 100%

80%

60%

40%

20%

TSTPSC

Fixed Block (16K)

Fixed Block (4K)

Extent Based

Restricted Buddy

Buddy Allocation

Figure 3-6: Sequential Performance of
the Different Allocation Policies.

Figure 3-7: Application Performance of
the Different Allocation Policies..

hhh

30

In the application performance (Figure 3-7), the results are similar. However, there are two
points to note. First, in the super-computer environment, the buddy system performs substan-
tially better since, for large files (over 100 megabytes), it is using substantially larger block sizes
(64 megabytes). In the transaction processing environment, all the policies are limited by the ran-
dom reads and writes to the large data files.

3.5. Conclusions

File systems with variable block sizes can substantially improve performance by allowing
transfers to and from the disk in large, contiguous units. In the large file environments such as
super-computer applications, these large-block policies provide up to 250% better throughout
than a simple fixed-block policy. Even for workloads like the transaction processing environ-
ment, which are dominated by small reads and writes to large files, there is a small (10%)
improvement. While the large blocks do not benefit the small file environment greatly, they do
not hinder it either in terms of performance or fragmentation. Therefore systems with both
extremely large and extremely small files are likely to be able to derive this improved perfor-
mance without handicapping the efficiency of small files’ retrieval.

This result suggests that time-sharing environments could benefit significantly from these
allocation techniques. Such systems could then effectively compete with systems designed with
database or super-computer applications in mind, without hindering the small file performance.
Empirical evidence in [ROSE91] and [ROSE92] shows that log-structured file systems also pro-
vide these benefits in a time-sharing environment. Since LFS can guarantee sequential layout for
large files read and written in their entirety, one might expect that it will also perform well on the
super-computer workload. However, it is not clear how well LFS can support the transaction pro-
cessing workloads. Chapter 4 will explore the comparison of LFS and read-optimized file sys-
tems in the case of transaction processing workloads.

31

Chapter 4

Transaction Performance and
File System Disk Allocation

hh

This chapter considers the use of a write-optimized file system, specifically a log-structured
file system, in a transaction processing environment. The goals of this chapter are twofold: to
understand the tradeoffs between using a conventional read-optimized file system and a write-
optimized file system for transaction processing, and to characterize the performance of embed-
ding a transaction manager in the operating system. As discussed in Chapter 2, [KUM87] and
[KUM89] show that embedded support is inferior to traditional, user-level support, but [SELT90]
shows that embedded support can be as good as user-level support. This chapter will explain this
result by analyzing five models of transaction processing, isolating the critical resources, and
stressing each model in each dimension, enabling a characterization of the performance of each
model across a wide range of configurations.

The rest of this chapter is organized as follows. First, the write-optimized (log-structured) file
system is described. Then the overview of the simulation is presented. Next, the simulation
model and the different models of transaction management are discussed. Finally, the simulation
results are presented.

4.1. A Log-Structured File System

A log-structured file system is a hybrid between a simple, sequential database log, and the
traditional UNIX file system. Like a database log, it performs all writes sequentially. Like a UNIX
file system, it has index structures to support efficient random retrieval. The index structure con-
tains the disk addresses of some number of direct, indirect, and doubly indirect blocks. Direct
blocks contain data, while indirect blocks contain the disk addresses of direct blocks, and doubly
indirect blocks contain disk addresses of indirect blocks. For the purposes of this chapter, the
index structures and both single and double indirect blocks are referred to as meta-data.

While conventional UNIX file systems allocate disk space to optimize for sequential access to a
single file, an LFS allocates disk space dynamically, optimizing write performance. In a conven-
tional file system, the blocks within a file are assigned disk addresses, and each time a block is
modified, the same disk block is overwritten. As a result, writes to different files often cause a
seek, and writes to different blocks of a file may also cause a seek. In an LFS, a large number of
modified data pages, the meta-data describing them, and a segment summary block are written
sequentially in a single unit, called a segment [ROSE90]. Note that while the index structures in
a UNIX file system occupy fixed places on disk, the index structures are appended to the log with
their data in an LFS. In order to locate these index structures later, the address of each file’s
index structure is recorded in a data structure called the inode map. Figure 4-1 shows the alloca-
tion of three files in a log-structured file system.

When a file is written, the new data blocks are appended to the log, and the index structure
and indirect blocks are modified (in memory) to contain the new disk address of the newly

32

hhh

Inode Map

... dirty data blocks ...

... dirty data blocks ...

SEGMENTSEGMENT

file1 file2

SEGMENTSEGMENT

Summary Block

file1 file2

file1
more of

file2
block 2 file3

Data Block Meta Data

(a)

(b)

... free blocks ...

...data blocks...

Figure 4-1: A Log-Structured File System. In figure (a), two files have been written, file1 and file2. The
meta-data block following each file contains that file’s index structure. In figure (b), the middle block of file2 has been
modified. A new version of it is added to the log, as well as a new version of its meta-data. Then file3 is created, caus-
ing its blocks and meta-data to be appended to the log. Next, file1 has two more blocks appended to it. These two
blocks and a new version of file1’s meta-data are appended to the log. Finally, the inode map, which contains pointers
to the meta-data blocks, is written.
hhh

written block. Periodically, the file system writes all the dirty meta-data (index structures and
indirect blocks) to disk and updates the inode map to reflect the new location of modified index
structures. This checkpointing provides a stable starting point from which the file system can be
recovered in case of system failure. The location of the latest checkpoint is redundantly written
in fixed places on the disk to facilitate recovery.

Recovering a log-structured file system is similar to standard database recovery [HAER83]. It
consists of two parts: initializing all the file system structures from the most recent checkpoint
and then rolling forward to incorporate any modifications that occurred after the last checkpoint.
The roll forward phase consists of reading each subsequent segment summary block and updating
the file system state to reflect the contents of the segment. Each segment summary block includes
a pointer to the next segment written, a timestamp, and a file identification number and logical
block number for each block in the segment. The forward pointers facilitate reading from the last
checkpoint to the end of the log and the timestamps are used to identify the segments written after
the checkpoint. The file identification numbers are used to index into the inode map, and the log-
ical block numbers are used to update the file’s meta-data so that the file index structure includes
the blocks in the segment. As is the case for database recovery, the recovery time is directly pro-
portional to the interval between file system checkpoints.

Since the structure described is an append-only log, the disk system will eventually become
full, requiring a mechanism to reclaim space. If there are files which have been deleted or
modified, some blocks in the log will be ‘‘dead’’ (those that belong to deleted files or that have
been superceded by later versions). A cleaning process reclaims segments from the log by read-
ing a segment, discarding ‘‘dead’’ blocks, and appending any ‘‘live’’ blocks to the log. In this
manner, space is continually reclaimed [ROSE91].

33

There are two characteristics of a log-structured file system that make it desirable for transac-
tion processing. First, a large number of dirty pages are written contiguously. Since only a single
seek is performed to write out these dirty blocks, the ‘‘per write’’ overhead is much closer to that
of a sequential disk access than to that of a random disk access. Taking advantage of this for
transaction processing is somewhat similar to the database cache discussed briefly in Section
2.1.2.2 and in more detail in [ELKH84]. While the database cache technique writes pages
sequentially to a cache, typically on disk, blocks in the log still need to get written back to the
‘‘real’’ database. In an LFS environment, these blocks are still written sequentially as they are in
a log, but they also become data blocks in the ‘‘real’’ database.

The second characteristic of a log-structured file system that makes it desirable for transaction
processing is that the file system is updated in a ‘‘no-overwrite’’ fashion. Since data is not
overwritten as part of the update process, before-images of updated pages exist in the file system
until they are reclaimed by the cleaner. This feature makes it possible to avoid writing separate
log records during transaction processing.

4.2. Simulation Overview

The goal of this study is to answer three questions. First, how does the performance of a log-
structured file system compare to that of a conventional file system on a transaction processing
workload? Second, how does the performance of operating system transaction management com-
pare to that of user-level transaction management? Third, does the answer to the last question
change depending on the file system? In order to answer these questions, four systems are simu-
lated -- one with user-level transaction processing and a read-optimized file system (USER-RO),
one with user-level transaction processing and a write-optimized, log-structured file system
(USER-LFS), one with operating system transaction processing and a read-optimized file system
(OS-RO), and one with operating system transaction processing and a write-optimized file system
(OS-LFS). A fifth model (LFS-NOLOG) that exploits the logging nature of log-structured file
systems is also simulated.

In order to understand the salient features of each model, they are analyzed in CPU-bound,
disk-bound, and lock-bound environments. By focusing on one component of the performance
(CPU, disk, or locking) in each simulation, we can identify the critical performance issues. Fig-
ure 4-2 depicts the three dimensions of the simulation study.

As discussed in Chapter 2, user-level transaction systems typically offer better performance
than operating system transaction systems, but operating system transactions are available to a
wider class of applications. The difference in performance is due to three factors: the system call
overhead, the operating system’s inability to perform special-purpose locking for structures such
as B-Trees, and the operating system’s need to log data at a physical level. The system call over-
head is a factor because processes must make system calls to request transaction service in an
embedded model while in user-level models, they can communicate via shared memory. The
lack of special-purpose locking is a disadvantage in high contention environments, and the physi-
cal log requires more disk space. If operating system transaction management could overcome
some of these performance barriers and still offer a more flexible alternative than user-level sys-
tems, it would be an attractive alternative.

4.3. The Simulation Model

The simulations use a workload characterized by short-running transactions and are driven by
a stochastically generated workload. The database consists of a single data file with a variable
number of B-Tree indices. Its size and fillfactor (the fraction of each page containing valid data)
are simulation parameters.

The workload consists of M concurrent processes issuing a potentially infinite stream of
parameterized transactions. At initialization, M transactions are created, and each time a

34

hhh

OS-LFSOS-RO

USER-LFSUSER-RO

Lock-Bound

CPU-Bound
Disk-Bound

System
Operating

Level
User

Write-OptimizedRead-Optimized
File SystemFile System

Figure 4-2: Simulation Overview. The simulation study compares read-optimized and write-optimized file
systems with both user-level and operating system transaction management. Each of the four resulting models are
analyzed under CPU-bound, disk-bound, and lock-bound conditions.
hh

transaction commits or aborts, a new transaction is created. A transaction is defined to be a
sequence of retrieve, update, insert, and delete operations. Each retrieve and update operation
affects a single data page and a search path through a single index. A search path consists of an
access to one page in each level of the B-Tree, culminating with a leaf page. An insert or delete
operation affects a single data page and a search path through each index, since it is presumed
that a key must be inserted/deleted into/out of each index.

A number of operations, O , uniformly distributed over [l − 0.25l , l + 0.25l], where l is the
average transaction length, is generated. A second parameter, U , determines what percent of the
O operations modify the database, the rest being read-only operations. Finally, a third parameter
f identifies what percentage of the modify operations are inserts or deletes (as opposed to
updates). Inserts and deletes can be treated identically as they both require modifying the data
and all indices. A transaction may then be defined as:

O total operations composed of:

(1-U)O retrieves
fUO inserts/deletes
(1-f)UO updates

Each operation of a transaction is processed in the following manner. A data page is selected
from a distribution described by two parameters d and a . The parameter d indicates what

35

percent of the database gets a percent of the accesses. For example, d =20 and a =80 means that
80% of the accesses are distributed uniformly across 20% of the database. Once a data page is
selected, it is locked, read from the disk or the buffer pool, and left locked until transaction com-
mit time. To simulate index traversal, using the same distribution as was used for the data file,
one page is selected from each level of the B-Tree. These pages are locked, read, and unlocked
either at completion of the operation (for data manager models) or at transaction commit time (for
embedded models). As soon as one operation completes, the next operation begins. When all the
operations have completed, a synchronous write forces the log to disk.

The total database size is derived from the dbsize, pagesize, and fillfactor parameters. Dbsize
defines the size (in megabytes) of the data file. The number of records in the database is deter-
mined by using the fillfactor parameter, which defines how much data is on each page. Then,
using the number of records, the fillfactor, the pagesize, and the size of a key (16 bytes), the
number of index pages is determined, using the formulas below.

L =
F * P
R * Khhhhhh and Li =

F*P

Li +1*Khhhhhhh

where:
L is the number of leaf pages
Li is the number of B-Tree pages at level i
R is the number of records in the data file
K is the key size
F is the fillfactor
P is the pagesize

Once the size of each index has been calculated by summing Li , the number of indices is multi-
plied and data file size is added to yield the total database size.

The buffer pool size is defined to be 10% of this total database size. The buffer pool uses an
LRU replacement algorithm and flushes dirty blocks to disk asynchronously. In both [KUM87]
and [KUM89], the buffer pool is sized in terms of a number of pages. This penalizes simulations
with a smaller page size by providing them less main memory. Keeping the amount of main
memory constant and reducing the page size can improve performance by more than 25% in high
contention environments.

Table 4-1 summarizes the number of instructions required to perform each operation. The
instruction count for locking includes both the lock and unlock actions. In the embedded models,
it is assumed that a system call is required to obtain a lock, so the actual cost of a lock is a func-
tion of the number of instructions for both a system call and a lock. It is assumed that all unlock-
ing may be performed by a single system call at transaction commit time. Therefore, the CPU-
boundedness of a configuration may be adjusted by setting only the available CPU parameter.

hhh

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
operation number of instructionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

lock 1000
syscall 500
retrieve 7000
update 12000
insert/delete 18000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

Table 4-1: CPU Per-Operation Costs.
hhh

36

The last set of parameters controls deadlock detection and recovery. The deadlock detector
runs every deadlock seconds, aborting transactions which have been waiting longer than the
timeout interval. In order to limit recovery time and allow log reclamation, checkpoints are taken
every chkpt seconds. At checkpoint time, all dirty pages are forced to disk and creation of new
transactions is inhibited until all active transactions have committed. Table 4-2 summarizes the
simulation parameters and their default values.

4.4. Transaction Processing Models

This analysis considers five models of transaction processing. The first is a conventional data
manager on a traditional, read-optimized file system. The second is the same data manager on a
write-optimized file system. The third embeds transaction support in the read-optimized file sys-
tem. The fourth and fifth both embed transactions in a write-optimized file system. The fourth
uses traditional write-ahead logging in the operating system while the fifth takes advantage of the
log-structured file system’s ‘‘no-overwrite’’ policy to obviate the need for a separate log.

hhh

ii
Statistical Parametersii

parameter description defaultii
runlen Transactions per run 10000
nruns c

c
c
c

Runs per data point c
c
c
c

5ii

Workload Characteristicsii
parameter description defaultii
O Avg ops per transaction 16
U % update operations .25
f % insert/delete .50
d/a Request distribution 50/50
I Number of indices 5
dbsize Mbytes in the data file 1024 (1G)
bufsize Buffer pool size 10% of db
fillfactor Valid fraction of page .70
recsize cc

c
c
c
c
c
c
c
c
c
c

Length of data records cc
c
c
c
c
c
c
c
c
c
c

100 bytesii

System Parametersii
parameter description defaultii
cpu_speed Processor speed (in MIPS) 10
disks Number of disks 10
users Degree multiprogramming 20
pagesize Page size (in bytes) 4096
spagesize Subpage size 128 bytes
deadlock Deadlock detector interval 5 sec
chkpt Checkpoint interval 5 miniicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-2: Simulation Parameters.
hhh

37

4.4.1. The Data Manager Model

In the data manager model, detailed knowledge of the structure of the database is assumed.
For example, logging is performed at a logical, rather than a physical level, allowing log records
to contain only the modified data instead of the whole containing page. Using special con-
currency control protocols, facilitating high degrees of parallelism [BAYER77], the data manager
only needs to hold index locks during the physical manipulation of the index page (on the order
of a few thousand instructions), providing superior performance in environments with high lock
contention.

The sequence of events for accessing a random record in the database is as follows. First, a
keyed lookup is performed. This requires traversing the non-leaf pages of a B-Tree by obtaining
a read-lock on each page, finding the next page to access, and releasing the read-lock. When a
leaf page is reached, the data page is locked and accessed. In the case of an update (updates
change the record and one index, while creates and deletes update all the indices) a write-lock is
obtained on the leaf page of the B-Tree. Then, the update is logged, by recording both a before-
and after-image of the record, the index page and data page are modified, and the index locks are
released.

A transaction can be decomposed into operations whose cost may be expressed as a combina-
tion of logging, I/O, and locking costs. In the data manager models, group commit can be used to
accumulate enough data to fill a track so that the logging cost is proportional to the record size.
Since the access pattern is random, in a read-optimized file system the I/O cost for both reading
and writing is proportional to the random access time of the disks (approximately 28.3 mil-
liseconds)3. On a write-optimized file system, the reads are also performed randomly, but the
writes are all performed sequentially (Section 4.1 explained how this is achieved). Finally, since
the data manager has its own lock manager, the locking cost is strictly a function of the number
of locks and is independent of any system call overhead.

4.4.2. The Operating System Model

As the operating system knows nothing about the internal structure of files, it cannot distin-
guish between data and index updates. In order to guarantee serializability it must perform strict
two-phase locking [GRAY76] on physical entities (pages). If there are few conflicts in the index,
then page locking will be the least expensive locking granularity. However, as contention
increases, page locking in the index will limit performance, so the simulation model allows for
subpage locking as well.

Assume that there are S subpages per page. To traverse a B-Tree, log2S subpages, selected
uniformly from the filled subpages within the page, are locked. This models searching for a key
within the page.4 To modify a leaf page, one of the selected subpages is write-locked. If a key is
being deleted, the data that follows is copied to reclaim the space. If the key is being inserted, the
data following it is shifted to make room for the new key. Figure 4-3 shows these operations. As
a result, all the subpages after the selected subpage must also be write-locked. This requires the
operating system to obtain multiple write-locks (on average half the number of filled subpages
per page) for each B-Tree page modified as compared to the data manager’s one lock.

Since all the transaction support is provided in the operating system, each lock request
requires a system call. In simulating the embedded models, the time required to perform a sys-
tem call is added to each lock request while in the data manager models, no system call overhead
is added. This puts an artificially high penalty on the embedded models since, in practice, the
data manager will incur system call overhead each time a page that is not resident in the buffer
pool is requested.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 All disk times are based on the performance specification of the Fujitsu Eagle M2361A [FUJI84].
4 The log 2 assumes a binary search is used to locate the correct subpage.

38

hhh

8 109

7654321

Subage 4Subpage 3

Subpage 2Subpage 1

8

109

7654321

Subage 4Subpage 3

Subpage 2Subpage 1

10

97654321

Subage 4Subpage 3

Subpage 2Subpage 1

Added RecordDeleted RecordUnmodified Records

8

109

7654321

Subage 4Subpage 3

Subpage 2Subpage 1

A

B

Figure 4-3: Additions and Deletions in B-Trees. In Figure A, record 8 is being deleted. Records 9 and 10
are copied to reclaim space on the page. Both pages 2 and 3 must be locked. In Figure B, a new record is being insert-
ed between records 3 and 4. Records 4-10 are copied to make room for the new record, requiring locks on subpages 1,
2, and 3.
hhh

The final difference between the data manager and the operating system embedded model is
the amount of logging information. Since the operating system cannot perform logical logging, it
must resort to physical logging and save both before- and after-images of each subpage that is
modified. In the case of inserts and deletes, this number may become quite large since multiple
subpages per index page are modified.

As before, the transaction cost is decomposed into logging, I/O, and locking costs. This time,
the logging cost is proportional to the size of a subpage, the I/O costs are proportional to the ran-
dom disk access time, and the locking cost is a function of the number of locks, the number of
subpages per page, and the system call overhead.

4.4.3. The Log-Structured File System Models

There are three log-structured file system models. The first is a user-level system, identical to
the user-level data manager model, except the underlying file system is an LFS. The second is an

39

embedded model identical to the operating system model, except that its underlying file system is
an LFS. Both of these have locking and logging costs identical to the data manager and operating
system models respectively, but the I/O component of the transaction cost is proportional to the
random disk access time for reading and the sequential disk access time for writing. Neither
model includes any cost for the cleaner.

The third model takes advantage of both the sequential nature of writes and the ‘‘no-
overwrite’’ policy of the log-structured file system. Instead of logging before- and after-images
of the subpages being modified, all dirty pages are forced to disk at commit time. Since a single
page is composed of multiple subpages, the page may contain subpages modified by more than
one transaction. When one of those transactions commits, the page is written, and subpages for
uncommitted transactions may also be written to disk. A small log which records the location of
the previous and current versions of all dirty, uncommitted subpages is necessary to guarantee
that these uncommitted transactions can be aborted. This logging information must be forced to
disk before the dirty pages themselves. The difference between these last two embedded models
is that the latter has very small log records (16 bytes) and the logging overhead is proportional
only to the number of subpages modified rather than to both the number and size of the subpages.
This model also ignores cleaner overhead.

4.4.4. Model Summary

In the discussion that follows, USER-RO refers to the data manager on a read-optimized file
system, and USER-LFS refers to the data manager on a log-structured file system. OS-RO refers
to transaction support embedded in a read-optimized file system, OS-LFS refers to embedded
support in a log-structured file system using a full log, and LFS-NOLOG refers to embedded sup-
port in a log-structured file system, using the file system in place of a traditional log. For each
component of transaction cost (logging, I/O, and locking), Table 4-3 indicates the parameters

hhh

iii
Description Label Logging I/O Locking

function of (read) (write) function ofiii
User-Level Transaction Manager USER-RO # updates random random # locks
Read-Optimized File System record sizeiii
User-Level Transaction Manager USER-LFS # updates random seq # locks
Write-Optimized File System record size syscall costiii
Embedded Transaction Manager OS-RO # updates random random # locks
Read-Optimized File System subpage size syscall cost

subpages/pageiii
Embedded Transaction Manager OS-LFS # updates random seq # locks
Write-Optimized File System subpage size syscall cost

subpages/pageiii
Embedded Transaction Manager LFS-NOLOG # updates random seq # locks
Write-Optimized File System syscall cost

subpages/pageiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-3: Comparison of Five Transaction Models. The transaction cost is decomposed into its log-
ging, I/O, and locking components and each column indicates upon which parameters this cost depends. For example,
the logging cost is dependent upon the number of updates in all the models, but upon the record size only in the user-
level models and the subpage size only in OS-RO and OS-LFS models.
hhh

40

upon which the component is dependent for each model.

4.5. Simulation Results

The three potential performance bottlenecks are the CPU, the disk system, and lock conten-
tion. By isolating each of these resources, all five systems can be stressed in each dimension,
resulting in a characterization of the performance of each model across a wide range of
configurations. For all the simulations reported, the configuration consists of a one gigabyte data
file with 1.2 gigabytes of index information (five indices). This data is striped across ten small,
inexpensive disks to achieve parallelism in the I/O subsystem. For both data and indices, block i
is assumed to reside on disk i % 10. Varying the CPU speed and the locality of accesses pro-
duces CPU-bound, disk-bound, and lock-bound configurations.

To verify the simulation results, the upper and lower limits for each configuration were com-
puted analytically. Then, the simulation results were plotted, checking that the limits approached
those from the analytic model. Each of the data points represents five runs of 10000 transactions
each. The variance across the five runs is approximately 1% of the average and yields 95%
confidence intervals of approximately 2%.

4.5.1. CPU Boundedness

To create a CPU-bound environment, the available CPU is set low, to 1 MIPS. The available
CPU means the amount of processing power dedicated to the operations being analyzed
(obtaining/releasing locks, issuing a system call, searching a page, and modifying data), ignoring
overhead for query processing, communication, setting up I/O, scheduling, etc. These other over-
heads are ignored, so that the simulations can isolate those aspects of the system that differ (lock-
ing cost, logging cost, CPU utilization), focusing on how each impacts performance.

In order to guarantee that the configuration is CPU limited and not contention limited, the
access pattern is uniform. This yields a probability of conflict of approximately 5%, so there is
no need to set the locking granularity (or subpage size) any smaller than the page size for the
embedded models. This differs from the simulations in [KUM87] that model the 801 hardware
locking [CHAN88], which always performs subpage locking on 128 byte subpages.

Figure 4-4 shows the results of varying the degree of multiprogramming until the CPU
becomes saturated. In this configuration the two data manager models provide better perfor-
mance than any of the embedded systems. Whereas Kumar found this difference to be 30% or
more in a CPU-bound configuration, these results show that at saturation the difference in
throughput between the user-level models and the embedded models is approximately 17%

(
TUSER −RO

TUSER −RO −TOS −ROhhhhhhhhhhhhhhhh), and the difference between USER-LFS and either OS-LFS or LFS-

NOLOG is 20% (
TUSER −LFS

TUSER −LFS −TOS −LFShhhhhhhhhhhhhhhhh). These results are different from Kumar’s because our

model requires only one lock per B-Tree level while Kumar’s required four. Therefore, the
difference in performance between the user-level and embedded models is due only to the
number and cost of the system calls required by the embedded models.

Using the cost components detailed in Table 4-3, the CPU costs for the data manager and
embedded models can be expressed as: Tos = N (L + S) + C and Tuser = LN + C and throughput

is proportional to
T
1hh , so the relative performance, in terms of throughput, may be expressed as:

Tos =
I
J
L N (L +S) + C

LN + Chhhhhhhhhhh
M
J
O
Tuser OR Tuser =

I
J
L
1+

LN +C
NShhhhhh

M
J
O
Tos

where
N is the number of locks required,

41

hhh

Degree of Multiprogramming

OS-RO
OS-LFS
LFS-NOLOG
USER-RO

USER-LFS

in transactions/sec
Throughput

0 5 10 15 20
0

1

2

3

4

5

Figure 4-4: CPU Bounding Under Low Contention. The degree of multiprogramming is varied in a low
contention configuration. Since the embedded models incur a system call per lock, the user-level models (USER-RO
and USER-LFS) outperform the embedded models (OS-RO, OS-LFS, LFS-NOLOG). What is unexpected is that
although the configuration is CPU-bound, the file system still impacts the resulting performance as is evidenced by the
difference between the RO lines and the LFS lines.

hhh

L is the CPU overhead for acquiring a lock,
C is the CPU overhead for searching and modifying data pages.
S is the cost of a system call (in milliseconds).

For the workload simulated, Tuser is 1.2Tos or (1+.4S)Tos . It is apparent that the cost of a system
call has a tremendous impact on the performance. Figure 4-5 graphically depicts this difference in
performance as the cost of a system call is varied. In the preceding simulation a .5 millisecond
overhead for system calls was used, yielding a 17-20% difference in performance between the
user-level and embedded models. At .25 millisecond (250 instructions), the difference between
the data manager and embedded models drops to 12%.

Surprisingly, although this configuration is nearly CPU-bound, the log-structured file system
models provide better performance than the read-optimized file system models. Comparing the
USER-LFS performance with the USER-RO performance, there is a gap of nearly 12% (4.1 tps
v.s. 3.6 tps), and comparing LFS-NOLOG with OS-RO, there is a gap of 10% (3.3 tps vs. 3.0 tps).
In each of these situations, the CPU cost for both configurations is the same. Since the
configuration is not disk-bound, the better performance of the log-structured file system is unex-
pected. Upon closer inspection, the read-optimized file systems are achieving only 87% CPU
utilization but 50% disk utilization while the write-optimized models are achieving 99% CPU
utilization and 33% disk utilization.

42

hhh

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0

1

2

3

4

5

Cost of a System Call (in ms)

Throughput
in transactions/sec

USER-LFS

USER-RO

LFS-NOLOG
OS-LFS
OS-RO

Figure 4-5: Effect of the Cost of System Calls. As system calls become more costly (in terms of CPU cy-
cles), the difference in performance between the data manager and the embedded models widens.

hhh

Examination of what happens as dirty blocks are flushed to disk explains how the disk utiliza-
tion affects throughput. In the read-optimized models, flushing a dirty block busies the disk for
the time of a random access. When dirty data blocks are written, an incoming read request may
be delayed for up to 28.3 milliseconds. Even if these writes are attempted during idle disk cycles,
subsequent read requests may still queue up behind the writes and be delayed. On the other hand,
when the log-structured file system models flush dirty blocks, they write a large number of blocks
at sequential speed (1.99 milliseconds per 4-kilobyte block). Therefore, the potential delay
incurred per block flushed is much less. Additionally, each time that the log is forced to disk (or
the dirty file blocks in the embedded model), any other dirty buffers that happen to be in the
cache are also written for little cost. As a result, the LFS-based models rarely wait to evict pages
from the buffer pool. Looking at this another way, in the read-optimized models, the CPU utili-
zation peaks at approximately 87%, because queueing at the disks causes a convoy affect,
preventing the CPU from being used efficiently. In contrast, the CPU utilization for the log-
structured file system models approaches 100%. So, even when the disks are not the critical
resource, the difference in write performance of the disk systems impacts the resulting
throughput.

4.5.2. Disk Boundedness

By increasing the available processing power, the configuration becomes disk-bound. Once
again, the degree of multiprogramming is varied to determine a saturation point. These results
are shown in Figure 4-6. As expected, the log-structured models provide the best performance,
by approximately 23% (9.4 tps for USER-LFS and 7.2 tps for USER-RO). Furthermore,
although the configuration is disk-bound, the size of the log does not have a significant impact on

43

performance. Both the user-level and embedded models exhibit nearly identical performance,
even though the operating system maintains a much larger log. As in the CPU-bound case, these
results differ dramatically from [KUM87]. He found that in disk-bound configurations the data
manager out-performed the operating system embedded model and attributed this difference to
the size of the log. Although the OS systems keep a much larger log than the USER systems, their
performance is nearly identical as shown by the overlapping lines in Figure 4-6. Similarly,
USER-LFS, OS-LFS and LFS-NOLOG exhibit nearly identical performance although these
models have different sized logs as well. To understand this phenomenon, consider how the total
transaction time is apportioned to different operations. Logging occurs at sequential speed and
makes up only a small fraction (less than 1.2%) of the total I/O time, so the total transaction time
is dominated by the random read time (more than 73% of total I/O time). Since Kumar ignored
the time required to randomly write dirty blocks back from the cache, his overall I/O time was
much smaller, thereby making the log write time much more important.

Having analyzed the extremes of disk-boundedness and CPU-boundedness, the region in
between is analyzed. Varying the available CPU yields the results shown in Figure 4-7. Between
any two models, there are two factors that contribute to the performance differential: the file sys-
tem and the location of transaction support (user-level or operating system). At 1 MIPS, the
CPU-bound configuration, the file system component accounts for a 10-12% difference in perfor-
mance (the difference between USER-LFS and USER-RO or OS-LFS and OS-RO) and the loca-
tion of transaction support accounts for a 19-20% difference (the difference between OS-RO and

hhh

10

8

6

4

2

0
100806040200

Throughput
in transactions/sec

USER-LFS

USER-RO

LFS-NOLOG
OS-LFS

OS-RO

Degree of Multiprogramming

Figure 4-6: Disk Bounding Under Low Contention. Since there is sufficient CPU power to support the
more expensive embedded systems, the file system determines performance, and the write-optimized file system pro-
vides superior performance to the read-optimized one. Surprisingly, the number of bytes logged does not affect the
performance as the USER-LFS, OS-LFS, and LFS-NOLOG all exhibit the same performance.

hhh

44

hhh

LFS-NOLOG
USER-LFS

OS-RO

OS-LFS

USER-RO

CPU Speed (in MIPS)

10

8

4

2

54321

Throughput
in transactions/sec

6

0

Figure 4-7: Effect of CPU Speed on Transaction Throughput. Increasing CPU speed moves the
configuration from a state of CPU-boundedness to disk-boundedness. Even before the systems become completely
disk-bound (at 3 MIPS), the major factor contributing to the performance differential is the file system as opposed to
whether transaction support if provided in the operating system or at user-level.

hhh

USER-RO or OS-LFS and USER-LFS). By 2 MIPS, that emphasis has shifted so that the file
system component is 19-21% and the location component is 15-17% Finally, by the disk-bound
point, 3 MIPS, the location component is 0 (the USER-RO and OS-RO lines overlap, as do the
USER-LFS, OS-LFS, and LFS-NOLOG) and the file system accounts for a 22% difference in
performance. However, at any point along the curves, the best performance is provided by sup-
porting transactions in the data manager on top of a log-structured file system.

As was observed in the disk-bound configuration, the size of the log does not contribute
significantly to the performance of the systems. The difference in I/O costs between USER-LFS
and OS-LFS is that USER-LFS is able to perform logical logging (proportional to the record size)
while OS-LFS performs physical logging (proportional to page size). The logging difference
between OS-LFS and LFS-NOLOG is that the LFS-NOLOG model requires a log even smaller
than USER-LFS (16 bytes per modification rather than 2 records). Since logging is always per-
formed at sequential speeds, the total time required to log a transaction is still a small part of the
total I/O time (under 1%), and the resulting performance is the same for all three systems. There-
fore, the primary benefit of the log-structured file system implementation is its superior write per-
formance, not its ‘‘no-overwrite’’ policy.

4.5.3. Lock Contention

All the preceding tests were run with a uniform access pattern over the one gigabyte data file.
The next issue to investigate is the effect of lock contention on these results. To induce conten-
tion, the database access pattern is skewed. The saturation point configuration for the disk-bound

45

simulations has a multiprogramming level of 100, 10 disks, and 10 MIPS of available CPU. The
distribution is varied from uniform (50/50; 50% of the accesses to 50% of the database) to
extremely contention-bound (99/1; 99% of the accesses to 1% of the database). Figure 4-8 shows
these results.

There are two factors at work here. First, since the configuration is initially disk-bound, the
skewing of the access patterns results in a higher buffer cache hit ratio and therefore improved
performance. Secondly, the skewing of the access patterns induces hot spots in the database, and
the contention for locks degrades performance. At the 70/30 skew point, the USER-RO and
OS-RO lines diverge as do the USER-LFS and OS-LFS/LFS-NOLOG lines. Since the user-level
models use high concurrency locking on the indices, the user-level models continue to take
advantage of the improved buffer cache hit ratio and their performance climbs steadily. The OS-
RO model also exhibits improved performance, but not as much as the user-level systems since it
is starting to suffer from contention on the indices, because index locks are held until transaction
commit time in the embedded models. At the 80/20 point, the OS-LFS and LFS-NOLOG models
actually suffer performance degradation as a result of the increased skewing and resulting conten-
tion. By the 90/10 point, the USER-LFS system has peaked and by the 95/5 point, all the models
except the USER-RO have degraded dramatically.

Figure 4-9, which shows the number of aborts for each of the models as a function of this
skewing, indicates that the embedded models exhibit higher abort rates than the user-level models
from the 70/30 point until the 95/5 point. Since many more transactions are aborting, the result-
ing throughput is lower, therefore, in a contention-bound environment the coarse grain page lock-
ing employed by the embedded models is unsatisfactory.

hhh

OS-RO
LFS-NOLOG
OS-LFS
USER-RO
USER-LFS

in transactions/sec
Throughput

100:050:50 90:1080:2070:3060:40

% Accesses: % Database
Access Skew

16

12

8

4

0

Figure 4-8: Effect of Skewed Access Distribution. Contention begins to impact performance when the
skew reaches greater than 70/30. The embedded models diverge from their data manager counterparts at this point.

hhh

46

hhh

10

100

1000

10,000

100,000

Access Skew
1009080706050

Number of Aborts

per 10000

committed transactions

OS-RO

USER-LFS

OS-LFS

USER-RO

LFS-NOLOG

Figure 4-9: Effect of Access Skewing on Number of Aborted Transactions. The abort rate begins
climbing at a 70/30 skew for the embedded systems, but at an 80/20 skew for the data manager.
hhh

100:050:50 90:1080:2070:3060:40

% Accesses: % Database
Access Skew

LFS-NOLOG

USER-RO
OS-LFS

USER-LFS

OS-RO
in transactions/sec

0

5

10

15

20

Throughput

Figure 4-10: Effect of Access Skewing with Subpage Locking. By reducing the locking granularity,
the embedded models can regain some of the performance lost to contention.

hhh

The next sections describe three techniques used to reduce the effect of lock contention in the
embedded models. First, subpage locking, as described in section 4.4.2 was used. Next, the page
size was reduced and locking was performed on full pages. Finally, a modified subpage locking
technique similar to that described in [KUM89] was used.

47

Subpage locking reduces the locking granularity, and as a result, the degree of contention, but
not as much as expected. Figure 4-10 shows the same contention-bound environment, shown in
Figure 4-8, but uses subpage locking for the embedded models. In the region between 70/30 and
95/5 the embedded models come much closer to equaling their user-level counterparts. In the
case of the read-optimized file systems (USER-RO and OS-RO), the difference is at most 6% (at
the 90/10 point). For the log-structured file system, the largest gap is under 12% (also at 90/10).
At the most contention-bound point the cause of contention moves from the indices to the data
file and even the user-level models exhibit extreme contention. The reason that the embedded
models exhibit better performance at the 99/1 point is because the user-level models continued to
perform page locking on the data file. Obviously, the user-level models could use subpage lock-
ing in which case both user-level and embedded models would saturate at the same point.

Although subpage locking improved the throughput under high contention, the change was
not as large as one might expect. Since updates to a B-Tree page require shuffling around the
entries on a page, multiple subpages get locked for each update. The distribution of the addi-
tional pages which must be locked is skewed to favor subpages at the end of the page. This is
shown in Figure 4-11. In addition, the CPU cost per level of the B-Tree is higher since multiple
subpage locks are required to find the correct subpage. Therefore, if a high-contention environ-
ment is CPU-bound, changing the locking granularity will not improve performance. If the CPU
is not the bottleneck, some of the performance lost to contention may be regained.

The next technique to reduce contention is to decrease the page size and lock full pages.
While decreasing the page size reduces contention, it may also increase the depth of the B-Tree.
Increasing the depth of the B-Tree may add extra I/O to each operation as well as adding an addi-
tional lock request to each traversal. As a result, reducing the page size is beneficial only if it
does not increase the depth of the B-Tree. For the simulated database, reducing the page size

hhh

Unlocked Subpage

3210
Subpages

(Locked)
Subpage containing key

Locked Subpage

Figure 4-11: Distribution of Locked Subpages. Although subpage locking reduces the locking granulari-
ty, it does not dramatically reduce the probability of conflicts. Notice that subpage 3 is always locked if any key on the
entire page is modified while subpage 1 gets locked only if it contains the modified key.

hhh

48

from 4 kilobytes to 2 kilobytes does not increase the depth of the B-Tree. The results in Figure
4-12 show the same contention-bound environment using page-locking and selecting the optimal
page size for each model. The optimal page sizes were selected by simulating all page sizes
between 128 bytes and 4 kilobytes and selecting the best one for each level of contention. The
results in figure 4-12 used 4-kilobyte pages for skews of 50, 60, 70; 128 byte pages for 80, and
512 byte pages for 90, 95, and 99. Comparing these results to those shown in Figure 4-10 indi-
cates that using page size to reduce contention is less effective than using subpage locking for the
read-optimized file system. On the other hand, the embedded models on LFS perform much
better with variable page sizes than with subpages. Furthermore, the write-optimized embedded
models surpass the write-optimized user-level model at 95/5 rather than at 99/1 as before.
Depending on the file system, varying either the subpage size or the page size is an effective
mechanism for handling lock contention.

The last technique is the modified subpage locking. It is similar to the subpage locking
described earlier, but it avoids the overhead of multiple locks per level of the B-Tree and the
skewed distribution of the locked subpages. This is similar to the proposal in [KUM89], but has
lower CPU costs. In both Kumar’s algorithm and the one presented here, each subpage is treated
as an independent bucket of entries. In Kumar’s method, the smallest key for each subpage is
stored on a page’s first subpage. To locate a key, the first subpage is read-locked, the appropriate
subpage is determined, and then that subpage is locked. Within each subpage, entries are chained
in a linked list, requiring linear search time.

hhh

LFS-NOLOG

USER-RO

OS-LFS

USER-LFS

OS-RO
in transactions/sec

100:050:50 90:1080:2070:3060:40

% Accesses: % Database
Access Skew

Throughput

20

15

10

5

0

Figure 4-12: Effect of Access Skewing with Variable Page Sizes. In these tests, the embedded models
perform comparably with the user-level models indicating that varying the page size compensates for some of the con-
tention penalty in the embedded systems.

hhh

49

In the simulated algorithm, entries within a subpage are kept sorted maintaining the O (log n)
search time of a normal B-Tree whose page size is equal to the subpage size in our algorithm.
The new algorithm avoids duplicating the key information on the first subpage and bottlenecking
on that subpage by performing a non-locking binary search across subpages to locate the correct
page. That page is then locked. To avoid conflicts between modifications to the low key on the
page and the non-locking read, modifications to the low key on the page force a page reorganiza-
tion. A page reorganization locks all the subpages and repartitions the keys across them. There-
fore, when the non-locking read chooses a subpage, it will attempt to lock the subpage and fail.
When the subpage lock becomes available, the waiter repeats the search and tries again. Page
reorganization also occurs when a subpage fills.

While page reorganization may appear costly, the results in Figure 4-13 show this not to be
the case. This simulation used modified subpage locking with a subpage size of 512 bytes and a
page size of 4 kilobytes, yielding 22 keys per subpage on average.

During page reorganization, it is expected that half the entries on a page must be moved, so
the reorganization is no more costly than a normal page-oriented delete. Whereas Kumar
assumes that reorganization is required every 600 updates, this algorithm assumes reorganization
is required once in every 10 updates since reorganization is required (and full page locking) both
when subpages fill as well as when the first key on a page is modified.

Since this locking protocol offers the smaller locking granularity of subpage locking without
the extra CPU overhead of multiple locks per update, its performance is even better than the data
manager’s performance, when the data file becomes the point of contention (since the data

hhh

LFS-NOLOG

USER-RO

OS-LFS

USER-LFS

OS-RO

in transactions/second

100:050:50 90:1080:2070:3060:40

% Accesses: % Database
Access Skew

Throughput

30

25

20

15

10

5

0

Figure 4-13: Effect of Access Skewing with Modified Subpage Locking. By reducing the locking
granularity, the embedded systems are able to surpass the data manager in an environment with extremely high conten-
tion.

hhh

50

manager is still using page locking on the data file). Examining the number of aborts for the
embedded models shown in Figure 4-14, the lock contention is virtually eliminated until the
90/10 point, and, beyond that point, the number of aborts in the embedded models is an order of
magnitude smaller than for the data managers. Again, having the data manager use subpage lock-
ing on the data file in such high contention environments is clearly the right decision.

4.6. Conclusions

Independent of whether transaction support is embedded in the file system or implemented at
user-level, the log-structured file system offers better performance than the traditional read-
optimized file system. Its major benefit is its improved write performance, not its ‘‘no-
overwrite’’ policy. In fact, as seen from the results in disk-bound configurations, the number of
bytes logged has very little impact on the resulting performance. This is explained by the fact
that logging always occurs at sequential speeds and is a very small fraction of the total I/O time.

Since logging is not an important factor embedded transaction support performs as well as the
user-level support in disk-bound configurations. Whether a read-optimized or write-optimized
file system is used, the user-level and embedded models offer nearly identical performance. As a
result, supporting transactions within the file system is a feasible solution, when the system is
disk-bound.

As Kumar concluded, when the CPU is the bottleneck, there is a penalty in embedding tran-
saction support in a file system. However, when lock contention is not a factor, there is no need to
perform subpage locking, and the difference in performance is directly proportional to the cost of

hhh

% Accesses: % Database
Access Skew

100:090:1080:2070:3060:4050:50

LFS-NOLOG

USER-RO

OS-LFS

USER-LFS

OS-RO

100,000

10,000

1000

100

10

committed transactions

per 10000

Number of Aborts

Figure 4-14: Effect of Modified Subpage Locking on the Number of Aborts. The new locking
mechanism reduces the number of aborts by a factor of 10, thus allowing the high throughput rates observed in Figure
4-13.

hhh

51

a system call and is usually under 20%. Therefore, the feasibility of an embedded transaction
manager is strictly dependent on the system call overhead.

Finally, as lock contention becomes a factor in limiting performance, all models experience
some degradation, but the user-level system suffers the least due to its use of semantic informa-
tion for B-Tree locking. The embedded models may recoup most of this performance loss
through variable subpage and page sizes. In some cases, where the CPU is not a critical resource,
embedded systems with modified subpage locking not only recoup this loss, but provide better
throughput than the more traditional user-level architectures which perform page level locking on
the data file. Obviously, the user-level models could use subpage locking as well, with the expec-
tation that both models would perform comparably.

Except in the most CPU-bound environments, there is virtually no penalty incurred in embed-
ding transaction support in the operating system. It does, however, require careful and defensive
design to avoid index contention as well as operating system flexibility to vary the page and sub-
page sizes as needed.

There are several areas which warrant further investigation. These simulations did not take
into account the cost of cleaning (garbage collection) in the log-structured file system. This will
reduce the benefit of the log-structured file system and will be examined by means of implemen-
tation in the following chapter. However, the use of RAID devices [PATT88] will penalize the
small writes that occur in a read-optimized file system and make the log-structured file system
appear more desirable.

52

Chapter 5

Transaction Support in a
Log-Structured File System

hh

The simulation study described in Chapter 4 compared the performance of a transaction appli-
cation in both user-level and embedded implementations using both a log-structured and a read-
optimized file system. According to that simulation the log-structured file system offered better
performance than the read-optimized file system for a short-transaction workload, and the embed-
ded transaction manager performed as well as a user-level transaction manager except in highly
contentious environments. In this chapter, empirical results will be presented. These results will
account for overhead introduced by the cleaner and highlight some inaccuracies or exaggerations
in the simulation results.

The performance analysis here focuses on two points. First the transaction manager embed-
ded in LFS is compared to a more conventional transaction architecture (i.e. one implemented as
a user-level process). Then the user-level transaction system on LFS is compared to the same
user-level system on a more conventional file system.

5.1. A User-Level Transaction System

For the experiments described in this chapter, a traditional transaction system using write-
ahead logging (WAL) and two-phase locking [GRAY76] was implemented. The implementation
platform was a DECstation 5000 running the Sprite operating system [OUST88]. The Sprite
application programming interface is largely UNIX compatible. This user-level system is used as
a basis for comparison to LFS-embedded support. The next sections discuss the design tradeoffs
and module architecture of the user-level implementation.

5.1.1. Crash Recovery

The recovery protocol is responsible for providing transaction semantics. There are a wide
range of recovery protocols available [HAER83], but they can roughly be divided into two major
categories. The first category records all modifications to the database in a separate log file, and
uses the log to back out or reapply modifications if a transaction aborts or the system crashes.
The second category avoids the use of a log by carefully controlling when data are written to
disk. The former can be called the logging protocols and the latter the non-logging protocols.

Non-logging protocols retain dirty buffers in main memory or temporary files until transaction
commit, forcing these pages to disk at that time. During a long-running transaction, temporary
files can be used to hold dirty pages that may need to be evicted from memory before commit, but
in the Sprite environment, the only user-level mechanism to force pages from the buffer cache to
disk is the fsync(2) system call. Unfortunately, fsync(2) is an expensive system call in that it
forces all the pages of a file to disk, and the application must issue one of these system calls per
file.

53

In addition, fsync(2) provides no way to control the order in which dirty pages are written to
disk. Since non-logging protocols must sometimes order writes carefully [SULL92], they are
difficult to implement on UNIX systems. As a result, a logging protocol was chosen.

Logging protocols can be categorized based on how information is logged (physically or logi-
cally) and how much is logged (before-images, after-images or both). In physical logging,
images of complete physical units (pages or buffers) are recorded, while in logical logging a
description of the operation is recorded. Therefore, while entire pages are recorded in a physical
log, only the records being modified are recorded in a logical log. In fact, physical logging can
be thought of as a special case of logical logging, since the ‘‘records’’ that are logged in logical
logging might be physical pages. Since logical logging is both more space-efficient and more
general, it was selected.

In before-image logging, a copy of the original data is logged, while in after-image logging,
the new data is logged. If only before-images are logged, then there is sufficient information in
the log to allow transaction undo (go back to the state represented by the before-image). How-
ever, if the system crashes and a committed transaction’s changes have not reached the disk,
there is insufficient information to redo the transaction (reapply the updates). Therefore, logging
only before-images necessitates forcing dirty pages at commit time. As mentioned above, forcing
pages at commit is quite costly.

If only after-images are logged, then there is sufficient information in the log to allow transac-
tion redo (go forward to the state represented by the after-image), but there is not enough infor-
mation required to undo transactions that aborted after dirty pages were written to disk. There-
fore, logging only after-images necessitates holding all dirty buffers in main memory until com-
mit or writing them to a temporary file.

Since neither constraint (forcing pages on commit or buffering pages until commit) was feasi-
ble, both before- and after-images were logged. To ensure that log records are available for any
data pages that need to be redone or undone, write-ahead logging (WAL) is used. In WAL, the
log is written to disk before any of the data it describes are written to disk. This means that the
only file that ever needs to be forced to disk is the log. Since the log is append-only, modified
pages always appear at the end and may be written to disk efficiently in any file system that
favors sequential ordering (e.g., the fast file system, a log-structured file system, or an extent-
based system).

5.1.2. Concurrency Control

The concurrency control protocol is responsible for maintaining consistency in the presence of
concurrent accesses. There are several alternative solutions such as locking, optimistic con-
currency control [KUNG81], and timestamp ordering [BERN80]. Since optimistic methods and
timestamp ordering are generally more complex and restrict concurrency without eliminating
starvation or deadlocks, two-phase locking (2PL) was used. In strict 2PL all locking occurs in
two phases. In the first phase, locks are acquired for all accessed data. In the second phase, locks
may be released. Once phase two has begun, no further locks may be requested, so most systems
perform phase two at transaction commit. Strict 2PL is suboptimal for certain data structures,
(e.g. B-Trees) because it can limit concurrency, so a special locking protocol based on one
described in [LEHM81] is used.

5.1.3. Management of Shared Data

In order to provide concurrent data access and enforce write-ahead logging described in Sec-
tion 5.1.1 a shared-memory buffer manager is included. Not only does this provide the guaran-
tees required for WAL, but a user-level buffer manager is frequently faster than using the file sys-
tem buffer cache [STON81]. Reads or writes involving the file system buffer cache often require
copying data between user and kernel space while a user-level buffer manager can return pointers

54

to data pages directly. When multiple processes require the same page, all processes access the
same page in a shared-memory buffer pool while using the operating system buffer cache usually
requires each process to make a local copy.

5.1.4. Module Architecture

The preceding sections described a set of algorithms for managing the transaction log, locks,
and a cache of shared buffers. Figure 5-1 shows the main interfaces and architecture of the user-
level implementation. An application is constructed by linking in a library containing each of the
modules depicted in Figure 5-1 and explained in detail below.

5.1.4.1. The Log Manager

The Log Manager enforces write-ahead logging. Its primitive operations are log, log_commit,
log_read, log_roll, and log_unroll. The log call performs a buffered write of the specified log
record and returns a unique log sequence number (LSN). The LSN can be used to retrieve a
record from the log using the log_read call. The log interface knows very little about the internal
format of the log records it receives. Rather, all log records are referenced by a header structure,
a log record type, and a character buffer containing the data to be logged. The log record type is
used to call the appropriate redo and undo routines during abort and commit processing. While
the Log Manager is used to provide before- and after-image logging, it may also be used to
implement any of the logging algorithms described earlier.

The log_commit operation behaves exactly like the log operation but guarantees that the log
has been forced to disk-before returning. Group commit [DEWI84] is used to reduce the per-
transaction commit cost. The point at which commit processing actually occurs is determined by
three thresholds. The first is the group threshold and defines the minimum number of transac-
tions that must be active in the system before group commit happens. The second is the wait

hhh

log_commit

buf_unpin
buf_get

buf_unpin
buf_pin
buf_get

Txn Manager Record Manager

lock
logunlock_all

log_unroll

sleep_onsleep_on
wake wake

Lock
Manager

Log
Manager

Buffer
Manager

Process Manager

unlock

sleep_on
wake

Figure 5-1: Library Module Interfaces.
hhh

55

threshold, expressed as the percentage of active transactions waiting to be committed. The last is
the logdelay threshold that indicates how many dirty log pages should be allowed to accumulate
before a waiting transaction’s commit record is flushed.

Log_unroll reads log records from the log, following backward transaction pointers and cal-
ling the appropriate undo routines to implement transaction abort. In a similar manner, log_roll
reads log records sequentially forward, calling the appropriate redo routines to recover committed
transactions after a system crash. It is called from the recovery program.

5.1.4.2. The Buffer Manager

The Buffer Manager uses a pool of shared memory to provide a least-recently-used (LRU)
page cache. Transactions request pages from the buffer manager and keep them pinned to ensure
that they are not written to disk while they are in a logically inconsistent state. When page
replacement is necessary, the Buffer Manager finds an unpinned page and then checks with the
Log Manager to ensure that write-ahead logging is enforced.

5.1.4.3. The Lock Manager

The Lock Manager supports general purpose locking (single writer, multiple readers), which
is currently used to provide two-phase locking and high concurrency B-Tree locking. However,
the general purpose nature of the lock manager provides the ability to support a variety of locking
protocols. Currently, all locks are issued at the granularity of a page (the size of a buffer in the
buffer pool), which is identified by two 4-byte integers (a file id and page number). This provides
the necessary information to extend the Lock Manager to perform hierarchical locking
[GRAY76].

If an incoming lock request cannot be granted, the requesting process is queued for the lock
and descheduled. When a lock is released, the wait queue is traversed and any newly available
locks are granted. Locks are located via a hash table and are chained by both object and transac-
tion. The transaction chains facilitate rapid traversal of the lock table during transaction commit
and abort.

The primary interfaces to the lock manager are lock, unlock, and lock_unlock_all. Lock
obtains a new lock for a specific object. There are also two variants of the lock request,
lock_upgrade and lock_downgrade that allow the caller to atomically trade a lock of one type for
a lock of another. Unlock releases a specific mode of lock on a specific object. Lock_unlock_all
releases all the locks associated with a specific transaction.

If multiple transactions are active concurrently, deadlocks can occur and must be detected and
resolved. A user-level process, the deadlock detector, monitors the lock table checking for
deadlocks. When a deadlock is found, the deadlock detector randomly selects one of the
deadlocked transactions and aborts it.

5.1.4.4. The Process Manager

The Process Manager acts as a user-level scheduler to make processes wait on unavailable
locks and pending buffer cache I/O. For each process, a semaphore is maintained upon which
that process waits when it needs to be descheduled. When a process needs to be run, its sema-
phore is cleared, and the operating system reschedules it. No sophisticated scheduling algorithm
is applied; if the lock for which a process was waiting becomes available, the process is made
runnable.

5.1.4.5. The Transaction Manager

The Transaction Manager provides the standard interface of txn_begin, txn_commit, and
txn_abort. It keeps track of all active transactions, assigns unique transaction identifiers, and
directs the abort and commit processing. When a txn_begin is issued, the Transaction Manager

56

assigns the next available transaction identifier, allocates a per-process transaction structure in
shared memory, increments the count of active transactions, and returns the new transaction
identifier to the calling process. The in-memory transaction structure contains a pointer into the
lock table for locks held by this transaction, the last log sequence number, a transaction state
(idle, running, aborting, or committing), an error code, and a semaphore identifier.

At commit, the Transaction Manager calls log_commit to record the end of the transaction and
to flush the log. It then directs the Lock Manager to release all locks associated with the given
transaction. If a transaction aborts, the Transaction Manager calls log_unroll to read the
transaction’s log records and undo any modifications to the database. As in the commit case, it
then calls lock_unlock_all to release the transaction’s locks.

5.1.4.6. The Record Manager

The Record Manager supports the abstraction of reading and writing records to a database.
The database access routines dbopen(3) [BSD91] have been modified to call the log, lock, and
buffer managers. In order to provide functionality to perform undo and redo, the Record
Manager defines a collection of log record types and the associated undo and redo routines. The
Log Manager performs a table lookup on the record type to call the appropriate routines. For
example, the B-Tree access method requires two log record types: insert and delete. A replace
operation is implemented as a delete followed by an insert and is logged accordingly.

5.2. The Embedded Implementation

In the embedded model, transaction support is implemented within the file system. As sug-
gested in [MITC82], transaction-protection can be assigned to files selectively. A simple utility
provides the user with the ability to turn transaction protection on and off on a per-file basis. The
interface to transaction-protected files is identical to the interface to unprotected files (open,
close, read, and write). Four new system calls, txn_begin, txn_abort, txn_commit, and txn_detect,
complete the interface.

The system calls perform similar functionality to their user-level counterparts. When
txn_begin is called, a transaction identifier is assigned to the requesting process and a data struc-
ture that describes the state of the transaction is initialized. Txn_abort discards all modified
pages associated with the transaction, releases all locks held by the transaction, and marks the
transaction state as aborted. Txn_commit forces modified buffers for the transaction to disk,
releases the transaction’s locks and marks the transaction state as committed. The last system
call, txn_detect, performs deadlock detection, detecting cycles of processes waiting on each other
for locks and aborting one of the deadlocked transactions.

When transactions are embedded in the file system, the need for many of the modules
presented in the user-level implementation disappears. The operating system’s buffer cache
replaces the user-level buffer cache and the kernel scheduler obviates the need for any user-level
process management. No explicit logging is performed, but the ‘‘no-overwrite’’ policy observed
by LFS guarantees the existence of before-images, and requiring that all dirty transaction pages
be written to disk at commit (the FORCE commit policy of [HAER83]) guarantees the existence of
after-images in the file system. Therefore, the only functionality that needs to be added to the
kernel is lock and transaction management. Figures 5-2 and 5-3 show the two architectures. The
embedded system in 5-3 eliminates much of the redundancy present in Figure 5-2, producing a
simpler architecture. In this architecture, multiple data management facilities could use the same
kernel mechanisms rather than implementing their own. In terms of lines of code, the embedded
implementation added approximately 1200 lines of code to the operating system but removed
10,000 lines of code from the user-level data manager.

57

hhh

Operating System
System

File
Structured

Log

Cache

Buffer

System Call Interface

Application

Process Manager

Manager

Buffer

Manager

Log

Manager

Lock

Record ManagerTxn Manager

OS Scheduler

Figure 5-2: User-Level System Architectures. The user-level library duplicates much of the functionality
already present in the operating system, including logging, buffer management, and scheduling.
hhh

Record ManagerApplication

System Call Interface

Buffer

Cache

Log
Structured

File
System

Operating System

OS Scheduler

Lock Manager

Transaction Manager

Figure 5-3: Embedded Transaction System Architecture. The user-level buffer manager has been re-
placed by the operating system’s buffer cache. The log manager is replaced by LFS, and the user-level process module
has been replaced by the operating system’s scheduler. The lock management module and the transaction module have
been moved into the operating system.

hhh

58

5.2.1. Data Structures and Modifications

The operating system required two new data structures and modification to three existing data
structures in order to support embedded transactions. The new structures are the lock table and
the transaction state. The structures requiring modification are the inode, file system state, and
the process state. Each is described below.

5.2.1.1. The Lock Table

The lock table maintains a hash table of currently locked objects, identified by file and logical
block number. It is very similar to the user-level lock manager data structures described in Sec-
tion 5.1.4.3. The lock table is an operating system global data structure. Locks are chained by
both object and transaction, facilitating rapid traversal of the lock table during transaction commit
and abort. Figure 5-4 depicts the organization of the lock table.

hhh

txnLinks

TxnObjTxnObj

TxnObj

Transaction State 2Transaction State 1

waiters

locks

hashChain

objLinks

A

B C

W

W

locks

locks

Lock
Hash
Table

txnLinks

R R

R

Figure 5-4: The Operating System Lock Table. This picture shows two transactions labeled 1 and 2.
Transaction 1 holds 2 locks, a write lock on object A and a read lock on Object B. Transaction 2 holds 2 locks, a read
lock on object B and a write lock on C. It is also waiting for a read lock on Object A.
hhh

59

5.2.1.2. The Transaction State

The transaction state is a per-transaction structure, similar to the user-level one discussed in
Section 5.1.4.5. It contains the status of the transaction (idle, running, aborting, committing), a
pointer to the chain of locks the transaction holds, a transaction identifier, and links to other tran-
saction states. This structure is linked to the process state and is depicted in Figure 5-4.

5.2.1.3. The Inode

The inode structure is the in-memory and on-disk structure that describes the disk layout of
the file. It contains the physical representation of the index structure described in Section 4.1.
The inode and indirect block structures are depicted in Figure 5-5. In addition to the block infor-
mation, the inode contains file attribute information like size, time of last access, time of last
modification, ownership, permissions, etc. The in-memory representation of the inode addition-
ally includes lists of buffers and links to other inodes. The transaction implementation extends
the on-disk inode to include information that indicates if the file is transaction-protected. The in-
memory inode is extended to have a list of transaction-protected buffers in addition to its clean
and dirty buffer lists.

5.2.1.4. The File System State

The file system state is an in-memory data structure that describes the current state of the file
system. It is extended to contain a pointer to the transaction lock table so that all transaction locks
for a file system are accessible from a single point (as opposed to from each process with an

hhh

Data (direct) Blocks

Double Indirect Blocks

Single Indirect Blocks

Inode

Direct

Direct

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

Triple Indirect

Double Indirect

Single Indirect

..

.
..
.

Modify Time

Access Time

Size

Permissions

Owner

Figure 5-5: File Index Structure (inode).
hhh

60

active transaction).

5.2.1.5. The Process State

The process state maintains information about all currently active processes. It contains links
to run and sleep queues and to other active processes. In addition, it records the process permis-
sions, resource limits and usage, the process identifier, and a list of open files for the process. It is
extended to include a pointer to the transaction state.

5.2.2. Modifications to the Buffer Cache

The read and write calls behave nearly identically to those in the original operating system. A
read request is specified by a byte offset and length. This request is translated into one or more
page requests serviced through the operating system’s buffer cache. If the blocks belong to a
transaction-protected file, a read lock is requested for each page before the page request is issued
(either from the buffer cache or by reading it from disk). If the lock can be granted, the read con-
tinues normally. If it cannot be granted, the process is descheduled and left sleeping until the
lock is released. Writes are implemented similarly, except that a write lock is requested instead
of a read lock.

5.2.3. The Kernel Transaction Module

Where the user-level model provides a subroutine interface, the embedded model supports a
system call interface for transaction begin, commit, and abort processing. At txn_begin, a new
transaction structure is created if the process has never had a transaction, or it is initialized if the
process has an existing transaction structure. The next available transaction identifier maintained
by the operating system is assigned, and the transaction’s lock list is initialized.

When a process issues a txn_abort, the kernel locates the lock chain for the transaction
through the transaction state. It then traverses the lock chain, releasing locks and invalidating any
dirty buffers associated with those locks. Transactions may also be aborted by the deadlock
detector. The deadlock detector runs periodically, and when it finds a deadlock, one of the parti-
cipating transactions is aborted. The aborted transaction’s state is modified to reflect that it was
aborted by the deadlock detector. Since any transaction involved in a deadlock was, by
definition, waiting on a lock, it was either performing a read or write to the file system. The read
or write of the aborted transaction will return an error value and set the error number to a special
value, indicating an aborted transaction.

At txn_commit, the kernel traverses the transaction’s lock chain, and flushes dirty buffers,
referenced by the locks, to disk. Once all the dirty buffers have been flushed, the kernel releases
locks. In the case where only part of a page is modified, the entire page is still written to disk at
commit. This compares badly with logging schemes where only the updated bytes need be writ-
ten. While it might be expected that the increased amount of data flushed at commit results in a
heavy performance penalty, the simulation results in Chapter 4 indicate that this is not true.
Rather, the overall transaction time is so dominated by random reads to databases too large to
cache in main memory that the additional sequential bytes written during commit have no impact
on the resulting performance. Furthermore, forcing dirty blocks at commit obviates the need to
write these blocks later when their buffers need to be reclaimed.

5.2.4. Group Commit

Since the kernel implementation uses a FORCE policy, every transaction causes one or more
disk writes at commit. In the same way that database systems use group commit to amortize the
cost of flushing the log [DEWI84], LFS uses group commit to amortize the cost of flushing
blocks. Rather than flushing a transaction’s blocks when it issues a txn_commit, the process
sleeps until a timeout interval has elapsed or until sufficiently more transactions have committed

61

to justify the write. If the embedded implementation uses the same group commit policy as a
user-level implementation, it should produce the same performance improvement.

5.2.5. Implementation Restrictions

Section 5.2.2 makes no mention of protecting a file’s meta-data. Indirect blocks do not pose a
special problem in that they are updated only when data pages are written to disk, which happens
only at commit. Therefore, only the addresses of committed pages are reflected in indirect
blocks. On the other hand, inodes must be handled differently since inodes are updated fre-
quently, and a single inode describes an entire file, so locking the inode would, in effect, lock the
entire file. During a read, the access time is updated, while during a write both the access time
and modification time are updated. In addition, if a write extends a file, the size of the file may
change. There are two ways in which a file’s length may change: the file may add bytes to or
delete bytes from the end of an existing block or it may allocate or deallocate a block.

In the first case, the changes are localized to a single block and the write lock on that block is
sufficient to prevent any data corruption. However, if transactions are allowed to read the size
field from the inode, inconsistent results are possible:

Time Transaction 1 Transaction 2iiiiiiiiiiiiiii iiiiiiiiiiiii
1 lock last block
2 append bytes
3 update size
4 read size
5 abort

In this example, transaction 2 read the size of the file after transaction 1 had changed it. Then
transaction 1 aborted, making the value read by transaction 2 invalid. Even if the modification of
the size field is delayed, there is the potential for violation of serializability.

Time Transaction 1 Transaction 2iiiiiiiiiiiiiii iiiiiiiiiiiiii
1 update A
2 lock last block
3 append bytes
4 read size
5 update size
6 commit
7 use size and A

In this example, the serializability violation is manifested by transaction 2’s value of A being the
value after transaction 1 committed, but its value of size being the value before transaction 1
committed.

The case in which a block is allocated or deallocated is even more troublesome than the previ-
ous examples. Consider two transactions each trying to extend the file. If transaction 1 extends
the file and locks and writes block N, then transaction 2 can lock and write block N+1. Now,
what happens if transaction 1 aborts? The possibilities are:

g Leave unallocated blocks in the file (i.e. do not undo appends).

g Do not allow multiple appenders.

Since the benchmarks presented here use formatted files (B-Trees and fixed-length record
database files), leaving unallocated blocks (holes) in files is an adequate solution, and that is the
strategy implemented. When an extend operation occurs, the block is immediately added to the
file. If the transaction aborts, the allocated page becomes a hole in the file. A more versatile
solution is desired and systems like Quicksilver [HASK88] discuss various ways of handling

62

similar situations.

The next four sections address the other areas where the current implementation is deficient,
namely:

g All dirty buffers must be held in memory until commit ([HAER83] NO-STEAL semantics).

g Locking is strictly two-phase and is performed at the granularity of a page.

g Transactions may not span processes.

g Processes have only one transaction active at any point in time.

g It is not obvious how to do media recovery.

For the benchmark described in Section 5.3.1 (a modified TPC-B), the NO-STEAL policy is
sufficient since transactions are small and short-lived. With regard to page locking, the simula-
tion study in Chapter 4 indicated that locking at granularities smaller than a page is required only
for highly contentious environments.

5.2.5.1. Support for Long-Running Transactions

In the implementation described, buffers belonging to uncommitted transactions cannot be
evicted from the buffer cache. To support STEAL semantics (allowing uncommitted pages to be
evicted from the buffer pool), the algorithm that writes dirty buffers to disk must be modified to
call a special txn_flush routine that evicts these pages.

The protocol for writing these pages is similar to the shadow page protocol used in System R
[ASTR76]. A shadow file must be assigned to each transaction file with uncommitted pages that
are written to disk. The shadow file’s identifier is recorded in the inode of the transaction file and
the dirty buffers are written to the shadow file. In this way, both the old copies (before the tran-
saction) and the new copies (during the transaction) simultaneously exist. At txn_commit, when
buffers would normally be scheduled for writing, the transaction file’s meta-data is updated to
contain the block in the shadow file and the shadow file’s meta-data is updated to no longer con-
tain the block. Rather than having to flush all the dirty buffers at commit, only the remaining
dirty buffers and the two inodes need be flushed. If the system crashes, all shadow files can be
removed since it is known that their pages belong to uncommitted transactions. Shadow paging
is sometimes found objectionable because it destroys clustering within a file [CHAM81]. Since
LFS is writing the shadow pages to the same place as it would normally write the file pages, these
objections are not applicable.

The cleaner also needs to be modified to handle shadow files correctly. During typical opera-
tion, the cleaner reads a segment and uses the information in the segment summary to determine
if each block is still ‘‘live’’. For each block, the cleaner looks at its inode and finds the disk
address corresponding to the block in question. If the disk address is the same as that being
cleaned, then the block is active, otherwise it is ‘‘dead’’ and can be cleaned. However, in the
current cleaner, if the block formerly belonged to a shadow file and has since been committed and
moved to the transaction file, the check will fail and the cleaner will consider the block ‘‘dead’’.
Instead, shadow files must be recognizable to the cleaner, and the cleaner must compare block
addresses against both the shadow and the original file. The block is ‘‘dead’’ only if it belongs to
neither file.

5.2.5.2. Support for Subpage Locking

The challenge in subpage locking is to permit one transaction to modify and commit a sub-
page while another transaction is modifying another subpage on the same page. To accomplish
this, the functionality of shadow files must be extended to incorporate shadow pages. Unlike the

63

implementation described in the last section, shadow files must be kept per transaction.5 When a
page is read into the cache, it is assigned a version number, initialized to 0. When a transaction
modifies a subpage, a shadow copy of the page is created with the version number of the original
page, the subpage of the shadow page is modified, and the shadow page is entered into the
transaction’s shadow file. At commit, the shadow page is reconciled (made consistent) with the
original page, the original page’s version number is incremented, and the original page is flushed
to disk. Then the shadow pages and files are freed.

Page reconciliation is the action of making original pages consistent with committing shadow
pages. First, when a transaction creates a shadow page, it always copies the original page in the
buffer cache, not a shadow. At commit, the committing transaction compares its shadow page
version number to the version number of the current original. If no other transactions with
modifications on this page have committed, the version numbers will be the same, and the com-
mitting transaction’s shadow is flushed to disk, becomes the original, and has its version number
incremented, and the old original is freed. If the version numbers do not agree, then the subpages
modified by the committing transaction are copied to the current original, which is then flushed to
disk. The current original’s version number is incremented, and the shadow page is freed. This
is the algorithm simulated in Chapter 4.

5.2.5.3. Support for Nested Transactions and Transaction Sharing

The embedded model implemented and analyzed in this chapter was designed to avoid chang-
ing the existing kernel interface. If transaction identifiers are added to the read and write system
calls, then nested transactions, concurrent active transactions within the same process, and tran-
sactions spanning multiple processes (i.e. transaction sharing) could be implemented. Transac-
tion sharing is particularly useful if system utilities (such as compilers, assemblers, and source
code control systems) want to transaction-protect sets of operations.

Transaction sharing can be accomplished by adding two system calls, txn_transfer and
txn_continue. The txn_transfer call allows a process with an active transaction to pass control for
the transaction to another process. The kernel moves the transaction structure from the transfer-
ring process to the target process. The target process takes control of the transaction by issuing
the txn_continue call that checks for a transferred process and waits if one does not yet exist. If
no txn_continue is made for the transferred transaction, the transaction is either aborted or
returned to the transferring process. There are a myriad of possibilities for orchestrating the
transfer of transactions. Some examples are:

g The transferring process waits until the transaction has been accepted.

g The transferring process is signaled if the transaction is not accepted in a defined interval.

g The continuing process signals another process to request a transfer.

5.2.5.4. Support for Recovery from Media Failure

Since there is no separate log in this implementation, it is not obvious how to support
recovery from media failures. Using mirrored disks or RAID techniques [PATT88] to improve
reliability is one option, but this still does not address catastrophic failures (earthquakes, fires,
etc.). Distributed disk arrays offer a solution for this problem [SCHL90]. In a conventional log-
ging system, the protection against catastrophic failure involves sending log records to a remote
site. The distributed RAID technique creates a physical log record of the bit differences in a
modified block. As in a conventional system, these log records are dispatched to a remote site.
However, rather than merely storing the log at the remote site, the log record is used to compute
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 A performance optimization allows multiple transactions to share shadow files until updates by different transactions request
subpages that are part of the same page.

64

parity across a distributed array. In the case of a site failure, the remaining sites in the array have
enough information to reconstruct the database at the failed site.

5.3. Performance

The performance measurements reported here are from a DECstation 5000/2006 running the
Sprite operating system. The system has 32 megabytes of memory and a 300 megabyte RZ55
SCSI disk drive. The database resides on the 300 megabyte disk while binaries were served from
remote machines, accessed via the Sprite distributed file system. Reported times are the means of
five tests and have standard deviations within two percent of the mean.

The performance analysis is divided into three sections: transaction performance, non-
transaction performance, and sequential read performance. The transaction benchmark compares
the LFS embedded system with the conventional, user-level system on both the log-structured
and read-optimized file systems. The non-transaction benchmark is used to show that kernel tran-
saction support does not impact non-transaction applications. The sequential read test measures
the impact of LFS’ write-optimized policy on the sequential read performance.

5.3.1. Transaction Performance

To evaluate transaction performance, a modified version of the industry standard TPC-B tran-
saction processing benchmark [TPCB90] was used. The TPC-B benchmark simulates a with-
drawal performed by a hypothetical teller at a hypothetical bank. The database consists of rela-
tions (files) for accounts, branches, tellers, and history. For each transaction, the account, teller,
and branch balances must be updated to reflect the withdrawal, and a history record is written that
contains the account id, branch id, teller id, and the amount of the withdrawal. The account,
branch, and teller relations were all implemented as primary B-Tree indices (the data resides in
the B-Tree file) while the history relation was implemented as a fixed-length record file, provid-
ing access sequentially and by record number. The test database was configured for a 10 transac-
tion per second (TPS) system according to the TPC-B scaling rules:

1 branch / TPS
10 tellers / TPS
100,000 accounts / TPS

The implementation of the benchmark differs from the specification in three aspects. First,
the specification requires that the database keep redundant logs on different devices, but only a
single log was used. Second, all tests were run on a single, centralized system, so there was no
notion of remote accesses. Third, the tests were run single-user (multiprogramming level of one),
providing a worst-case analysis. The configuration measured is so disk-bound that increasing the
multi-programming level increases throughput only marginally. See [SELT92] for a detailed dis-
cussion of the performance impact in a multi-user environment.

In this test, three systems were evaluated: a user-level transaction manager on a traditional
operating system, a user-level transaction manager on a log-structured file system, and a transac-
tion manager embedded in a log-structured file system. The two interesting comparisons are
comparing the user-level transaction manager on a log-structured file system to a user-level tran-
saction manager on a traditional file system and comparing the user-level transaction manager on
LFS to the kernel level transaction manager in LFS.

Figure 5-6 shows the results of this test. As expected, the LFS system outperformed the con-
ventional file system, but by a disappointing 10%. The fact that there was a difference at all is
because LFS flushes dirty pages from the buffer pool more efficiently. When the user process
flushes a page, the page is cached in the kernel’s buffer pool, and eventually flushed to disk. In
the LFS case, this write occurs as part of a segment write and takes place at near-sequential
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

65

hhh

per second
Transactions

Optimized
Read

user-level

20

15

10

5

LFS LFS

kernel

Figure 5-6: Transaction Performance Summary. The leftmost two bars compare performance of a user-
level transaction manager on the original Sprite file system (read-optimized) and on LFS. The rightmost two bars com-
pare the performance of the user-level transaction manager on LFS to the LFS embedded transaction manager.
hhh

speed. In the read-optimized case, this write occurs within 30 seconds of when it entered the
buffer cache and is sorted in the disk queue with all other I/O to the same device (the random
reads). Thus, the overhead is greater than the overhead of the sequential write in LFS.

The 10% performance improvement discussed above (12.3 TPS v.s. 13.6 TPS) is disappoint-
ing when compared to the disk-bound simulation in Chapter 4, which predicted a 27% perfor-
mance improvement. The difference between the implementation and the simulation is explained
by two things. First, a log-structured file system requires the presence of a cleaner, a garbage col-
lection process that reclaims space in the file system resulting from deleted or overwritten blocks.
While the simulation did not take into account any cleaner overhead, in practice, the cleaner sub-
stantially disrupts processing.

When the cleaner runs, it locks out all accesses to the particular files being cleaned. In this
benchmark there are only four data files being accessed, so these files are also the ones being
cleaned. Therefore, when the cleaner locks these files, no other processing can occur. As a
result, there is a noticeable ‘‘hiccup’’ in performance. The benchmark prints out a message each
time it processes 100 transactions and the cleaner prints out a message when it begins and finishes
cleaning. The benchmark prints out its messages at a steady rate until the cleaner prints out its
begin message. There are no messages from the benchmark for the 30-60 seconds before the
cleaner prints out its finish message. Once the cleaner completes, the benchmark resumes at its
original rate. In a commercial environment, this disturbance in performance is obviously unac-
ceptable.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

6 DEC is a trademark of Digital Equipment Corporation.

66

The second reason for the difference between the simulation and the implementation is that
the simulation ignores much of the system overhead, focusing on the transaction processing
operations. For example, the simulation does not account for query processing overhead, context
switch times, system calls other than those required for locking, or process scheduling. As a
result, the total transaction time is much greater and the difference in performance is a smaller
percentage of the total transaction time.

The next comparison contrasts the performance of the user-level and kernel implementations
on LFS. Once again, the simulation results in Chapter 4, predicting no difference between user-
level and kernel models, differ from implementation results. A fundamental assumption made in
the simulation was that synchronization would be much faster in the user-level model than in the
kernel model. The argument was that user-level processes could synchronize in shared memory
without involving the kernel while synchronization in the kernel model required a system call.
Unfortunately, the test platform, the DECstation 5000, does not have a hardware test-and-set
instruction. As a result, the user-level model used system calls to obtain and release semaphores,
doubling the synchronization overhead of the kernel implementation that required a single system
call. This synchronization overhead exactly accounts for the difference between the user and ker-
nel implementations [SELT92]. Techniques described in [BERS92] describe how to implement
user synchronization quickly on a system without hardware test-and-set eliminating the perfor-
mance gap shown in Figure 5-6.

5.3.2. Non-Transaction Performance

This test was designed to run programs that do not use the embedded transaction manager to
determine if its existence in the kernel affects the performance of applications that do not use it.
This test used three applications. The first is the user-level transaction system since it does not
take advantage of any of the new kernel mechanisms. The second, Andrew [HOWA88], is an
engineering workstation file system test. It consists of copying a collection of small files, creat-
ing a directory structure, traversing the directory hierarchy, and performing a series of compiles.
The third, ‘‘Bigfile’’, was designed to measure throughput of large file transfers. It creates,
copies, and removes a set of 10-20 relatively large files (1 megabyte, 5 megabytes, and 10 mega-
bytes on a 300 megabyte file system).

The goal of this test was to demonstrate that adding transactions to the operating system did
not impact the performance of applications that did not take advantage of the embedded support.
All three benchmarks were run on the unmodified operating system and on the one with embed-
ded transaction support. Since the transaction code is isolated from the rest of the system, no
difference in performance was expected. The results are summarized in Figure 5-7 and show that
there is virtually no impact for any of the tests. In all tests, the difference between the two sys-
tems was within 1-2% of the total elapsed time and within the standard deviations of the test runs.
This is the expected result, as non-transaction applications pay only a few instructions in buffer
access determining that transaction locks are unnecessary.

5.3.3. Sequential Read Performance

The improved write performance of LFS is not without its costs. The log-structured file sys-
tem optimizes random writes at the expense of future sequential reads. To construct a worse case
test for LFS, begin with a sequentially written file, randomly update the entire file, and then read
the file sequentially. The SCAN test consists of the final sequential read phase and was designed
to quantify the penalty paid by sequentially reading a file after it has been randomly updated.
After creating a new account file, 100,000 TPC-B transactions are executed. The account file is
approximately 160 megabytes or 40,000 4-kilobyte pages, and the 100,000 transactions should
touch a large fraction of these pages, leaving the database randomly strewn about the disk. Then
the file is sequentially read in key order.

67

hhh

Transaction kernelNormal kernel

USER-TPBIGFILEANDREW

in seconds
Elapsed Time

50

100

150

200

Figure 5-7: Performance Impact of Kernel Transaction Support. None of the three benchmarks
used the kernel transaction support. As is shown by the similarity in elapsed times for all benchmarks, the embedded
support did not decrease the overall system performance.
hhh

Figure 5-8 shows the elapsed time for the SCAN test. As expected, the traditional file system
(read-optimized) significantly outperforms LFS. The conventional file system paid disk seek
penalties during transaction processing to favor sequential layout. As a result, it demonstrates
33% better performance than LFS during the sequential test.7

There are two ways to interpret this result. The first, naive approach says that you get a small
(10%) improvement in the transaction workload, but you pay a large (50%) penalty in the sequen-
tial workload. However, a more complete interpretation considers the two workloads (transac-
tional and sequential) together. The time gained by write-optimization during the transaction
workload can be directly traded off against the time lost during the sequential read. This tradeoff
can be quantified by calculating how many transactions must be executed between sequential
reads so that the total elapsed time for both file systems is the same.

In Figure 5-9, the total elapsed time for both the transaction run and the sequential run is
given as a function of the number of transactions executed before the sequential processing. This
is actually a pessimistic result for LFS. The degradation in sequential performance observed by
LFS is a function of the number of transactions that have been executed prior to the sequential
scan. For example, if only a single transaction is run before initiating the sequential scan, the
structure of the database will be largely unchanged and the sequential read time for LFS would be
nearly identical to that for the read-optimized system. However, the data in the graph shows the
total elapsed time for transactions and sequential scan assuming that the sequential scan always
takes as long as it did after 100,000 transactions. Even so, the point at which the two lines inter-
sect is approximately 134,300 transactions and represents how many transactions need to be exe-
cuted, per scan, to realize a benefit from the log-structured file system. From the perspective of
time, at 13.6 TPS, the system would have to run for approximately 2 hours 40 minutes to reach
the crossover point. That is, if the transaction workload runs at peak throughout for less than 2
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

7 This test does not correspond exactly to reading the raw file sequentially since the file is read in key order.

68

hhh

LFS

in seconds
Elapsed Time

1000

2000

3000

Read-Optimized

Read-Optimized

LFS

5 10 15 20

5000

10000

15000

20000

Transactions (in 10000’s)

Elapsed Time
(in seconds)

0
0

Figure 5-8: Sequential Performance after Random
I/O. This graph shows the elapsed time to scan the
entire account file after 100,000 TPC-B transactions
were executed. The file system that favors sequential
layout (read-optimized) was approximately 50% faster
than LFS. Note that since the metric was elapsed
time, higher numbers indicate worse performance.

Figure 5-9: Elapsed Time for Combined Bench-
mark. The results here show the total elapsed time
for both the transaction processing workload and the
sequential batch run. Applications that require
sequential processing after some period of transaction
processing will observe better overall performance
from the read-optimized system when the number of
transactions executed is less than 134,300 and from
LFS when more than that number are executed.

hhh

hours 40 minutes before a sequential pass is made, the read-optimized system is providing better
overall performance, but if the transaction workload runs for longer than that, LFS provides the
better overall performance. The ratio of transactions to sequential runs will be extremely work-
load dependent. In an automatic teller environment, short transactions are executed nearly 24
hours per day, while sequential scans occur very infrequently. However, in data-mining applica-
tions, the majority of the processing is more likely to be complex query processing with infre-
quent transactional updates.

This is not an entirely satisfying result. In practice, LFS needs to address the issue of sequen-
tial read access after random write access. Since LFS already has a mechanism for rearranging
the file system (the cleaner), this mechanism might well be used to coalesce files that become
fragmented. This goal, in part, drove the redesign of LFS discussed in Chapter 6.

69

5.4. Conclusions

In this chapter, it has been shown that a log-structured file system has the potential to improve
the performance of transaction processing applications. Currently, LFS provides a 10% perfor-
mance improvement over a conventional file system on a modified TPC-B workload. Although
one can construct workloads where an embedded model doesn’t perform as well as user-level
models, the embedded system does look viable, providing performance comparable to that of the
user-level system. Such an implementation enables applications to easily incorporate
transaction-protection with only minor modification. Products such as source code control sys-
tems, software development environments (e.g. combined assemblers, compilers, debuggers), and
system utilities (user registration, backups, ‘‘undelete’’, etc.), as well as database systems could
take advantage of this additional file system functionality. However, sequential read performance
after random write performance still poses a problem for LFS. The next chapter will address this
issue.

70

Chapter 6

Redesigning LFS

hh

The previous chapter highlighted some shortcomings in the original LFS design. Specifically,
the disruption in service due to cleaning and the poor sequential read performance are issues of
grave concern. Although this chapter will discuss many modifications to LFS, the modification
that addresses the problems raised in Chapter 5 is moving the cleaner into user-space and provid-
ing it with four system calls to communicate with the kernel. This accomplishes two goals.

First, it becomes easy to prevent the cleaner from locking out other applications while it is
running. Synchronization between the cleaner and the kernel occurs during a system call where
cleaned blocks are checked against recently modified blocks to make sure that newer blocks are
not overwritten. This alleviates the disruption in processing observed during the TPC-B bench-
mark.

Secondly, moving the cleaner into user-space makes it simple to experiment with different
cleaning policies and implement multiple cleaners with different policies. By allowing a variety
of cleaning policies, the sequential read performance penalty that occurs after random updates
can potentially be reduced or eliminated. This chapter presents a new design of LFS which
addresses these issues.

The rest of this chapter is organized as follows. Section 6.1 describes the detailed design of a
log-structured file system, contrasting its disk layout and recovery to that of the Fast File System.
Section 6.2 discusses the major issues that drove the redesign, contrasting the decisions made
with those found in the original LFS. Section 6.3 highlights some of the implementation issues
unique to the new implementation and integration with the fast file system, and Section 6.4 con-
cludes the chapter. Throughout the remainder of this chapter, the original LFS implementation is
referred to as Sprite-LFS while the new implementation is referred to as BSD-LFS, as it is part of
the 4.4BSD release from the Computer Systems Research Group at the University of California,
Berkeley.

6.1. A Detailed Description of LFS

There are two fundamental differences between an LFS and a traditional UNIX file system, as
represented by the Fast File System (FFS) [MCKU84]: the on-disk layout of the data structures
and the recovery model. While Section 4.1 presented a very high-level description of a log-
structured file system, this section describes the key structural elements of an LFS, contrasting
the data structures and recovery to FFS. The complete design and implementation of Sprite-LFS
can be found in [ROSE92]. Table 6-1 compares key differences between FFS and LFS. The rea-
sons for these differences will be described in detail in the following sections.

6.1.1. Disk Layout

In both FFS and LFS, a file’s physical disk layout is described by an index structure (inode)
that contains the disk addresses of some direct, indirect, doubly indirect, and triply indirect
blocks. Direct blocks contain data, while indirect blocks contain disk addresses of direct blocks,
doubly indirect blocks contain disk addresses of indirect blocks, and triply indirect blocks contain
disk addresses of doubly indirect blocks. For the remainder of this chapter, inodes and indirect

71

hhh

ii
Task FFS LFSii

Assign disk addresses block creation segment writeii
Allocate inodes fixed locations appended to logii
Maximum number of inodes statically determined grows dynamicallyii
Map inode numbers to disk addresses static address lookup in inode mapii
Maintain free space bit maps cleaner

segment usage tableii
Make file system state consistent fsck roll-forwardii
Verify directory structure fsck background checkeriicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 6-1 Comparison of File System Characteristics of FFS and LFS
hhh

blocks are referred to as meta-data.

The FFS is described by a superblock that contains file system parameters (block size, frag-
ment size, and file system size) and disk parameters (rotational delay, number of sectors per track,
and number of cylinders). The superblock is replicated throughout the file system to allow
recovery from crashes that corrupt the primary copy of the superblock. The disk is statically par-
titioned into cylinder groups, typically between 16 and 32 cylinders to a group. Each group con-
tains a fixed number of inodes (usually one inode for every two kilobytes in the group) and bit
maps to record inodes and data blocks available for allocation. The inodes in a cylinder group
reside at fixed disk addresses, so that disk addresses may be computed from inode numbers. New
blocks are allocated to optimize for sequential file access. Ideally, logically sequential blocks of
a file are allocated so that no seek is required between two consecutive accesses. Because data
blocks for a file are typically accessed together, the FFS policy routines try to place data blocks
for a file in the same cylinder group, preferably at rotationally optimal positions in the same
cylinder. Figure 6-1 depicts the physical layout of FFS.

LFS is a hybrid between a sequential database log and FFS. It performs all writes sequen-
tially, like a database log, but incorporates the FFS index structures into this log to support
efficient random retrieval. In an LFS, the disk is statically partitioned into fixed-size segments,
typically one-half megabyte. The logical ordering of these segments creates a single, continuous
log.

An LFS is described by a superblock similar to the one used by FFS. When writing, LFS
gathers many dirty pages and prepares to write them to disk sequentially in the next available
segment. At that time, LFS sorts the blocks by logical block number, assigns them disk
addresses, and updates the meta-data to reflect their addresses. The updated meta-data blocks are
gathered with the data blocks, and all are written to a segment. As a result, the inodes are no
longer in fixed locations, so, LFS requires an additional data structure, called the inode map
[ROSE90], that maps inode numbers to disk addresses.

Since LFS writes dirty data blocks into the next available segment, modified blocks are writ-
ten to the disk in different locations than the original blocks. This space reallocation is called a
‘‘no-overwrite’’ policy, and it necessitates a mechanism to reclaim space resulting from deleted
or overwritten blocks. The cleaner is a garbage collection process that reclaims space from the
file system by reading a segment, discarding ‘‘dead’’ blocks (blocks that belong to deleted files or
that have been superseded by newer blocks), and appending any ‘‘live’’ blocks. In order for the
cleaner to determine which blocks in a segment are ‘‘live,’’ it must be able to identify each block

72

hhh

LAST INODE POSITION

LAST BLOCK POSITION

FREE BLOCK POSITION

Cylinder Groups

Inode Block 1

...

Inode Block N
Data Block 1

...

...

...
...

...
...

...

Cylinder Group
Block

MOD TIME

CYLINDER NUM

NUM CYLINDERS

NUM INODE BLOCKS

NUM DATA BLOCKS

SUMMARY INFO

LAST BLOCK POS

NUM FRAGS AVAIL

BLOCK TOTALS

INODE MAP

MAGIC NUMBER

BLOCK MAP

Figure 6-1: Physical Disk Layout of the Fast File System. The disk is statically partitioned into
cylinder groups, each of which is described by a cylinder group block, analogous to a file system superblock. Each
cylinder group contains a copy of the superblock and allocation information for the inodes and blocks within that
group.
hhh

in a segment. This determination is done by including a summary block in each segment that
identifies the inode and logical block number of every block in the segment. In addition, the ker-
nel maintains a segment usage table that shows the number of ‘‘live’’ bytes and the last modified
time of each segment. The cleaner uses this table to determine which segments to clean
[ROSE90]. Figure 6-2 shows the physical layout of LFS.

While FFS flushes individual blocks and files on demand, LFS must gather data into seg-
ments. Usually, there will not be enough dirty blocks to fill a complete segment [BAKER92], in
which case LFS writes partial segments. A physical segment contains one or more partial seg-
ments. For the remainder of this thesis, segment will be used to refer to the physical partitioning
of the disk, and partial segment will be used to refer to a unit of writing. Small partial segments
most commonly result from NFS operations or fsync(2) requests, while writes resulting from the
sync(2) system call or system memory shortages typically form larger partials, ideally taking up
an entire segment. During a sync, the inode map and segment usage table are also written to disk,
creating a checkpoint that provides a stable point from which the file system can be recovered in
case of system failure.

6.1.2. File System Recovery

There are two aspects to file system recovery: bringing the file system to a physically con-
sistent state and verifying the logical structure of the file system. When FFS or LFS add a block
to a file, there are several different pieces of information that may be modified: the block itself,
the inode, the free block map, indirect blocks, and the location of the last allocation. If the

73

hhh

LOGICAL BLOCK N

LOGICAL BLOCK 1

(d)

(c)

(b)

(a)

...

INODE NUMBER

VERSION NUMBER

NUM BLOCKS

...

FINFO N

...
FINFO 1

CREATE TIME

FLAGS

NUM INODESNUM FINFOS

DATA 1 INODES DATA N...
SUMMARY

SEGMENT

SEGMENT N...SEGMENT 1

SUMMARY CHECKSUM

DATA CHECKSUM

NEXT SEGMENT POINTER

INODE DISK ADDRESS N

INODE DISK ADDRESS 1

SEGMENT I...SEGMENT 2

SUPERBLOCKS

...

Figure 6-2: Physical Disk Layout of a Log-Structured File System. A file system is composed of
segments as shown in Figure (a). Each segment consists of a summary block followed by data blocks and inode blocks
(b). The segment summary contains checksums to validate both the segment summary and the data blocks, a times-
tamp, a pointer to the next segment, and information that describes each file and inode that appears in the segment (c).
Files are described by FINFO structures that identify the inode number and version of the file (as well as each block of
that file) located in the segment (d).
hhh

system crashes during the addition, the file system is likely be left in a physically inconsistent
state. There is currently no way for FFS to localize inconsistencies. As a result, FFS must
rebuild the entire file system state, including cylinder group bit maps and meta-data. At the same
time, FFS verifies the directory structure and all block pointers within the file system. Tradition-
ally, fsck(8) is the agent that performs both of these functions.

In contrast to FFS, LFS writes only to the end of the log and is able to locate potential incon-
sistencies and recover to a consistent physical state quickly. This part of recovery in LFS is more
similar to standard database recovery [HAER83] than to fsck. It consists of two parts: initializing
all the file system structures from the most recent checkpoint and then ‘‘rolling forward’’ to
incorporate any modifications that occurred subsequently. The roll forward phase consists of
reading each segment after the checkpoint in time order and updating the file system state to
reflect the contents of the segment. The next segment pointers in the segment summary facilitate
reading from the last checkpoint to the end of the log, the checksums are used to identify valid
segments, and the timestamps are used to distinguish the partial segments written after the check-
point and those written before which have been reclaimed. The file and block numbers in the
FINFO structures are used to update the inode map, segment usage table, and inodes, making the
blocks in the partial segment extant. As is the case for database recovery, the recovery time is
proportional to the interval between file system checkpoints.

74

hhh

ii
Phase I Traverse inodes

Validate all block pointers.
Record inode state (allocated or unallocated) and file type for each inode.
Record inode numbers and block addresses of all directories.ii

Phase II Sort directories by disk address order.
Traverse directories in disk address order.
Validate ‘‘.’’.
Record ‘‘..’’.
Validate directories’ contents, type, and link counts.
Recursively verify ‘‘..’’.ii

Phase III Attach any unresolved ‘‘..’’ trees to lost+found.
Mark all inodes in those trees as ‘‘found’’.ii

Phase IV Put any inodes that are not ‘‘found’’ in lost+found.
Verify link counts for every file.ii

Phase V Update bit maps in cylinder groups.iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6-2: Five Phases of fsck.
hhh

While standard LFS recovery quickly brings the file system to a physically consistent state, it
does not provide the same guarantees made by fsck. When fsck completes, not only is the file
system in a consistent state, but the directory structure has been verified as well. The five passes
of fsck are summarized in Table 6-2. For LFS to provide the same level of robustness as FFS,
LFS must periodically make many of the same checks. While LFS has no bit maps to rebuild, the
verification of block pointers and directory structure and contents is crucial for the system to
recover from media failure. This recovery will be discussed in more detail in Section 6.2.4.

6.2. Design Issues

The Sprite implementation of LFS succeeded in its goal of dramatically improving write per-
formance, however it had several deficiencies that made it unsuitable for a production environ-
ment. The major concerns with Sprite-LFS that this redesign addresses are as follows:

1. Sprite-LFS consumes excessive amounts of memory.

2. Write requests are successful even if there is insufficient disk space.

3. Recovery does nothing to verify the consistency of the file system directory structure.

4. Segment validation is hardware dependent.

5. All file systems use a single cleaner and a single cleaning policy.

6. There are no performance numbers that measure the cleaner overhead.

The description of LFS in Section 6.1 focused on the overall strategy of log-structured file
systems. The following sections discuss how BSD-LFS addresses the first five problems listed
above. Section 6.3 addresses the implementation issues specific to integration in a BSD frame-
work. The last issue is addressed in Chapter 7.

In most ways, the logical framework of Sprite-LFS is unchanged. The segmented log struc-
ture and the major support structures associated with the log, namely the inode map, segment
usage table, and cleaner remain. However, to address the problems described above and to
integrate LFS into a BSD system, nearly all of the details of implementation, including a few

75

fundamental design decisions have been altered. Table 6-3 summarizes the design differences
between Sprite-LFS and BSD-LFS indicating the reason for the change. The following sections
describe the major design issues in more detail.

hh

iii
Design Point Sprite-LFS BSD-LFS Reasonii

Memory Consumption Reserves large quantity
of physical memory

Makes no memory
reservations

Tying down multiple mega-
bytes of physical memory
was unacceptable in a pro-
duction environment.iii

Block Accounting Block accounting is per-
formed when blocks are
written to disk.

Block accounting is per-
formed when blocks are
written into the cache.

The file system cannot accept
writes into the cache if it does
not have the physical disk
space to which to write the
data.iii

Segment Validation Presence of summary
block validates segment.

Checksum (of data) in
summary block validates
segment.

The file system cannot as-
sume that disks write data in
the order presented.iii

File System Verification Assumes file system is
consistent after LFS
roll-forward.

Verifies directory struc-
ture in the background
after roll-forward.

Media corruption or faulty
hardware can result in corr-
uption of the disk in places
other than the location of the
last write.iii

The Cleaner Runs as kernel process. Runs as a user process. Placing the cleaner in user-
space allows for multiple
cleaners and experimentation
with different cleaning poli-
cies, and prevents the cleaner
from locking out writers.iii

Inode Map and Segment
Usage Table

Maintained as special
kernel data structures.

Maintained in regular
file (ifile).

Making these structures part
of a regular file allows the
cleaner to easily read them
and reduces the amount of
special purpose code in the
kernel.iii

Directory Operations Maintains on-disk log. Provides atomic updates
across segments.

Since the file system is a log,
it seemed wrong to have an
additional log inside it.iii

File Access Times Stored in inode map. Stored in inode. The access time is 8 bytes
and would have increased the
size of the inode map by
67%. Since the inode map
should be cached to achieve
best performance, this
seemed like a bad tradeoff.iii

Inode Allocation Inodes are allocated
sparsely with clustering
by directory.

Free inodes are chained
in a free list.

The sparse nature of the
inode map makes it larger
than desirable and if direc-
tories get large, many entries
must be traversed to find a
free inode.iii

Superblock Single superblock. Superblock replicated
throughout the file sys-
tem.

If the superblock is corrupt-
ed, it is nearly impossible to
reconstruct the file system.iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6-3: Design Changes Between Sprite-LFS and BSD-LFS.
hhh

76

6.2.1. Memory Consumption

Sprite-LFS assumes that the system has a large physical memory and reserves substantial por-
tions of it. The following storage is reserved:

Two 64-kilobyte or 128-kilobyte staging buffers
Since not all devices support scatter/gather I/O, data is written in buffers large enough to
allow the maximum transfer size supported by the disk controller, typically 64 kilobytes or
128 kilobytes. These buffers are allocated per file system from kernel memory.

One cleaning segment
One segment’s worth of buffer cache blocks per file system are reserved for cleaning.

Two read-only segments
Two segments’ worth of buffer cache blocks per file system are marked read-only so that
they may be reclaimed by Sprite-LFS without requiring an I/O.

Buffers reserved for the cleaner
Each file system also reserves some buffers for the cleaner. The number of buffers is
specified in the superblock and is set during file system creation. It specifies the minimum
number of unmodified buffers that must be present in the cache at any point in time. On the
Sprite cluster, the total amount of buffer space reserved for the cleaner on 10 commonly
used file systems was 37 megabytes.

One segment
This segment (typically one-half megabyte) is allocated from kernel memory for use by the
cleaner. Since this one segment is allocated per system, only one file system per system
may be cleaned at a time.

The reserved memory described above makes Sprite-LFS a very ‘‘bad neighbor’’ as kernel
subsystems compete for memory. While memory continues to become cheaper, a typical laptop
system has only three to eight megabytes of memory, and might very reasonably expect to have
three or more file systems.

BSD-LFS greatly reduces the memory consumption of LFS. First, BSD-LFS does not use
separate buffers for writing large transfers to disk, instead it uses the regular buffer cache blocks.
For disk controllers that do not coalesce contiguous operations, 64-kilobyte staging buffers
(briefly allocated from the kernel memory pool) are used for the transfers. The size of the staging
buffer was set to the minimum of the maximum transfer sizes for currently supported disks.
However, simulation results in [CAR92] show that for current disks, the write size that minimizes
the read response time is typically about two tracks; two tracks is close to 64 kilobytes for the
disks on our systems.

Secondly, moving the cleaner into user-space avoids the need to reserve a large amount of
main memory in the kernel. Instead, the user-level process competes for virtual memory space
with the other processes.

Third, rather than reserving two read-only segments per file system, BSD-LFS keeps track of
how many dirty buffers it has accumulated and begins a segment write before memory becomes a
critical resource. When the number of buffers dirtied by LFS exceeds the start write threshold, a
segment write, which should generate more clean buffers, is initiated. In the meantime, if the
number of dirty buffers exceeds the stop access threshold, any LFS read and write requests for
buffers not currently in the cache will wait. The difference between the total number of buffers
headers in the system and the stop access threshold is analagous to Sprite-LFS’s read-only
buffers. However, in BSD-LFS, while these buffers are not available to LFS, they are available
to the virtual memory system and other file systems (such as the memory-based file system
[MCKU90]).

77

6.2.2. Block Accounting

Sprite-LFS maintains a count of the number of disk blocks available for writing (i.e. the real
number of disk blocks that do not contain useful data). This count is decremented when blocks
are actually written to disk. This approach implies that blocks can be successfully written to the
cache but can fail to be written to disk if the disk becomes full before the blocks are actually writ-
ten. Even if the disk is not full, all available blocks may reside in uncleaned segments and new
data cannot be written. To prevent the system from deadlocking or losing data in these cases,
BSD-LFS uses two forms of accounting.

The first form of block accounting is similar to that maintained by Sprite-LFS. BSD-LFS
maintains a count of the number of disk blocks that do not contain useful data. It is decremented
whenever a new block is created in the cache. Since many files die in the cache [BAKER91], this
number is incremented whenever blocks are deleted, even if they were never written to disk.

The second form of accounting keeps track of how many blocks are available in clean seg-
ments and have not been allocated for dirty buffers present in the cache. This space is allocated
as soon as a dirty block enters the cache, but is not reclaimed until segments are cleaned. This
count is used to initiate cleaning. If an application attempts to write data and there is no space
currently available for writing, the write will sleep until space is available. These two forms of
accounting guarantee that if the operating system accepts a write request from the user, barring a
crash, the data will be written.

Accounting for the actual disk space available is difficult because inodes are not written into
dirty buffers and segment summaries aren’t created until the segment is written. Every time a
clean inode is updated in the inode cache, a count of inodes to be written is incremented. When
blocks are dirtied, the number of available disk blocks is decremented. To decide if there is
enough disk space to allow another write into the cache, the number of segment summaries
necessary to write what is in the cache is computed, added to the number of inode blocks neces-
sary to write the dirty inodes and compared to the amount of space available on the disk. To
create more available disk space, either the cleaner must run or dirty blocks in the cache must be
deleted.

6.2.3. Segment Structure and Validation

Sprite-LFS places segment summary blocks at the end of partial segments trusting that if the
write containing the segment summary is issued after all other writes in a partial segment, the
presence of the segment summary validates the partial segment. This approach requires two
assumptions: the disk controller will not reorder the write requests and the disk writes the con-
tents of a buffer in the order presented. Since controllers often reorder writes and reduce rota-
tional latency by beginning track writes anywhere on the track, BSD-LFS can not make these
assumptions. Therefore, segments are built from front to back, placing the segment summary at
the beginning of each segment as shown in Figure 6-3. A checksum is computed across four
bytes of each block in the partial segment, stored in the segment summary, and used to verify that
a partial segment is valid. Figure 6-4 shows how this is done. This approach avoids write-
ordering constraints and allows us to write multiple partial segments without an intervening seek
or rotation. Currently, there is no data to indicate that this checksum is insufficient, however,
methods exist for guaranteeing that any missing sector can be detected during roll-forward.

The most commonly used technique for verifying multi-sector disk writes uses patch tables.
The patch table is a collection of bits that is stored for each multi-sector unit, or segment, in the
case of LFS. Each time a segment is rewritten, the first bit in each sector is overwritten with
either a 0 or 1 (alternating on each segment write). The real values for those bits are then stored
both in the segment usage table and the segment summary block. During normal operation, when
a block is read from disk, the real values for the first bit in each sector are read from the segment
summary table and placed into the data blocks. During recovery, a segment is valid only if the

78

hhh

4321

next segment pointer

BSD Segment Structure

4 32 1

next summary block pointers

next segment pointer

Sprite Segment Structure

Segment Summary Blocks

Figure 6-3: Partial Segment Structure Comparison Between Sprite-LFS and BSD-LFS. The
numbers in each partial segment show the order in which the partial segments are created. Sprite-LFS builds segments
back to front, chaining segment summaries. BSD-LFS builds segments front to back. After reading a segment sum-
mary block, the location of the next segment summary block can be easily computed.
hh

hhh

. . .

Checksum computed across four bytes from each block.

Figure 6-4: BSD-LFS Checksum Computation. A checksum is calculated on four bytes from every block
in the segment to verify that the segment described by a summary block has been successfully written to disk. In order
for the checksum to fail, the system must crash during a write, and the segment summary must have been successfully
written, but for each unwritten data block, the old block on disk at the new block’s location must have contained four
bytes that checksum to the same value.
hh

first bit on every sector is identical. Therefore, a segment’s validity can be guaranteed at the
expense of 2 bits per sector, or .04% overheard.

6.2.4. File System Verification

Fast recovery from system failure is desirable, but reliable recovery from media failure is
necessary. Consequently, the BSD-LFS system provides two recovery strategies. The first
quickly rolls forward from the last checkpoint, examining data written between the last check-
point and the failure. The second does a complete consistency check of the file system to recover
lost or corrupted data, due to the corruption of bits on the disk or errant software writing bad data
to the disk. This check is similar to the functionality of fsck, the file system checker and recovery
agent for FFS, and like fsck, it takes a long time to run.

79

In order for LFS to be viable in a production environment, it must make reliability guarantees
comparable to FFS, which is an extremely robust file system. In the standard 4BSD implementa-
tion, it is possible to clear the root inode and recover the file system automatically with fsck(8).
In terms of recovery, the advantage of LFS is that writes are localized, so the file system may be
recovered to a physically consistent state very quickly.

The BSD-LFS implementation permits LFS to recover quickly and applications to start run-
ning as soon as the roll-forward has been completed, while basic sanity checking of the file sys-
tem is done in the background. It may be more desirable to run the background file system
checker periodically during normal operation, rather than waiting for a system crash or reboot.
However, if the system crashed due a file system corruption, the verification will undoubtedly
have to be run before any other processing can occur. Of course, the root file system must always
be completely checked after every reboot, in case a system failure corrupted it.

There is the obvious problem of what to do if the sanity check fails. It is expected that the file
system will forcibly be made read-only, fixed, and then write enabled. These events should have
a limited effect on users as it is unlikely to ever occur and is even more unlikely to discover an
error in a file currently being written by a user, since the opening of that file would most likely
have already caused a process or system failure.

6.2.5. The Cleaner

In Sprite-LFS the cleaner is part of the kernel and implements a single cleaning policy. There
are three problems with this, in addition to the memory issues discussed in Section 6.2.1. First,
there is no reason to believe that a single cleaning algorithm will work well on all workloads. In
fact, the transaction processing benchmark in Chapter 6 suggests that coalescing randomly
updated files would improve sequential read performance. Second, placing the cleaner in kernel-
space makes it difficult to experiment with alternate cleaning policies. Third, implementing the
cleaner in the kernel forces the kernel to make policy decisions (the cleaning algorithm) rather
than simply providing a mechanism. To handle theses problems, the BSD-LFS cleaner is imple-
mented as a user process.

The BSD-LFS cleaner communicates with the kernel via system calls and the read-only ifile.
Those functions that are already handled in the kernel (e.g. translating logical block numbers to
disk addresses via bmap) are made accessible to the cleaner via system calls. If necessary func-
tionality did not already exist in the kernel (e.g. reading and parsing segment summary blocks), it
was relegated to user space.

There may be multiple cleaners, each implementing a different cleaning policy, running in
parallel on a single file system. Regardless of the particular policy, the basic cleaning algorithm
works as follows:

1. Choose one or more target segments and read them.
2. Decide which blocks are still ‘‘live’’.
3. Write ‘‘live’’ blocks back to the file system.
4. Mark the segment(s) clean.

The ifile and four new system calls, summarized in Table 6-4, provide the cleaner with enough
information to implement this algorithm. The cleaner reads a regular file maintained by the ker-
nel, called the ifile, to find out the status of segments in the file system. Using the information in
the ifile, it selects segments to clean. Once a segment is selected, the cleaner reads the segment
from the raw partition and uses the first segment summary to find out what blocks reside in that
partial segment. It constructs an array of BLOCK_INFO structures (shown in Figure 6-5) and
continues scanning partial segments, adding their blocks to the array. When all the segment sum-
mary block have been read, and all the BLOCK_INFOs constructed, the cleaner calls lfs_bmapv
which returns the current physical disk address for each BLOCK_INFO. If the disk address is the
same as the location of the block in the segment being examined by the cleaner, the block is

80

hhh

ii
lfs_bmapv Take an array of inode number/logical block number pairs and re-

turn the disk address for each block. Used to determine if blocks in
a segment are ‘‘live’’.ii

lfs_markv Take an array of inode number/logical block number pairs and ap-
pend them into the log. This operation is a special purpose write
call that rewrites the blocks and inodes without updating the inode’s
access or modification times. The user process has already read the
data from disk, so the kernel can copy the blocks from the user in-
stead of re-reading them from disk.ii

lfs_segwait Causes the cleaner to sleep until a given timeout has elapsed or until
another segment is written. This operation is used to let the cleaner
pause until there may be more segments available for cleaning.ii

lfs_segclean Mark a segment clean. After the cleaner has rewritten all the
‘‘live’’ blocks from a segment, the segment is marked clean for
reuse.iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6-4: The System Call Interface for the Cleaner.
hhh

‘‘live’’. Live blocks must to be written back into the file system without changing their access or
modify times, so the cleaner issues an lfs_markv call, which is a special write causing these
blocks to be appended into the log without updating their inode times.

Before rewriting the blocks, the kernel verifies that none of the blocks have ‘‘died’’ since the
cleaner called lfs_bmapv. Once lfs_markv begins, only cleaned blocks are written into the log,
until lfs_markv completes. Therefore, if cleaned blocks die after lfs_markv verifies that they are
alive, partial segments written after the lfs_markv partial segments will reflect the fact that the
blocks have died.

When lfs_markv returns, the cleaner calls lfs_segclean to mark the segment clean. Finally,
when the cleaner has cleaned enough segments, it calls lfs_segwait, sleeping until the specified

hhh

INODE NUMBER

LOGICAL BLOCK NUMBER

CURRENT DISK ADDRESS

SEGMENT CREATION TIME

BUFFER POINTER

Figure 6-5: BLOCK_INFO Structure used by the Cleaner. The cleaner calculates the current disk ad-
dress for each block from the disk address of the segment. The kernel specifies which have been superceded by more
recent versions.
hhh

81

timeout elapses or a new segment is written into an LFS.

Since the cleaner is responsible for producing free space, the blocks it writes must get prefer-
ence over other dirty blocks to be written to avoid running out of free space. However, it is possi-
ble for the cleaner to consume more disk space than it frees during cleaning. Although this can-
not happen over the long-term, during the short-term it can. Consider the simple three segment
file system shown below in Figure 6-6. Segment 1 contains one free block (the first block marked
‘‘Deleted Data’’). However, cleaning segment 1 requires rewriting the indirect block for file 1.
Therefore, after segment 1 is cleaned, segment 3 will be full, segment 1 will be clean, and one
block in segment 2 will be ‘‘dead’’ (Figure 6-7). While the total number of live blocks on the
system has not increased, it has not decreased either, and the act of cleaning the segment has not
created any additional space. It is possible to construct a case where cleaning a segment actually
decreases the amount of available space (consider a segment that contains N blocks from N dif-
ferent files, each of which is accessed via an indirect block and the indirect block resides in a dif-
ferent segment). Therefore two segments are reserved for the cleaner. One guarantees that the
cleaner can run, and the second ensures that small overflows can be accommodated until more
space is reclaimed.

The cleaning simulation results in [ROSE91] show that selection of segments to clean is an
important design parameter in minimizing cleaning overhead, and that the cost-benefit policy
defined there does extremely well for the simulated workloads. Briefly, each segment is assigned
a cleaning cost and benefit. The cost to clean a segment is equal to:

1 + utilization

where utilization is the fraction of ‘‘live’’ data in the segment. The benefit of cleaning a segment
is equal to:

hhh

Clean Segment

Deleted Data

...

Inode Block

Indirect Block
Live Data Inode Block

1

2

3

Data Blocks (file 1)

(file 1)

(file 1)Data Blocks (file 1)

3

2

1

Inode BlockLive Data

Indirect Block
Inode Block

...

Deleted Data

Clean Segment

Figure 6-6: Segment Layout for Bad Cleaner
Behavior. Segments 1 and 2 contain data. The
cleaner will attempt to free up the one disk block of
deleted data from segment 1. However, to rewrite
the data in segment 1, it will dirty the meta-data
block currently in segment 2. As a result, the cleaner
will not generate any additional clean blocks.

Figure 6-7: Segment Layout After Cleaning. The
cleaner cleaned segment 1. In doing so, it rewrote
the indirect block that previously resided in segment
2. Now that block has been deleted and the cleaner
will be able to reclaim a disk block by cleaning seg-
ment 2.

hhh

82

free bytes generated * age of segment

where free bytes generated is the fraction of ‘‘dead’’ blocks in the segment (1 − utilization) and
age of segment is the time since the most recent modification to a block in that segment. The
age is incorporated into the benefit computation to avoid cleaning segments that are rapidly
becoming empty. For example, consider that a segment contains a single, large file. If the file is
being deleted, at some point before the entire file is deleted, the number of ‘‘live’’ blocks in that
segment will fall below the minimum of all other segments. However, since the remaining
blocks will soon be deleted, it is beneficial to wait for some period of time until the rest are
deleted. Factoring age into the benefit computation serves this purpose. When the file system
needs to reclaim space, the cleaner selects the segment with the largest benefit to cost ratio.
BSD-LFS uses this as the default cleaning algorithm.

Currently the cost-benefit cleaner is the only cleaner running, but two additional policies are
under consideration. The first would run during idle periods and select segments to clean based
on coalescing and clustering files. The second would flush blocks in the cache to disk during nor-
mal processing even if they were not dirty, if it would improve the locality for a given file. These
policies will be analyzed in future work.

6.3. Implementing LFS in a BSD System

While the last section focused on those design issues that addressed problems in the design of
Sprite-LFS, this section presents additional design issues either inherent to LFS or resulting from
the integration of an LFS into 4BSD.

6.3.1. Integration with FFS

The on-disk data structures used by BSD-LFS are nearly identical to the ones used by FFS.
This decision was made for two reasons. The first one was that many applications have been
written over the years to interpret and analyze raw FFS structures. It was desirable that these
tools could continue to function as before, with minor modifications to read the structures from a
new location. The second and more important reason was that it was easy and increased the

hhh

ii
Operation Descriptionii
mount Mount a raw disk partition as a file system of the appropriate type.ii
start Make a file system operational.ii
unmount Remove a file system from the file system tree.ii
root Return the root of a given file system.ii
quotactl Perform quota operations.ii
statfs Return file system statistics.ii
sync Force all dirty in-memory buffers associated with this file system to

disk.ii
fhtovp Convert a file handle to a vnode.ii
vptofh Convert a vnode to a file handle.ii
init Initialize inode hash table for a file system.iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6-5: Description of Existing BSD vfs operations.
hhh

83

hhh

ii
Operation Descriptionii
lookup Find the vnode for the specified named file.ii
create Create a new file.ii
mknod Make a new file node in the specified file system.ii
open Open a file.ii
close Close a file, freeing any of its allocated resources.ii
access Check the permissions of the specified file.ii
getattr Return a file’s attributes.ii
setattr Set a file’s attributes.ii
read Perform a read of the specified file.ii
write Write to the specified file.ii
ioctl Change the I/O characteristics of the specified file.ii
select Check if the file is ready for reading or writing or have an excep-

tional condition pending.ii
mmap Map the specified file into the virtual address space of the current

process.ii
fsync Force a file’s blocks to disk.ii
seek Move the file pointer for the specified file to the specified byte offset

in the file.ii
remove Delete one reference to a file (if it is the last reference, the file is

deleted).ii
link Create a link from a specified file to a new name.ii
rename Change the name of a file.ii
mkdir Create a directory.ii
rmdir Remove a directory.ii
symlink Create a symbolic link between the specified file and the specified

name.ii
readdir Return the next directory entry in the specified directory.ii
readlink Return the destination of a symbolic link.ii
abortop Abort a create or delete operation in progress.ii
inactive Remove the last reference to a vnode.ii
reclaim Free an inode in the inode hash table so it may be re-used.ii
lock Lock a vnode.ii
unlock Unlock a vnode.ii
strategy Schedule I/O operations for the specified file.ii
print Print out the contents of an inode.ii
islocked Return true if the specified vnode is locked.ii
advlock Lock/unlock advisory record locks.iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6-6: Description of existing BSD vnode operations.
hhh

maintainability of the system. A basic LFS implementation, without cleaner or reconstruction
tools, but with dumpfs(1) and newfs(1) tools, was reading and writing from/to the buffer cache in

84

under two weeks, and reading and writing from/to the disk in under a month. This implementa-
tion was done by copying the FFS source code and replacing about 40% of it with new code. The
FFS and LFS implementations have since been merged to share common code.

In BSD and similar systems (e.g. SunOS, OSF/1), a file system is defined by two sets of inter-
face functions, vfs operations and vnode operations [KLEI86]. Vfs operations affect entire file
systems (e.g. mount, unmount, etc.) while vnode operations affect files (open, close, read, write,
etc.). The original set of operations for each of these interfaces is described in Tables 6-5 and 6-
6.

File systems could share code at the level of a vfs or vnode subroutine call, but they could not
share the UNIX naming while implementing their own disk storage algorithms. To allow sharing
of the UNIX naming, the code common to both FFS and BSD-LFS was extracted from the FFS
code and put in a new, generic file system module (UFS). This code contains all the directory
traversal operations, almost all vnode operations, the inode hash table manipulation, quotas, and
locking. The common code is used not only by the FFS and BSD-LFS, but by the memory file
system [MCKU90] as well. The FFS and BSD-LFS implementations remain responsible for disk
allocation and actual I/O. Table 6-7 shows which of the vnode operations are file system specific.
Any not included in Table 6-7 and those included only for LFS (the directory operations) are all
in the common UFS code. LFS does some pre- and post- processing of directory operations and
then calls the UFS routines.

In moving code from the FFS implementation into the generic UFS area, it was necessary to
add seven new vnode and vfs operations. Table 6-8 lists the operations that were added to facili-
tate this integration and explains why they are different for the two file systems.

6.3.1.1. Block Sizes

One FFS feature that is not implemented in BSD-LFS is fragments. The original reason for
fragments was that, given a large block size (necessary to obtain contiguous reads and writes, and
to lower the data to meta-data ratio), fragments were required to minimize internal fragmentation
(allocated space that does not contain useful data). LFS does not require large blocks to obtain
contiguous reads and writes as it sorts blocks in a file by logical block number, writing them
sequentially. Still, large blocks are desirable to keep the meta-data to data ratio low. Unfor-
tunately, large blocks can lead to wasted space if many small files are present. Since managing
fragments complicates the file system, BSD-LFS will allocate progressively larger blocks instead
of using a block/fragment combination. This improvement has not yet been implemented but is
similar to the restricted buddy policy simulated in Chapter 3.

6.3.1.2. The Buffer Cache

Prior to the integration of BSD-LFS into 4BSD, the buffer cache had been considered file sys-
tem independent code. However, the buffer cache contains assumptions about how and when
blocks are written to disk. First, it assumes that a single block can be flushed to disk, at any time,
to reclaim its memory. There are two problems with this: flushing blocks a single block at a time
would destroy any possible performance advantage of LFS, and, because of the modified meta-
data and partial segment summary blocks, LFS may require additional memory to write. There-
fore, BSD-LFS needs to guarantee that it can obtain any additional buffers it needs when it writes
a segment.

To prevent the buffer cache from trying to flush a single BSD-LFS page, BSD-LFS does not
put its buffers on the normal LRU queue, but puts them on the kernel LOCKED queue, so that the
buffer cache cannot reclaim them. The number of buffers on the locked queue is compared
against two variables, the start write threshold and stop access threshold, to prevent BSD-LFS
from using up all the available buffers. When the number of LFS buffers on the LOCKED queue
exceeds the start write threshold, the segment writer is invoked, and dirty buffers on the locked

85

hhh

ii
File System Operationii
LFS read, write, fsync, symlink, mknod, create, mkdir, remove, rmdir,

link, renameii
FFS read, write, fsynciic

c
c
c
c

c
c
c
c
c

c
c
c
c
c

Table 6-7: Summary of File system Specific vnode Operations.
hhh

iii

Vnode Operations
ii
blkatoff Read the block at the given offset, from a file. The two file systems

calculate block sizes and block offsets differently, because BSD-
LFS does not implement fragments.iii

valloc Allocate a new inode. FFS must consult and update bit maps to al-
locate inodes while BSD-LFS removes the inode from the head of
the free inode list in the ifile.iii

vfree Free an inode. FFS must update bit maps while BSD-LFS inserts
the inode onto a free list.iii

truncate Truncate a file from the given offset. FFS marks bit maps to show
that blocks are no longer in use, while BSD-LFS updates the seg-
ment usage table.iii

update Update the inode for the given file. FFS pushes individual inodes
synchronously, while BSD-LFS accumulates them and writes them
in a partial segment.iii

bwrite Write a block into the buffer cache. FFS performs synchronous
writes while BSD-LFS just marks the block dirty and puts it in the
cache.ii

Vfs Operations
ii
vget Get a vnode. FFS computes the disk address of the inode while

BSD-LFS looks it up in the ifile.iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6-8: New Vnode and Vfs Operations. These routines allowed us to share 60% of the original FFS
code with BSD-LFS.
hhh

queue will be written, marked no longer dirty, and removed from the locked queue. If the
number of LFS buffers on the LOCKED queue exceeds the stop access threshold, then any
requests, from LFS to obtain more buffers, are denied until the number of LFS buffers on the
locked queue falls below the threshold. This problem can be much more reasonably handled by
systems with better integration of the buffer cache and virtual memory.

Second, BSD maintains a logical block cache, hashed by vnode and logical block number. In
FFS, since indirect blocks do not have logical block numbers, they are hashed by the vnode of the
device (the file that represents the disk partition) and the disk block number. Since LFS does not

86

assign disk addresses until blocks are written to disk, indirect blocks have no valid addresses on
which to hash. To solve this problem, the block name space had to incorporate meta-data block
numbering. This numbering is done by making block addresses be signed integers with negative
numbers referencing indirect blocks, while zero and positive numbers reference data blocks. Fig-
ure 6-8 shows how the blocks are numbered. Singly indirect blocks take on the negative of the
first data block to which they point. Doubly and triply indirect blocks take the next lower nega-
tive number of the singly or doubly indirect block to which they point. This approach makes it
simple to traverse the indirect block chains in either direction, facilitating reading a block or
creating indirect blocks. Sprite-LFS partitions the ‘‘block name space’’ in a similar fashion.

Although it is not possible for BSD-LFS to use FFS meta-data numbering, the reverse is not
true. In 4.4BSD, FFS uses the BSD-LFS numbering and the bmap code has been moved into the
UFS area.

6.3.2. The IFILE

Sprite-LFS maintained the inode map and segment usage table as kernel data structures which
are written to disk at file system checkpoints. BSD-LFS places both of these data structures in a
read-only regular file, visible in the file system, called the ifile. There are three advantages to this
approach. First, while Sprite-LFS and FFS limit the number of inodes in a file system, BSD-LFS
has no such limitation, growing the ifile via the standard file mechanisms. Second, it can be
treated identically to other files, in most cases, minimizing the special case code in the operating
system. Finally, it provides a convenient mechanism for communication between the operating
system and the cleaner. A detailed view of the ifile is shown in Figure 6-9.

hhh

-1037

...

...

...

0

11

12

1035
-12

...

...

......

1036

2059

1048588

1049612

-1036

-1048588

Indirect Blocks

Double Indirect Blocks

Data Blocks

Figure 6-8: Block-numbering in BSD-LFS. In BSD-LFS, data blocks are assigned positive block numbers
beginning with 0. Indirect blocks are numbered with the negative of the first data block that they address. Double and
triple indirect blocks are numbered with one less than the first indirect or double indirect block that they address.
hh

87

hhh

IFILE

CLEANER INFO

SEGUSE 1

...
SEGUSE N

IFILE 1

...
IFILE N

SEGMENT

USAGE

TABLE

INODE MAP

NUM CLEAN SEGMENTS

NUM DIRTY SEGMENTS

NUM LIVE BYTES

LAST MOD TIME

FLAGS

VERSION NUMBER

DISK ADDRESS

FREE LIST POINTER

Figure 6-9: Detail Description of the IFILE. The ifile is maintained as a regular file with read-only permis-
sion. It facilitates communication between the file system and the cleaner.
hhh

Both Sprite-LFS and BSD-LFS maintain disk addresses and inode version numbers in the
inode map. The version numbers allow the cleaner to easily identify groups of blocks belonging
to files that have been truncated or deleted. Sprite-LFS also keeps the last access time in the
inode map so that when files are read, the inode does not get rewritten and moved far away from
the file data. However, since the access time is eight bytes in 4.4BSD, maintaining it in the inode
map would cause the ifile to grow by 67%, so BSD-LFS keeps the access time in the inode.

Sprite-LFS clusters inodes in the inode map, and allocates new inodes by picking a starting
point and scanning forward sequentially until it finds a free inode. To create a new file, the inode
map is searched from the inode entry of the containing directory. If a directory is being created, a
random location is chosen. When a directory contains many files this scan is costly. On six
Sprite file systems, the average number of entries searched per directory or file creation ranged
from 26 to 192, with an average across all the file systems of 94 entries per allocation. BSD-LFS
avoids this scan by maintaining a free list of inodes in the inode map.

The segment usage table contains the number of live bytes in and the last modified time of
each segment and is largely unchanged from Sprite-LFS. In order to support multiple and user
mode cleaning processes, it also contains a set of flags indicating whether the segment is clean,
contains a superblock, is currently being written to, or is eligible for cleaning.

6.3.3. Directory Operations

Directory operations8 pose a special problem for LFS. Since the basic premise of LFS is that
operations can be postponed and coalesced to provide large I/Os, it is counterproductive to retain
the synchronous behavior of directory operations. At the same time, if a file is created, filled with
data and fsynced, then both the file’s data and the directory entry for the file must be on disk.
Additionally, the UNIX semantics of directory operations are defined to preserve ordering (i.e. if
the creation of file a precedes the creation of file b, then any post-recovery state of a file system
that includes file b must include file a). It is believed that this semantic is used in UNIX systems
to provide mutual exclusion and other locking protocols.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
8 Directory operations include those system calls that affect more than one inode (typically a directory and a file) and include:

create, link, mkdir, mknod, remove, rename, rmdir, and symlink.

88

Sprite-LFS preserves the ordering of directory operations by maintaining a directory operation
log inside the file system log. Before any directory updates are written to disk, a log entry that
describes the directory operation is written. The log information always appears in an earlier seg-
ment, or the same segment, as the actual directory updates. At recovery time, this log is read and
any directory operations that were not fully completed are rolled forward. Since this approach
requires an additional, on-disk data structure, and since LFS is itself a log, a different solution
was chosen, namely segment batching.

Since directory operations affect multiple inodes (e.g. a new file and its containing directory),
BSD-LFS must guarantee that either both of the inodes and associated changes get written to disk
or neither does. BSD-LFS has a unit of atomicity, the partial segment, but it does not have a
mechanism that guarantees that all inodes involved in the same directory operation will fit into a
single partial segment. Therefore, a mechanism that allows operations to span partial segments is
introduced. At recovery, a partial segment is never rolled forward if it has an unfinished directory
operation and the partial segment that completes the directory operation did not make it to disk.

The requirements for segment batching are defined as follows:

1. If any directory operation has occurred since the last partial segment was written, the next
segment write will append all dirty blocks from the ifile (that is, it will be a checkpoint,
except that the superblock need not be updated).

2. During recovery, any writes that were part of a directory operation write will be ignored
unless the entire write completed. A completed write can be identified if all dirty blocks of
the ifile and its inode were successfully written to disk.

This definition is essentially a transaction where the writing of the ifile inode to disk is the
commit operation. In this way, there is a coherent snapshot of the file system at some point after
each directory operation. The penalty is that checkpoints are written more frequently in contrast
to Sprite-LFS’s approach that wrote additional logging information to disk.

The BSD-LFS implementation requires synchronizing directory operations and segment writ-
ing. Each time a directory operation is performed, the affected vnodes are marked and the
memory-resident superblock is updated to reflect that a directory operation is in progress or has
occurred. For example, the creation of file f in directory d can be decomposed into five steps:

1. File system state variable dirop_in_progress is set.
2. Vnode d is marked.
3. Vnode f is created and marked.
4. Vnode d is updated.
5. File system state variable dirop is set.
6. File system state variable dirop_in_progress is unset.

The segment writer uses the two state variables and the vnode markings to control its writing.
When the segment writer builds a partial segment, it collects vnodes in two passes. In the first
pass, all unmarked vnodes (those not participating in directory operations) are collected, and dur-
ing the second pass those vnodes that are marked are collected. The segment writer will not
begin pass two while the state variable dirop_in_progress is set, and directory operations are
prohibited from beginning while the segment writer is in pass two. If any vnodes are found dur-
ing the second pass, there are directory operations present in the current partial segment, and the
segment summary block flags are set, identifying the partial segment as the beginning of a direc-
tory operation. The last partial segment containing marked vnodes is identified as completing the
directory operation (in most cases, the beginning and ending identification will be in the same
partial segment).

When recovery is run, the file system can be in one of three possible states with regard to
directory operations:

89

1. The system shut down cleanly so that the file system may be mounted as is.

2. There are valid segments following the last checkpoint and the last one was a completed
directory-operation write. Therefore, all that is required before mounting is to rewrite the
superblock to reflect the address of the ifile inode and the current end of the log.

3. There are valid segments following the last checkpoint or directory operation write. As in
the previous case, the system recovers to the last completed directory operation write and
then rolls forward the segments from there to either the end of the log or the first partial seg-
ment beginning a directory operation that is never finished. Then the recovery process
writes a checkpoint and updates the superblock.

While rolling forward, two flags are used in the segment summaries: SS_DIROP and
SS_CONT. SS_DIROP specifies that a directory operation appears in the partial segment.
SS_CONT specifies that the directory operation spans multiple partial segments. If the recovery
agent finds a partial segment with both SS_DIROP and SS_CONT set, it ignores all such partial
segments until it finds a later partial segment with SS_DIROP set and SS_CONT unset (i.e. the
end of the directory operation write). If no such partial segment is ever found, then all the partial
segments from the initial directory operation on are discarded. Since partial segments are small
[BAKER92] this should rarely, if ever, happen.

6.3.4. Synchronization

To maintain the delicate balance between buffer management, free space accounting and the
cleaner, synchronization between the components of the system must be carefully managed. Fig-
ure 6-10 depicts the synchronization relationships.

The cleaner is given precedence over all other processing in the system to guarantee that clean
segments are available if the file system has space. It has its own event variable on which it waits
for new work (lfs_allclean_wakeup). The segment writer and user processes will defer to the
cleaner if the disk system does not have enough clean space. A user process detects this condi-
tion when it attempts to write a block but the block accounting indicates that there is no space
available. The segment writer detects this condition when it attempts to begin writing to a new
segment and the number of clean segments has reached two.

In addition to cleaner synchronization, the segment writer and user processes synchronize on
the the availability of buffer headers. When the number of LFS buffer header on the LOCKED
queue exceeds the start write threshold a segment write is initiated. If a write request would
make the number of LFS buffers on the LOCKED queue exceed the stop access threshold, the
writing process waits until a segment write completes, making more buffer headers available.
Finally, there is directory operation synchronization. User processes wait on the lfs_dirop condi-
tion and the segment writer waits on lfs_writer condition.

6.3.5. Minor Modifications

There are a few additional changes to Sprite-LFS. To provide more robust recovery the super-
block is replicated up to ten times throughout the file system, as in FFS. Since the file system
meta-data is stored in the ifile, there is no need for separate checkpoint regions, and the disk
address of the ifile inode is stored in the superblock. Note that it is not necessary to keep a dupli-
cate ifile since it can be reconstructed from segment summary information, if necessary.

6.4. Conclusions

The implementation of BSD-LFS highlighted some subtleties in the overall LFS strategy.
While allocation in LFS is simpler than in extent-based file systems or file systems like FFS, the
management of memory is much more complicated. The Sprite implementation addressed this
problem by reserving large amounts of memory. Since this was not feasible in our environment,
a more complex mechanism to manage buffer and memory requirements was needed.

90

hhh

Cleaner

Proc

Writer

Writing (lfs_dirops)

Segments (lfs_avail)

work (lfs_allclean_wakeup)

work (lfs_allclean_wakeup)

Space (lfs_avail)

Dirops (lfs_writer)

A B
Reason (address)

A waits for B on "address" due to "Reason"

Buffers (locked_queue_count)

Figure 6-10: Synchronization Relationships in BSD-LFS. The cleaner has precedence over all com-
ponents in the system. It waits on the lfs_allclean_wakeup condition and wakes the segment writer or user processes
using the lfs_avail condition. The segment writer and user processes maintain directory operation synchronization
through the lfs_dirop and lfs_writer conditions. User processes doing writes wait on the locked_queue_count when the
number of dirty buffers held by BSD-LFS exceeds a system limit.
hhh

LFS operates best when it can write out large numbers of dirty buffers at once. However,
holding dirty data in memory until a large amount has accumulated requires consuming more
memory than might be desirable. In addition, the act of writing a segment requires allocation of
additional memory (for segment summaries and on-disk inodes), so segment writing needs to be
initiated before memory becomes a critical resource, in order to avoid memory thrashing.

The delayed allocation of LFS makes accounting of available free space more complex than in
a pre-allocated system like FFS. In Sprite-LFS, the space available to a file system is the sum of
the disk space and the buffer pool. As a result, files are allocated in the buffer pool for which
there might not be free space available on disk. Since the applications that write these files may
have exited before the files actually go to disk, there is no effective way to report the ‘‘out of disk
space’’ condition. In order to avoid this phenomenon, available space accounting must be per-
formed as dirty blocks enter the cache instead of when they are written from cache to disk.

This chapter has discussed the new design of LFS. The prior studies, both simulated and
empirical have guided this redesign, and the re-implementation highlighted some difficult issues
in building log-structured file systems. This new design attempts to avoid the disruption in ser-
vice due to the cleaner and provides a mechanism by which the sequential file performance after
random updates described in Chapter 5 can be improved. In addition, the new design has
improved robustness and flexibility. The next chapter presents the performance evaluation of this
new system.

91

Chapter 7

Performance Evaluation

hh

This chapter compares the performance of the redesigned log-structured file system to more
traditional, read-optimized file systems on a variety of benchmarks that attempt to emulate real
workloads. The new log-structured file system was written in November of 1991, left largely
untouched until late spring 1992, and is a completely untuned implementation.

The file systems against which LFS is compared are the regular fast file system (FFS), and an
enhanced version of FFS introduced in [MCVO91] and described in the next section. The
enhanced FFS file system is referred to as EFS for the remainder of this thesis.

7.1. Extent-like Performance Using the Fast File System

Chapter 3 showed that read-optimized policies that favor contiguous layout perform similarly,
so in this chapter a variant of FFS that favors contiguous allocation was selected. The fundamen-
tal idea proposed in [MCVO91] is that the FFS block allocator can be used to allocate blocks
contiguously on disk and that doing so allows the file system to read a large number of blocks,
called a cluster, in a single I/O. In this way, EFS provides extent-based file system behavior
without changing the underlying structures of FFS.

FFS is parameterized by a variable, maxcontig, which indicates how many logically sequential
disk blocks should be allocated contiguously on disk. By setting maxcontig large (equal to a
track or more), the FFS can be made to perform what is essentially track allocation. Logically
sequential dirty buffers are accumulated in the cache, and when an extent’s worth (i.e. maxcontig
blocks) have been collected, they are bundled together into a cluster. This provides extent-based
writing.

In order to provide extent-based reading, the interaction between the buffer cache and the disk
was modified. Typically, before a block is read from disk, the bmap routine is called to translate
logical block addresses to physical disk block addresses. The block is then read from disk and
the next block is requested. Since I/O interrupts are not handled instantaneously, the disk is usu-
ally unable to respond to two contiguous requests on the same rotation, so sequentially allocated
blocks incur the cost of an entire rotation. In EFS, bmap is extended to return not only the physi-
cal disk address but the number of contiguous blocks that follow the requested block. Then,
rather than reading one block at a time and requesting the next block asynchronously, the file sys-
tem reads a large number of the contiguous blocks in a single request. This provides extent-based
reading.

This same mechanism is used by LFS to read its contiguously allocated disk blocks. How-
ever, because LFS potentially allocates more blocks contiguously than it can access in a single
transfer (e.g. more than the maximum supported by the controller, typically 64 kilobytes), it may
miss a rotation between reading collections of blocks. Disks with track buffers can often hide
this rotational delay. Since EFS uses the FFS block allocator, it automatically leaves a rotational
delay between clusters of blocks, and does not miss the rotation even in the cases where no track
buffer is present or track-buffering fails.

92

7.2. The Test Environment

The hardware configuration consists of a Hewlett-Packard series 9000/380 computer with a 25
Mhz MC68040 processor. It has 16 megabytes of main memory, and a 1.3 gigabyte SCSI
SD97560 disk. The hardware configuration is summarized in Table 7-1.

The system is running the 4.4BSD-Alpha operating system. The three file systems being
evaluated all use four-kilobyte blocks, with EFS and FFS using one-kilobyte fragments. They all
run in the same operating system kernel and share most of their source code. There are approxi-
mately 6000 lines of shared C code, 4000 lines of LFS-specific code, and 3500 lines of FFS-
specific code. EFS uses the same source code as FFS plus an additional 500 lines of clustering
code, of which 300 are also used by LFS (for reads). All measurements were taken with the sys-
tem running single-user, with no network connections.

Five types of statistics were collected to analyze performance. First, there is a metric for each
benchmark that quantifies the performance of each file system. The metrics are either elapsed
time or throughput, measured in megabytes per second, files per second, or transactions per
second.

Next there are counters in the kernel to measure disk activity. All the tests are run on the
SCSI disk described in Table 7-1, and that disk is unused except for the benchmark, so the disk
activity summarizes all the I/O performed by the benchmarks. The kernel maintains the number
of reads and writes, the number of synchronous reads and writes, the total number of sectors read
and written, and the microseconds that the disk is busy and idle. It also maintains a list of the last
1000 I/O begin and completion times from which individual I/O response times can be computed.

hhh

iii
Disk (SCSI SD97560) Commentiii

Average seek 13.0 ms
Single rotation 15.0 ms
Track size 36 KB
Track buffer 128 KB non-volatile; read-buffering only
Disk bandwidth 2.2 MB/sec
Bus bandwidth 1.6 MB/sec
Controller overhead 1.0 ms
Track skew 8 sectors
Cylinder skew 10 sectors total skew = track skew + cylinder skew
Cylinder size 19 tracks 684 KB
Disk size cc

c
c
c
c
c
c
c
c
c
c
c

1962 cylinders 1.3 gigabytesii
CPU (Motorola 68040)iii

Memory Bandwidth 12.0 MB/sec with 5000 byte transfers
CPU 25 Mhz
MIPS 10-12iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-1: Hardware Specifications. Although the disk can support 2.2 megabytes per second
transfer bandwidth, the SCSI interface is limited to 1.6 megabytes per second. SCSI supports two
transfer modes, synchronous and asynchronous [ADAP85]. Synchronous mode is optional under
SCSI-I and is not supported by the disk driver. Therefore, all transfers are performed using asyn-
chronous mode and are limited to 1.6 MB/sec.
hhh

93

The kernel also maintains counters to monitor LFS activity. It counts the number of segments
used, the number of checkpoints, the number of writes issued, the number of partial segments
written, the number of partial segments from the cleaner, and what percentage of writes are syn-
chronous. It also keeps track of the total number of blocks written and how many of those were
due to the cleaner. Finally it keeps track of how many times the start write threshold and stop
access threshold are reached.

Since the LFS cleaner runs as a user-process, it maintains its own set of counters, specifically
the number of blocks read during cleaning, the number of block writes passed to the kernel, the
number of segments that were empty and could be reclaimed without cleaning, and the number of
segments cleaned.

The kernel also maintains a count of the number of blocks written by the cleaner, and its count
can be used to verify the cleaner’s count. The cleaner may submit blocks to the kernel for writing
that have become invalid and therefore will not be written, so the cleaner’s number of blocks
written should be greater than or equal to the kernel’s number of blocks written.

Finally, there are measurements derived from running the benchmark on a profiling kernel.
Kernel profiling requires that a special monitoring routine is called on entry and exit to every sub-
routine. The kernel keeps track of the number of times each routine is called and these statistics
can be reset and displayed upon request. As the act of profiling can be disruptive to system
behavior (it incurs approximately a 12% overhead on the CPU), all other measurements, includ-
ing the benchmark metrics, are reported for a non-profiling kernel. Profiling was used only when
none of the other measurements could explain the system behavior.

Each of the next sections describes a benchmark and presents the performance analysis for
each file system. With the exception of the first two benchmarks (raw file system performance
and small file performance), the benchmarks attempt to model specific workloads described in
Table 7-2.

7.3. Raw File System Performance

The goal of this test is to measure the maximum throughput that can be expected from the
given disk and system configuration for each of the file systems. For this test, the three file sys-
tems are compared against the maximum speed at which the operating system can write directly
to the disk. The benchmark consists of creating a file of size S and then either reading or writing

hhh

iii
Benchmark Section Workload/Purposeii
Raw 7.3 Measure the maximum throughput that the file system

can achieve.iii
Small File 7.4 Measure the LFS benefits in processing a large number

of small files.iii
Andrew 7.5 Software development workload.iii
OO1 7.6 Object oriented database workload.iii
Wisconsin 7.7 Complex query processing workload.iii
TPC/B 7.8 Transaction processing workload.iii
Super 7.9 Super computer workload.iiicc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

Table 7-2: Summary of Benchmarks Analyzed.
hhh

94

the entire file 50 times. The measurements recorded are averages across the 50 runs. For the read
tests, the cache is flushed before each test by unmounting and remounting the file system.

7.3.1. Raw Write Performance

The graph in Figure 7-1 shows the bandwidth attained for writing, as a function of S, the size
of the I/O. Given the sequential layout of both LFS and EFS, the expectation is that both should
perform comparably to the speed of the raw disk and that FFS, with its rotational positioning,
should achieve approximately 50% of the disk bandwidth. However, there are several anomalies.

First, as the I/O size increases, EFS actually provides more bandwidth than the raw disk parti-
tion. The explanation for this can be found by looking at the number of synchronous I/O’s and
the begin time for each operation. When accessing the raw partition, all I/Os are synchronous.
Therefore, there is no overlap between the time required to copy the data from user-space into the
kernel and the time required to perform the I/Os. As a result, there is a gap of approximately five
milliseconds between the completion of each I/O and the initiation of the next I/O. In contrast,
EFS has an aggressive buffering policy, allowing it to perform asynchronous writes in units of 64
kilobytes. Therefore, the I/Os are queued, and successive I/Os are begun almost immediately.

The next anomaly lies in the fact that LFS performs noticeably worse than either EFS or the
RAW partition. This is an artifact of this benchmark as opposed to a fundamental difference in
the attainable write bandwidth of the two file systems. The problem is that the benchmark per-
forms the write and then calls fsync to ensure that the blocks have been written to disk.

hhh

RAW

FFS

EFS

LFS

0 1024 2048 3072 4096
0.0

0.5

1.0

1.5

2.0

I/O Size (in kilobytes)

Throughput (in megabytes/sec)

Figure 7-1: Maximum File System Write Bandwidth. This graph shows the write bandwidth of each
file system as a function of the transfer size. EFS attains the best performance, as it performs nearly all its writes asyn-
chronously in maximal-sized buffers. Writes to the RAW partition also occur in maximal-sized units, but are per-
formed synchronously. In LFS, since a large amount of data are gathered in the cache before being written to the disk,
there is less overlap between CPU processing and disk activity, leading to the gap shown above. The rotational delay
of FFS prohibits it from achieving more than 25% of the available disk bandwidth.
hhh

95

LFS achieves its write performance by buffering a large number of dirty buffers before initiat-
ing I/O. As a result, LFS does not begin writing any data to disk until requested to do so by the
application fsync or until the start write threshold has been reached. On this system, the start
write threshold results in approximately 800 kilobytes of data being buffered before a write is ini-
tiated. As a result, for all the tests where the transfer size was smaller than one megabyte, the
benchmark had two phases, the first in which data was written into the cache, and the second dur-
ing which time the data was being written to disk.

To verify this, timings were taken after all the writes had been issued, but before the call to
fsync and then again after the call to fsync. In the tests where the total transfer size was less than
800K, LFS’ elapsed time for the fsync was nearly identical to the time required for EFS to write
all its buffers. Figure 7-2 depicts this behavior. In the tests where the transfer size was greater
than 800K, LFS’ elapsed time for the fsync was the time reported for the synchronous LFS write
that flushed the data remaining in the cache at the time of the fsync.

These write tests were repeated for LFS with the cleaner running, but the results were indistin-
guishable from the results without the cleaner. Since the same data is overwritten for each itera-
tion of the test, there are always empty segments available for reclamation by the cleaner. As a
result, the cleaner reported that it always cleaned empty segments, and the overhead was
unmeasurable.

The last anomaly is that FFS did not achieve the 50% bandwidth expected, but achieved
closer to 31% of the transfer bandwidth (0.5 megabytes per second of the possible 1.6 megabytes
per second). The explanation of this is in the FFS rot_delay parameter. This parameter is used
by FFS to express the length of time, from the disk’s perspective, that it takes the CPU to ack-
nowledge the completion of and I/O and to issue another one.9

For the system under test, the rot_delay that provided the best performance was experimen-
tally determined to be 4 milliseconds. This value was determined by building file systems with
successively larger rot_delays and selecting the value that led to the best performance. However,
with a rotational latency of 15 milliseconds, 36 kilobyte tracks, 4-kilobyte blocks, and a 4 mil-
lisecond rot_delay, only one in four blocks is allocated to the same file, as shown in Figure 7-3.
The maximum transfer bandwidth of the disk is 2.2 megabytes per second and one-quarter of this

hhh

CPU Time

CPU Time
LFS

EFS
I/O Time

I/O Time

Figure 7-2: Effects of LFS Write Accumulation. The bars represent elapsed time for each phase of the
benchmark on a one-half megabyte write. EFS effectively overlaps I/O and CPU processing while LFS waits until all
the data is accumulated before initiating the write. As a result, the bandwidth measured by this test appears much lower
for LFS.
hh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
9 This is based on the assumption that queueing is performed by the host and not the disk.

96

hhh

allocated blocks

4 ms rot_delay4 ms rot_delay

15 ms (1.67 ms / block)

1 track/9 4K blocks

Figure 7-3: Impact of Rotational Delay on FFS Performance. Since rot_delay for this disk is 4 mil-
liseconds, FFS will allocate only one in every four blocks. Therefore, at most 3 blocks (2.25 on average) can be ac-
cessed on each disk rotation. Therefore, FFS will attain at most one-quarter of the maximum bandwidth of the disk.
hh

Throughput (in megabytes/sec)

I/O Size (in kilobytes)

2.0

1.5

1.0

0.5

0.0
40963072204810240

LFS

EFS

FFS

RAW

Figure 7-4: Maximum File System Read Bandwidth. The graph shows the maximum read throughput attained by each file system as a

function of the transfer size. As EFS and LFS allocate blocks contiguously and use the exact same read-ahead algorithm, the expectation is that both

will perform comparably to the raw partition. Once again, FFS is limited to approximately 25% of the total disk bandwidth due to rotational delays

between allocated blocks.

hh

is 0.55 megabytes per second, which is close to the observed performance of FFS.

7.3.2. Raw Read Performance

The results of the raw read tests, shown in Figure 7-4, are much closer to what is expected.
FFS demonstrates read performance nearly identical to its write performance since it is limited by
the number of blocks transferred during a single rotation. Both LFS and EFS perform compar-
ably to the raw disk with very small (3%) differences in performance.

97

This benchmark demonstrates that both EFS and LFS can utilize close to 100% of the avail-
able I/O bandwidth on large I/Os. When individual write response time is an issue, LFS incurs a
performance penalty due to its delayed write policy.

7.4. Small File Performance

This test evaluates the performance of LFS for small file processing. The benchmark consists
of creating 10,000 files, of one kilobyte each, reading the 10,000 files, and then deleting them. In
order to avoid spending the entire benchmark performing directory lookup, the files are created in
100 different directories, each containing 100 files. After the creation phase, the file system is
unmounted to ensure that all the files have been written to disk. The read test begins with an
empty cache (guaranteed by mounting the unmounted file system) and reads the files in the order
in which they were created. The delete test also begins with an empty cache and deletes each file,
unmounting the file system to ensure that all the required updates are on disk. Each test is run 10
times (10,000 files on each test) and the results shown in Figure 7-5 are the averages across the 10
runs. The standard deviations were within 0.1% to 0.2% of the elapsed time.

As expected, the asynchronous file creation and deletion of LFS makes it the clear winner in
the create and delete phases. However, its poorer performance in the read test is surprising given
that the files are created and read in the same order. The difference in read performance is a
result of the fact that BSD-LFS does not currently support fragments. With four-kilobyte blocks,
LFS transfers four times the amount of data that EFS or FFS transfer and its performance is
approximately half that of EFS and FFS. In order to compensate for this, LFS used a block size
of one kilobyte for these tests. However, LFS uses the block size as the unit of allocation for

hhh

0

100

200

300

Files per Second

Create Read Delete

FFS EFS LFS

Figure 7-5: Small File Performance. This graph uses the metric ‘‘files per second’’ to depict the create, read,
and delete times for the three file systems. As expected, the asynchronous creation and deletion of LFS make it the ob-
vious winner in these tests. However, the lack of fragments in LFS makes the read performance approximately 30%
worse than the other file systems.
hhh

98

inodes as well. Therefore, while EFS and FFS read 32 inodes per I/O (inodes are 128 bytes), LFS
reads only 8 inodes per I/O and performs four times the number of reads on inode blocks. This
number accounts for the difference in the number of reads reported for the two tests and explains
the reduced read performance.

This test shows that LFS excels on small file performance and that the lack of fragments
incurs not only a penalty in terms of fragmentation, but also in terms of performance when files
are very small.

7.5. Software Development Workload

The next tests evaluate the file systems in a typical software development environment. The
Andrew benchmark [HOWA88] is often used for this type of measurement. It contains five
phases.

1. Create a directory hierarchy.
2. Make one copy of the data.
3. Recursively examine the status of every file in the test set.
4. Examine every byte of every file in the test set.
5. Compile several of the files in the test set.

Unfortunately, the test set for the Andrew benchmark is small, and main-memory file caching can
make the results uninteresting. In order to exercise the file systems, this benchmark is run both
single-user and multi-user (where several invocations of the benchmark are run concurrently).

7.5.1. Single-User Andrew Performance

Table 7-3 shows the performance of the standard Andrew benchmark. The entire five-phase
test was run ten times for each of FFS, EFS, and LFS, with the directory hierarchy deleted after
each pass. For the LFS test with the cleaner running (LFSC), the test was repeated 100 times to
ensure that the file system was completely overwritten at least twice. In order to understand the
differences in performance, the kernel counters for the disk and for LFS were initialized before,
and sampled after, each phase.

hhh

ii
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Total
Create Copy Files Stat Grep Compile

Directories Touch Inodes Touch Bytesii
FFS 2.10 (0.30) 7.90 (0.30) 6.30 (0.46) 9.00 (0.00) 44.80 (0.40) 70.1ii
EFS 2.10 (0.30) 7.90 (0.30) 6.70 (1.19) 9.10 (0.30) 44.40 (0.49) 70.2ii
LFS 0.33 (0.47) 5.00 (0.00) 6.50 (0.81) 9.07 (0.25) 42.90 (1.40) 63.8ii
LFSC 0.43 (0.49) 5.09 (0.28) 6.37 (0.48) 9.07 (0.26) 42.61 (0.49) 63.6iicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 7-3: Single-User Andrew Benchmark Results. This table shows the elapsed time for each phase
of the benchmark on each file system. Reported times are the average across ten iterations with the standard deviation
in parentheses. LFSC indicates that the benchmark was run on the log-structured file system with the cleaner running,
but the similarity in results for most phases indicates that the cleaner had virtually no impact on performance. Overall,
LFS demonstrates approximately a 9% difference in performance which can be attributed to asynchronous file creation
and write-clustering.
hhh

99

Overall, LFS demonstrates a 9% improvement over EFS and FFS, which perform comparably.
The difference is isolated to phases one, two, and five. It is not surprising that LFS would outper-
form the other systems in phase one, the create phase, as LFS performs all its directory creations
asynchronously, performing no writes, while EFS and FFS issue 100 synchronous writes each.
As phase two is the write-intensive phase, it is also expected that LFS will perform better, and it
does so, demonstrating 37% better performance than the other two systems. Again, EFS and FFS
are performing a great deal of I/O (263 requests for about 750 kilobytes), over half of which are
synchronous (as a result of closing files). LFS performs no writes during this phase as all the data
is written to the cache.

Phase five, which is moderately CPU-intensive (utilizations for LFS are approximately 59%
and utilizations for EFS are approximately 49%), surprisingly demonstrates a small (3-5%)
advantage for LFS. Once again, the disk kernel counters reveal that EFS and FFS are synchro-
nously writing the output object files to disk (45 of 48 writes) while LFS is buffering the data and
performing nearly one-third the number of writes.

The more striking difference is in the number of reads issued by the two file systems in phase
five. LFS issues only a single read while FFS issues 46 of them. The explanation for this also
lies in file allocation. When FFS creates a file, it allocates an inode from the appropriate cylinder
group and then reads the contents of the inode from disk.10 In LFS, since inodes do not reside in
any permanent location on disk, new inodes are created in memory, not read from the disk.

These single-user results differ slightly from those presented in [ROSE92]. First, the compila-
tion phase in [ROSE92] is much longer than in this test because different compilers were used.
Secondly, the results in [ROSE92] show LFS providing a 40% performance improvement on
phase three (the phase that examines every inode) and a 29% performance improvement on phase
four (the phase that examines every byte), while the results here show virtually no difference.
Phases three and four perform no I/O on any of the file systems, so performance is limited strictly
by the file system code that reads data from the cache, traverses directories, and reads inodes
from the in-memory inode cache. Since the three file systems share the same code for performing
these functions, the expectation is that the systems should behave identically. Since the system
measured in [ROSE92] is unavailable for instrumentation, it is unclear why results on phases
three and four differ.

7.5.2. Multi-User Andrew Performance

The multi-user version of Andrew shows the file system performance as a function of the
degree of multiprogramming. The test is performed by running N concurrent invocations of the
benchmark, with each invocation creating, traversing, and removing its own directory hierarchy.
The reported results are the averages of the results of each of ten runs for each invocation. The
resulting averages are divided by the multiprogramming level to produce the metric ‘‘elapsed
seconds per invocation.’’

The goal of the multi-user test is to examine two aspects of the file systems’ behavior under
the software development workload. First, as the multiprogramming level increases, the entire
data set no longer fits in the cache, so more I/O is performed. Secondly, with separate directory
hierarchies, the different forms of locality used by LFS (temporal locality -- files created at about
the same time reside close together) and FFS (logical locality -- files in the same directory are
placed close together) can be compared.

The multi-user performance is the result of two competing factors. As concurrent invocations
of the benchmark compete for resources, the utilization of both the CPU and the disk increases, as
does performance. However, after the multiprogramming level exceeds two, the total working set
becomes too large to fit in the cache and the total I/O time increases. Towards the left-hand side
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This is an artifact of the file system architecture and could be avoided by modifying the interface to the vfs routine vfs_vget.

100

hhh

FFS
EFS
LFS

0 2 4 6
0

25

50

75

100

Degree Multiprogramming

Elapsed Time (in seconds)

FFS

EFS

LFS

0 2 4 6
60

65

70

75

Degree Multiprogramming

Elapsed Time (in seconds)

Figure 7-6: Multi-User Andrew Performance.
This graph shows the elapsed time for all five phases
of the Andrew benchmark under increasing multipro-
gramming. Overall, the impact of multiprogramming
is less significant than might have been expected,
yielding at most a 9% performance improvement.

Figure 7-7: Multi-User Andrew Performance
(Blow-Up). This graph emphasizes the small perfor-
mance differences in the multi-user Andrew bench-
mark. There are two effects at work in this test. For
EFS and FFS which perform many synchronous
operations, multi-programming allows the overlap-
ping of CPU and disk (evidenced by higher utiliza-
tion for both resources) and reduced per-invocation
time. LFS also benefits from this overlap, but not as
significantly as the other systems. The second effect
is that the total data set size begins to exceed the
cache capacity and read performance becomes more
important.

hhh

of the graph, the predominant factor is the overlap between CPU and disk. As LFS is already
performing most of its I/O asynchronously, it has less room for improvement than EFS and FFS.
So, the CPU utilization for LFS increases from 60% to 80% while the CPU utilization for EFS
goes from 50% to 89%, explaining the steeper decline in elapsed time for EFS than for LFS.

As the multiprogramming level exceeds four, the data sets no longer fit in the cache and for all
the systems the read performance becomes the dominant factor. Kernel I/O statistics reveal that
on average, LFS is performing more seeks than EFS, explaining the small difference in perfor-
mance observed as the multiprogramming level increases.

This benchmark indicates that LFS and EFS perform comparably on this particular software
development workload. To generalize, LFS demonstrates superior file creation performance, but
logical locality appears better than temporal locality when the working set is too large to fit in the
cache.

101

7.6. OO1 -- The Object Oriented Benchmark

The next set of tests come from database environments. The first is the object oriented data-
base benchmark, OO1, described in [CATT91]. The database models a set of electronics com-
ponents with connections among them. One table stores parts and another stores connections.
There are three connections originating at any given part. Ninety percent of these connections are
to nearby parts (those with nearby ids) to model the spatial locality often exhibited in CAD appli-
cations. Ten percent of the connections are randomly distributed among all other parts in the
database. Every part appears exactly three times in the from field of a connection record, and
zero or more times in the to field. Parts have x and y locations set randomly in an appropriate
range.

The intent of OO1 is to measure the overall cost of a query mix characteristic of engineering
database applications. There are three tests:

g Lookup generates 1,000 random part ids, fetches the corresponding parts from the database,
and calls a null procedure in the host programming language with the parts’ x and y posi-
tions.

g Traverse retrieves a random part from the database and follows connections from it to other
parts. Each of those parts is retrieved, and all connections from it followed. This procedure
is repeated depth-first for seven hops from the original part, for a total of 3280 parts. Back-
ward traversal also exists, and follows all connections to a given part back to their origins.

g Insert adds 100 new parts and their connections.

The benchmark is single-user, but multi-user access controls (locking and transaction protec-
tion) must be enforced. It is designed to be run on a database with either 20,000 parts or one with
200,000 parts. These measurements here are for the 20,000 part database which results in the
database of 14.5 megabytes detailed in Table 7-4. The transaction package described in
[SELT92] was used to create B-tree and fixed-length record files.

The test specification calls for running from both cold and warm caches, however, since the
performance of the file and disk system is of interest, only the cold cache tests are run. While it is
possible to ensure that there are no pages in the database cache by stopping and restarting the
application, making the same guarantees for the operating system cache is accomplished by
recopying the database from scratch and reading several unrelated files through the cache. Table

hhh

iii
Relation Format Entry Size N Entries Total Sizeiii

Part B-tree records 63 20000 2.5 MB
Connect Forward B-Tree 43 60000 3.7 MB
Connect Backward B-Tree 43 60000 2.5 MB
Connector Fixed-length Record 96 60000 5.8 MBii
Total 14.5 MBiiicc

c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

Table 7-4: Database Sizing for the OO1 Benchmark. This table shows how the database sizes reflect
the number of entries in each relation. The column ‘‘entry size’’ reflects the number of valid data bytes plus the entry
overhead (28 bytes for each B-tree entry, 4 bytes for each fixed-length record). B-Trees that are created in-order (Con-
nect Forward and Part) result in all but one page being half-empty, because when pages split, the page containing the
smaller keys never has any more keys appended to it.
hhh

102

hhh

ii
Lookup Insert Traverseiiiiiiiiiiiiiiiiiiiiiiiiii

Forward Backwardii
FFS 16.30 (0.46) 4.40 (0.49) 28.10 (0.54) 28.60 (0.49)ii
EFS 16.40 (0.49) 4.20 (0.40) 28.40 (0.49) 28.80 (0.60)ii
LFS 16.30 (0.64) 4.30 (0.46) 28.30 (0.46) 29.00 (0.45)iicc

c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c

cc
c
c
c
c
c

Table 7-5: OO1 Performance Results. This table shows the elapsed time for each part of the OO1 bench-
mark. For each test, the reported results are the average over ten tests with the standard deviations in parentheses. As
the access pattern is non-sequential, all systems offer virtually identical performance.
hhh

7-5 shows the results for the three file systems on the OO1 benchmark.

All the file systems perform comparably on this benchmark. Since there is no sequentiality to
the access patterns, the contiguous layout of EFS and LFS provide no benefit. While we might
expect LFS to demonstrate superior performance on the insert test, there is virtually no difference
from EFS and FFS because nearly all the writes (97%) are asynchronous.

The cleaner was running during nine out of ten iterations of the benchmark, but introduced
virtually no overhead. The reason is that most of the cleaning was the result of removing and
recreating the database on each iteration. Therefore most segments to be cleaned were empty
(88%) and those that contained live data averaged 20% utilization.

hhh

iii
Field Name Descriptioniii
unique1 integer; unique keys, nonclustered
unique2 integer; unique keys, clustered (PRIMARY KEY)
two integer; 2 unique values
four integer; 4 unique values
ten integer; 10 unique values
twenty integer; 20 unique values
hundred integer; 100 unique values, used for nonunique, nonclustered index
thousand integer; 1000 unique values
twothous integer; 2000 unique values
fivethous integer; 5000 unique values
tenthous integer; 10000 unique values
odd100 integer; odd values 1-99
even100 integer; even values 2-100
stringu1 char(52); unique keys, nonclustered
stringu2 char(52); unique keys, clustered (ALTERNATE PRIMARY KEY)
string4 char(52); four unique valuesiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-6: Relation Attributes for the Wisconsin Benchmark.
hhh

103

7.7. The Wisconsin Benchmark

The next database benchmark is the Wisconsin Benchmark described in [BITT83] and
[DEWI91]. The goal of this test is to consider the file systems in terms of their ability to support
complex query processing workloads. The test database consists of four relations: ONEKTUP, a
relation with 1000 tuples, TENKTUP1 and TENKTUP2, each with 10,000 tuples, and BPrime
which is 10% of TENKTUP2. Each relation contains 13 integer attributes and three 52-character
attributes. The same database package used in Section 7.6 is used here and yields a total database
size (including indices) of 8.5 MB. The attributes are summarized in Table 7-6.

The benchmark consists of issuing the set of queries, described in Table 7-7, against this data-
base. The elapsed time is measured individually for each query. The results reported in Table 7-8
are the averages and standard deviations of 10 measurements for each query.

For many of the queries, the performance is similar across all the file systems as the bench-
mark is dominated by non-sequential reads. In fact, for most queries, reads account for over 95%
of the number of I/Os issued and over 90% of the bytes transferred. The following discussion
focuses on those queries for which there are noticeable differences between the file systems’ per-
formance.

On query 1, LFS demonstrates approximately 25% worse performance than either of EFS or
FFS. It also exhibits fairly substantial variation in performance (the standard deviation across the
runs is nearly 25% of the elapsed time). Examination of the kernel counters that monitor disk
traffic shows that the creation of the temporary relation occasionally causes a segment write to
take place, delaying completion of the query.

However, this same phenomenon, the bundling of writes, also explains why LFS outperforms
EFS and FFS on several queries, notably, queries 3, 15, 16 and 17. Each of these queries is build-
ing a temporary relation. The relation is a B-Tree, and each time a page is evicted from the data
manager’s buffer pool, one or more pages are written into the kernel’s cache.

The kernel disk counters indicate that EFS and FFS are performing nearly four times the
number of writes as LFS. The explanation lies in the write policy for EFS and FFS. As full
pages are written into the cache, they are written asynchronously in FFS and potentially clustered
in EFS. Since the access pattern is non-sequential, EFS performs little, if any clustering. As the
data manager’s cache is very small (64 kilobytes per B-Tree), the same pages are being over-
written in the kernel’s cache and are being written to disk repeatedly. In contrast, LFS keeps the
entire temporary relation (200 kilobytes) in the cache and writes it only once.

Queries 30, 31, and 32 also show LFS performing from one-sixth to one-third faster. All
these queries are updates that require writing one or more pages to multiple (3) files. By looking
at the kernel disk counters, it is apparent that in all three queries, LFS is performing one-third the
number of writes as are the other systems. Both EFS and FFS write one or more blocks to each
of three files while LFS bundles all those writes together and performs a single, asynchronous
I/O. These additional writes by EFS and FFS account for the performance difference.

This benchmark also highlighted some subtleties in the implementation of read-ahead for both
EFS and LFS. The obvious read-ahead algorithm on a file system with contiguous layout is to
issue maximal-sized asynchronous reads as soon as sequential access is detected. Unfortunately,
the B-Trees for this test were built with 8-kilobyte pages and are running on a file system with 4-
kilobyte pages. Therefore, every page access to the B-Tree appears to begin a sequential access
(i.e. the access pattern is: 0, 1, 2, 22, 23, 41, 42, ...). If the maximal-sized read-ahead is per-
formed, many pages are read into the cache unnecessarily.

Both EFS and LFS were initially implemented with the maximal read-ahead algorithm and
the resulting performance for the queries that included a sequential scan of a B-Tree resulted in
devastating performance -- an order of magnitude slower than FFS with its single-block read-
ahead.

104

hhh

iii
Query # Type Selectivity Indexingii

1 Selection 1% No index
2 Selection 10% No index
3 Selection 1% Clustered index
4 Selection 10% Clustered index
5 Selection 1% Non-clustered index
6 Selection 10% Non-clustered index
7 Selection .01% Clustered index
8 Selection 1% Clusterediii
9 Join-2 10% No index

10 Join-2 .01% No index
11 Join-3 10% No index
12 Join-2 10% Clustered index
13 Join-2 .01% Clustered index
14 Join-3 10% Clustered index
15 Join-2 10% Non-clustered index
16 Join-2 .01% Non-clustered index
17 Join-3 10% Non-clustered indexiii
18 Projection 1% No index
19 Projection 100% No indexiii

Query Type Group Size Indexingiii
20 Aggregation-min 10000 No index
21 Aggregation-min 100 No index
22 Aggregation-sum 100
23 Aggregation-min 10000 Clustered index
24 Aggregation-min 100 Clustered index
25 Aggregation-sum 100 Clustered indexiii

Query Type N elements Indexingiii
26 Insert 1 No index
27 Delete 1 No index
28 Update-key 1 No index
29 Insert 1 Clustered index
30 Delete-indexed, key 1 Clustered index
31 Update-key 1 Clustered index
32 Update-indexed, nonkey 1 Clustered indexiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-7: Wisconsin Benchmark Queries. This table summarizes the queries of the Wisconsin bench-
mark. The selectivity indicates what percentage of the database will be in the final result query. The number after the
Join query type indicates the number of relations involved in the join. For aggregation queries, the Group Size indi-
cates over how many elements the aggregation will be performed. The identifiers ‘‘min’’ and ‘‘sum’’ indicate the
aggregation operator. For all updates, a single record is affected.
hh

105

hhh

ii
Query Query # Elapsed Time and Standard Deviationii

Type FFS EFS LFSii
Selection 1 11.82 (0.81) 11.28 (0.08) 14.34 (4.37)

2 11.12 (0.24) 10.98 (0.03) 11.72 (0.41)
3 0.39 (0.00) 0.39 (0.00) 0.28 (0.01)
4 1.65 (0.05) 1.61 (0.00) 1.60 (0.04)
5 2.68 (0.00) 2.68 (0.02) 2.57 (0.10)
6 2.73 (0.03) 2.71 (0.00) 2.54 (0.02)
7 0.63 (0.13) 0.77 (0.04) 0.80 (0.00)
8 0.39 (0.03) 0.37 (0.00) 0.39 (0.00)ii

Join 9 637.53 (9.52) 631.92 (0.50) 641.09 (23.78)
10 578.84 (45.45) 548.55 (13.11) 545.33 (25.08)
11 658.63 (11.58) 649.23 (0.29) 647.49 (14.77)
12 13.61 (0.16) 13.64 (0.06) 13.00 (0.22)
13 12.34 (0.56) 12.71 (0.07) 11.27 (0.09)
14 343.48 (4.37) 346.93 (0.79) 346.89 (6.43)
15 48.69 (0.27) 48.83 (0.35) 38.30 (0.08)
16 17.24 (0.28) 17.35 (0.11) 8.80 (0.15)
17 48.91 (0.52) 49.28 (0.04) 38.68 (0.19)ii

Projection 18 26.30 (0.09) 26.24 (0.03) 26.33 (0.26)
19 1.67 (0.05) 1.61 (0.03) 1.52 (0.01)ii

Aggregation 20 10.84 (0.68) 10.27 (0.02) 10.13 (0.15)
21 10.70 (0.37) 10.29 (0.04) 10.14 (0.14)
22 10.53 (0.29) 10.31 (0.03) 11.03 (0.10)
23 0.12 (0.00) 0.12 (0.00) 0.76 (0.04)ii

Update 24 221.94 (5.54) 216.35 (0.17) 218.67 (2.59)
25 221.90 (5.73) 216.49 (0.26) 219.21 (2.79)
26 0.15 (0.03) 0.15 (0.03) 0.12 (0.01)
27 10.67 (0.46) 10.57 (0.00) 10.70 (0.14)
28 1.92 (0.02) 1.92 (0.02) 1.79 (0.05)
29 0.40 (0.01) 0.40 (0.00) 0.33 (0.01)
30 0.39 (0.02) 0.38 (0.00) 0.22 (0.00)
31 0.48 (0.02) 0.49 (0.02) 0.35 (0.02)
32 0.30 (0.02) 0.32 (0.00) 0.22 (0.01)iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-8: Elapsed Time for the Queries of the Wisconsin Benchmark. This table shows the aver-
age elapsed time and the standard deviation for the ten iterations of each query. The entries that are emboldened are
queries where there were significant performance differences between the file systems. For the most part, the asynchro-
nous write behavior of LFS and its ability to cluster writes from unrelated files explains its superior performance.
hhh

In order to address this problem, the read-ahead algorithm was modified to use a read-ahead
window size that grows when sequential accesses are detected and shrinks when non-sequential
accesses are detected. The read-ahead window size is initialized to 1. When sequential access is
determined, the minimum of the number of contiguous blocks on disk and the window size are
read asynchronously. Then the read-ahead window size is set equal to twice the length of the last
read-ahead, bounded by the maximum transfer size of the device. When non-sequential access is
detected, the window size is halved.

106

This benchmark shows LFS’ superior handling of temporary files and of processing writes to
multiple files. The first issue, writing temporary files efficiently, is usually relegated to the
memory-based file systems [MCKU90] in BSD systems. However, when the temporary files
exceed the size of memory, LFS is a good alternative. The second case, writing blocks to multi-
ple files efficiently, has no obvious solution in either EFS or FFS.

7.8. Transaction Processing Performance

The industry standard TPC-B is used as the last of the database-oriented tests. This is the
same benchmark used and described in Chapter 5. It is a modified version of the TPC-B bench-
mark, configured for a 10 transaction per second system. The data manager is that described in
[SELT92] and the tests here are run single-user without a redundant log. Each measurement in
Table 7-9 represents ten runs of 1000 transactions. The counting of transactions is not begun
until the buffer pool has filled, so the measurements do not exhibit any artifacts of an empty
cache. Transaction run lengths of greater than 1000 were measured, but there was no noticeable
change in performance after the first 1000 transactions.

When the cleaner is not running, LFS provides a 15% performance improvement over EFS.
However, the impact of the cleaner is far worse than was anticipated. TPC-B randomly updates
blocks in the 237 megabyte account relation, leaving most segments fairly full. During the
course of the benchmark, the cleaner cleaned approximately one segment for every 50 transac-
tions executed. On average, the cleaned segments were 71% utilized and cleaner writes
accounted for between 60% and 80% of the total blocks written and 31% of all blocks transferred.

In an attempt to reduce cleaner overhead, a second set of tests were run with a smaller seg-
ment size (256 kilobytes). The performance before cleaning is the same as for the one-megabyte
case, but the after-cleaning performance is only slightly better (about 6%). As in the one-
megabyte case, the majority of the writes performed are on behalf of the cleaner (60-70%).
While the smaller segment size reduces the variation in response time as evidenced through the
smaller standard deviation, it does not significantly improve performance as most of the write
activity is due to the cleaner.

The cleaner impact in Chapter 5 was much less dramatic because the file system had more
free space, and the cleaner didn’t run as frequently. For the tests presented here, the disk was

hhh

ii
Transactions Elapsed Time
per second 1000 transactionsii

FFS 14.2 70.23 (1.0%)ii
EFS 16.8 59.51 (2.1%)ii
LFS (no cleaner) 19.3 51.75 (0.6%)
LFS (cleaner, 1M) 11.6 85.86 (5.3%)
LFS (cleaner, 256 K) 12.4 80.72 (1.8%)iicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 7-9: TPC-B Performance Results. The TPC-B database was scaled for a 10 transaction-per-second
system (1,000,000 accounts, 100 tellers, and 10 branches). The elapsed time and standard deviation, as a percent of the
elapsed time, is reported for runs of 1000 transactions. The LFS results show performance before the cleaner begins to
run and after the cleaner begins to run. The after-cleaner performance is shown both for a file system with one-
megabyte segments and one with 256 kilobyte segments.
hhh

107

running at 80% utilization as opposed to the 70% utilization in Chapter 5. This indicates that
log-structured file systems are particularly sensitive to the disk capacity. Although a user-level
cleaner avoids synchronization costs between user processes and the kernel, it cannot avoid con-
tention on the disk arm.

7.9. Super-Computer Benchmark

To evaluate the file systems’ performance on super-computing applications, this benchmark
simulates the I/O behavior traced in [MILL91]. The tracing study analyzed seven scientific appli-
cations. Table 7-10 summarizes the data provided for four representative applications. As the
tracing data did not provide detailed information on how the I/O accesses corresponded to files or
on the sizes of the individual I/Os, this benchmark derives and uses the average read and write
sizes to simulate a supercomputer workload.

For each application, the average read and write sizes are derived by solving the following set
of equations:

(1) RW =
W
hh

Nw

R
hh
Nrhhhhh

and

(2) R
hh
Nr + W

hh
Nw = (Nr + Nw)A

Where:
RW is the read to write ratio in bytes,
R
hh

is the average read size,
W
hh

is the average write size,
Nr is the number of reads,
Nw is the number of writes, and
A is the average I/O size.

Solving for R
hh

in equation (1) yields:

R
hh

=
Nr

RW (W
hh

Nw)hhhhhhhhhh

hhh

iii
Application Total Data Average I/O Number Number Data Read/Write

Size Size (in kilobytes) of reads of writes Ratioii
bvi 171.0 16.1 913 185 2.31iii
ccm 11.6 31.9 135 128 1.07iii
les 224.0 324.0 74 81 0.95iii
venus 55.2 456.0 60 32 1.80iiicc

c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

Table 7-10: Supercomputer Applications I/O Characteristics. These characteristics were obtained
from real super-computer workload traces and are used here to simulate a super-computer I/O workload. Column 6 in-
dicates the read-write ratio in terms of the total number of bytes accessed. The read-write ratio in terms of number of
operations can be derived from columns 4 and 5.
hhh

108

Substituting R
hh

in equation (2) yields:

(Nw +Nr)

W
hh

Nw (1 + RW)hhhhhhhhhhhhh = A

W
hh

=
Nw (1 + RW)

A (Nw + Nr)hhhhhhhhhhh

Once the average read and write sizes have been established, a single file is created. The file is
partitioned into average-write-sized units and these units are then written in a random order to
create the file. The benchmark consists of opening the file and performing 1000 file read and
write requests distributed according to the ratios in Table 7-10. All reads and writes are the same
size (R

hh
and W

hh
respectively), but the location within the file of each read or write is selected ran-

domly.

Table 7-11 shows the results of running each of the four simulated workloads on the three file
systems. The average I/O size is smallest for the application at the top of the table and increases
down the table to VENUS with the largest average access. Similarly, the resulting throughput
improves for all three systems.

Both EFS and LFS demonstrate the ability to perform large, sequential I/O well, achieving
nearly the same performance they achieved for the raw file system performance benchmark in
Section 7.3. As expected, LFS offers the best write performance across all but one of the pro-
grams, with performance ranging from 35% to 100% better than that of the other systems.

The improvement due to LFS is largest when the I/Os are small and the ratio of read to write
requests low. In the BVI benchmark, the I/Os are small but the read to write ratio is nearly 5 to 1.
Therefore, LFS offers a substantial improvement (nearly 50%) but not nearly as impressive as the
improvement for CCM where the read to write ratio is nearly 1 to 1. The higher read to write
ratio means that LFS is more likely to have to perform a seek before each write request and there-
fore doesn’t derive the maximum benefit from its sequential writing.

Since LFS and EFS are using the same read-ahead policy, the read performance is a function
of how successful the systems are at contiguous allocation and how much LFS cleaning overrides
the contiguous allocation. There are two ways in which blocks become eligible for reclamation
in this test. First, the writes issued overwrite existing data leaving partially filled segments.
Second, the data file is deleted between each test resulting in a large number of empty segments.
The statistics from the cleaner reveal that 78% of the segments cleaned are empty and of those
non-empty, their average utilization is 29%. As a result, the cleaner impact is minimal. Only 2%
of all blocks written are from the cleaner and only 1% of all I/Os are from the cleaner.

In the BVI, CCM, and VENUS benchmarks, LFS read performance is very close to EFS read
performance (5% worse for BVI, 8% and 9% better for CCM and VENUS). The only substantial
difference in read performance is in the LES benchmark (LFS is 23% slower than EFS). Closer
inspection of the cleaning statistics reveals that most cleaning occurs during this benchmark,
because there are more writes than reads and the writes are very large. In fact, of the 150 seg-
ments cleaned, 148 take place during this benchmark.

This benchmark demonstrates that both LFS and EFS can deliver a large fraction of the avail-
able I/O bandwidth to applications if the I/Os are large. When they are small, LFS performs
moderately better as long as the cleaning required is not substantial.

7.10. Conclusions

This chapter has presented a variety of benchmark programs. As expected, LFS demonstrates
superior write performance in most environments. One unexpected result is that cleaning can
have dramatic effects on LFS performance, particularly when the application is overwriting a
small steady stream of data, as in TPC-B. A second surprising result is the detrimental effect of

109

hhh

ii
Average FFS EFS LFS
I/O sizeii

BVI Read 13.8 KB Average time per I/O 0.07 (0.02) 0.06 (0.02) 0.06 (0.02)
Throughput (KB/sec) 206.02 227.60 214.13ii

BVI Write 29.6 KB Average time per I/O 0.13 (0.09) 0.12 (0.09) 0.06 (0.05)
Throughput (KB/sec) 215.56 242.40 474.40ii

CCM Read 32.9 KB Average time per I/O 0.10 (0.02) 0.08 (0.02) 0.08 (0.02)
Throughput (KB/sec) 332.59 392.55 425.98ii

CCM Write 32.4 KB Average time per I/O 0.11 (0.02) 0.11 (0.03) 0.05 (0.01)
Throughput (KB/sec) 289.49 299.68 601.89ii

LES Read 338.6 KB Average time per I/O 0.75 (0.15) 0.37 (0.06) 0.48 (0.24)
Throughput (KB/sec) 440.72 900.54 691.11ii

LES Write 325.6 KB Average time per I/O 1.15 (0.07) 0.39 (0.04) 0.40 (0.09)
Throughput (KB/sec) 276.48 811.33 792.19ii

VENUS Read 460.2 KB Average time per I/O 0.98 (0.23) 0.43 (0.09) 0.39 (0.06)
Throughput (KB/sec) 458.39 1046.57 1152.99ii

VENUS Write 479.4 KB Average time per I/O 1.48 (0.12) 0.79 (0.02) 0.59 (0.03)
Throughput (KB/sec) 316.69 593.56 798.61iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-11: Performance of the Supercomputer Benchmark. The average I/O size, shown in the
second column, increases down the table as does the resulting performance. The average times per I/O are reported to
show the variations in response time exhibited by the different systems. LFS offers superior write performance on
three of the four programs and superior read performance on two of them. For the applications with the largest I/Os
(LES and VENUS), both read and write performance approaches that of the benchmarks in Section 7.3.
hhh

aggressive read-ahead policies on workloads that appear sequential, but are not, as was discussed
in the Wisconsin benchmark in Section 7.7.

110

Chapter 8

Conclusions

hh

This thesis makes three main research contributions. It offers a fundamental understanding of
how file system allocation affects the performance of real applications. Second, it highlights
many key design issues involved in building log-structured file systems and offers a design that
can function in constrained environments. Finally, it demonstrates that adding transactions to a
file system does not have to impact performance and can offer an attractive alternative to user-
level transaction management.

Several different allocation policies have been described and evaluated by simulation and
implementation. As expected, the file system performance was extremely workload dependent.
Micro benchmarks, such as the raw performance tests of Section 7.3, do not capture the real
behavior of file systems, and single-user macro benchmarks often do not provide insight into
multi-user performance. However, file systems which favor contiguous disk allocation (the log-
structured system and the extent-based system) uniformly provide the best performance, although
LFS is penalized in performance due to the presence of the cleaner.

8.1. Chapter Summaries

Chapter 3 examined the use of variable sized disk blocks to improve a disk system’s
bandwidth, and concluded that policies which use large allocations to improve sequential perfor-
mance can do so without hindering the performance of small file accesses.

Chapter 4 focused on an online transaction processing workload which did not benefit from
contiguous allocation. This simulation concluded that log-structured file systems offer the poten-
tial for improved performance in these environments. It also showed that in many cases an
embedded transaction manager provides comparable performance to user-level data managers.

Chapter 5 used an implementation study to corroborate the conclusions from the simulation of
Chapter 4. However, the realities of implementation, particularly perturbations in performance
due to the cleaner, dispute the simulation results. Rather than corroborating the simulation
results, it indicated areas of improvement in the implementation of log-structured file systems.

In Chapter 6, a new design of LFS was presented that addressed most of the issues raised in
Chapter 5, as well as many others. The new implementation has the cleaner running in user-
space, does not reserve large amounts of kernel memory, and shares most of its code with the Fast
File System.

Chapter 7 compared a range of allocation policies across diverse workloads. These results
confirmed the simulation results of Chapter 3, in terms of the performance of read-optimized file
systems. Once again, transaction processing workloads performed substantially worse than
predicted in Chapter 3. Furthermore, the cleaning overhead of LFS can impact performance sub-
stantially when empty segments are not available for reclamation.

Although the workloads in Chapter 7 came from vastly different environments (software
development, query processing, online transaction processing, and super-computing), the extent-
based file system offered the best or nearly the best performance on every test. However, all the
tests, except for the multi-user Andrew benchmark, were single-user tests. As a result, LFS was

111

unable to obtain the maximum benefit from its write-optimization.

While LFS does offer superior write performance under appropriate workloads, the cleaning
penalty can be quite high. The measurements in [ROSE92] indicate that LFS achieves 70% write
performance, however this was a statically computed write cost averaged over the lifetime of the
file system, and does not reflect the performance perturbations when the cleaner runs or the
response time observed by applications. If the disk system is utilizing a large fraction of its disk
bandwidth for the cleaner, as was the case in Section 7.8, the impact is unacceptable. When LFS
is performing best, that is, bundling many writes into a single, contiguous write, the disk system
is either becoming full or existing data is being overwritten. In the latter case, the cleaner is
required to run and the impact on applications running at that time can be severe.

A second observation is the impact of segment size on the application response time. Using
large segments in the transaction processing environment resulted in a performance penalty of
40% when the cleaner ran. Reducing the segment size only reduced the penalty to 35%. In this
workload, the file system does not obtain much benefit from batching a large number of writes
because the test is running single-user and each transaction is issuing a small number of writes.
Therefore, although LFS can perform better on this workload when the segment size is small,
both FFS and EFS do much better in this environment because they aren’t competing with the
cleaner for the disk arm.

Managing read-ahead in both EFS and LFS is tricky. The pitfalls became apparent on the ini-
tial measurements for the Wisconsin benchmark results discussed in Section 7.7. When the file
system performed read-ahead in maximum-sized units, access patterns which appeared sequen-
tial, but were not, resulted in cache thrashing and some queries showed an order of magnitude
slow down as a result.

While using a read-ahead window size fixed the problem for this benchmark, there are
undoubtedly workloads for which that solution is still unsatisfactory. The better solution is to
place read-ahead blocks toward the least-recently-used end of the LRU queue. Currently, when
blocks return from I/O successfully, they are either placed at the most-recently-used end of the
LRU queue or the AGE queue. Buffers on the AGE queue are immediately eligible for reclama-
tion, so placing read-ahead blocks there doesn’t work. Instead, they should be placed far enough
away from the least-recently-used end of the the LRU queue so that if the access pattern is
genuinely sequential, they will still be in the cache when requested.

LFS does provide some compelling benefits over the other systems. Adding transactions to a
log-structured file system is easy and provides a mechanism not offered by the other systems.
The ‘‘no-overwrite’’ policy in LFS makes restoring deleted files simple. Versioning and histori-
cal archiving are obvious extensions to this functionality. The fast recovery of LFS also makes it
a desirable alternative, as does the potential for on-line backups. Since the cleaner already reads
segments to reclaim them, it could also write the segments to a backup device. Requiring the
cleaner to touch every segment during a backup would result in a complete snapshot of the sys-
tem.

Another domain where LFS is extremely attractive is in the high-speed networking arena.
With gigabit networks just around the corner, file systems need the ability to sink large quantities
of data quickly.

LFS also seems attractive for RAID [PATT88] where small writes are penalized due to parity
calculation. However, empirical evidence in [BAKER92] shows that most segments are still
small, so this benefit may be unattainable. Additionally, simple, extent-based systems like EFS
can also take advantage of large writes to avoid the overhead of parity update.

112

8.1. Future Research Directions

This thesis raises at least as many new questions as it answers. The studies in Chapters 3 and
4 indicate that transactions embedded in an LFS provide some benefits. It would be interesting to
add transaction support to the new BSD-LFS and exercise it thoroughly. The segment batching
mechanism already present makes this an even simpler implementation than the one described in
Chapter 4. The presence of segment batching raises the possibility of potentially replacing spe-
cial purpose kernel mechanisms for ordering and atomicity with this general-purpose mechanism.
Also, it will be interesting to consider what existing applications might benefit from native tran-
saction support, and what new applications will become possible.

Another interesting question that arises is the application of transaction semantics to a file sys-
tem. Incorporating transaction semantics into a UNIX file system is complex. Since regular UNIX
utilities must continue to function normally, how should accesses to a transaction-protected file
outside the context of a transaction be handled? Also, long-running transactions that write data
have the potential to fill the disk system. This is discussed in the context of Quicksilver in
[SCHM91], and the conclusion is that such long running transactions should be decomposed into
more transactions of shorter duration.

A related question is whether LFS is viable for supporting database applications. While a
conventional UNIX file system imposes a layer of address indirection above and beyond that
created by a data manager, LFS adds another level of indirection by virtue of the inode map, and
also provides an alternate representation in the segment summaries. Does this change the way a
database interacts with the file system? The segment summary blocks provide an alternate
method of reading for large files that need to be read in their entirety, but not sequentially, A
reader begins at one edge of the disk, reads the segment summary block and returns any ‘‘live’’
blocks in the segment from the requested file. This could prove more efficient than reading the
file in its logical block order.

Chapter 5 suggests implementing a variety of cleaning algorithms in a log-structured file sys-
tem. The current cleaner’s only function is to reclaim disk space. It would be easy to envision a
more intelligent cleaner that coalesced large files or placed frequently access files in the center of
the disk. However, as the cleaner already impacts performance substantially, such policies would
have to make an effort to avoid unnecessary I/O.

A second approach to improving locality for large files would require investigating the seg-
ment writer’s policy. Currently, only dirty data is written to disk during segment writing. How-
ever, if there are clean blocks in the cache that would restore a file’s contiguous layout, it might
be beneficial to write the clean blocks as well.

8.2. Summary

LFS is an exciting vehicle for extending the functionality of the file system. It is an excellent
framework in which to provide embedded transaction support, versioning, and archival. How-
ever, its performance in certain applications, particularly transaction processing, is severely lim-
ited by its ability to perform garbage collection. As a result, for most workloads analyzed in this
thesis, conventional file systems that provide contiguous on-disk layout are the more attractive
alternative.

113

References

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[ACCE86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young, M.,
‘‘MACH: A New Kernel Foundation for UNIX Development,’’ Proceedings of the 1986 Summer
Usenix, Atlanta, GA, June 1986, 93-113.

[ADAP85] SCSI User Guide, Adaptive Data Systems Inc., Pomona, CA, 1985.

[ANDE91] Anderson, T., Bershad, B., Lazowska, E., Levy, H., ‘‘Scheduler Activations: Effec-
tive Kernel Support for User Level Management of Parallelism,’’ Proceedings of the Thirteenth
Symposium on Operating System Principles, Monterey, CA, October 1991, 95-109. Published as
Operating System Review 25, 5 (October 1991).

[ANDR89] Andrade, J., Carges, M., Kovach, K., ‘‘Building an On-Line Transaction Processing
System On UNIX System V,’’ CommUNIXations, November/December 1989.

[ANON85] Anon et. al., ‘‘A Measure of Transaction Processing Power,’’ Datamation, April
1985.

[ARAL89] Aral, Z., Gertner, I., Langerman, A., Schaffer, G., Bloom, J., Doeppner, T., ‘‘Variable
Weight Processes with Flexible Shared Resources,’’ Proceedings of the 1989 Winter Usenix, San
Diego, CA, February 1989, 405-412.

[ASTR76] Astrahan, M., Blasgen, M., Chamberlain, K., Eswaran, K., Gray, J., Griffiths, P., King,
W., Traiger, I., Wade, B., Watson, V., ‘‘System R: Relational Approach to Database Manage-
ment,’’ ACM Transactions on Database Systems 1, 2 (1976), 97-137.

[BAKER91] Baker, M., Hartman., J., Kupfer., M., Shirriff, L., Ousterhout, J., ‘‘Measurements of
a Distributed File System,’’ Proceedings of the 13th Symposium on Operating System Principles,
Monterey, CA, October 1991, 198-212. Published as Operating Systems Review 25, 5 (October
1991).

[BAKER92] Baker, M., Asami, S., Deprit, E., Ousterhout, S., Seltzer, M., ‘‘Non-Volatile
Memory for Fast, Reliable File Systems,’’ to appear in Proceedings of the Fifth Conference on
Architectural Support for Programming Languages and Operating Systems, Boston, MA,
October 1992.

[BAYER77] Bayer, R., Scholnick, M., ‘‘Concurrency Operations on B-Trees,’’ Acta Informatica,
1977.

[BART81] Bartlett, J., ‘‘A NonStop Kernel,’’ Tandem Computers, Technical Report 81.4,
PN87603, June 1981.

[BEN69] Bensoussan, A., Clingen, C., Daley, R., ‘‘The Multics virtual memory,’’ Proceedings of
the Second Symposium on Operating Systems Principles, Princeton University, October 1969,
30-42. Published as Operating Systems Review 13, 5 (October 1987).

114

[BERN80] Bernstein, P., Goodman, N., ‘‘Timestamp Based Algorithms for Concurrency Control
in Distributed Database Systems,’’ Proceedings 6th International Conference on Very Large
Data Bases, October 1980.

[BERS92] Bershad, B., Redell, D., Ellis, J., ‘‘Fast Mutual Exclusion for Uniprocessors,’’ to
appear in Proceedings of ASPLOS-V, Boston, MA, October 1992.

[BITT83] Bitton, D., DeWitt, D., Turbyfill, C., ‘‘Benchmarking database systems: A systematic
approach,’’ Proceedings of the Ninth Conference on Very Large Data Bases, 1983,

[BORR90] Borr, A., ‘‘Guardian 90: A Distributed Operating System Optimized Simultaneously
for High-Performance OLTP, Parallelized Batch/Query, and Mixed Workloads,’’ Tandem Com-
puters, Technical Report 90.8, 49788, July 1990.

[BSD91] DB(3), 4.4BSD Unix Programmer’s Manual Reference Guide, University of California,
Berkeley, 1991.

[CAR92] Carson, S., Setia, S., ‘‘Optimal Write Batch Size in Log-structured File Systems,’’
Proceedings of 1992 Usenix Workshop on File Systems, Ann Arbor, MI, May 21-22 1992, 79-91.

[CATT91] Cattell, R.G.G., ‘‘An Engineering Database Benchmark,’’ The Benchmark Handbook
for Database and Transaction Processing Systems, J. Gray, editor, Morgan Kaufman, 1991, 247-
280.

[CHAM81] Chamberlain, D., et. al., ‘‘A History and Evaluation of System R,’’ Communications
of the ACM 24, 10 (October 1981), 632-646.

[CHAN88] Chang, A., Mergen, M., ‘‘801 Storage Architecture and Programming,’’ ACM Tran-
sactions on Computer Systems 6, 1 (February 1988), 28-50.

[CHER88] Cheriton, D., ‘‘The V Distributed System,’’ Communications of the ACM 31, 3
(March 1988), 314-333.

[DEWI84] DeWitt, D., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., Wood, D., ‘‘Implemen-
tation Techniques for Main Memory Database Systems,’’ Proceedings of SIGMOD, June 1984,
1-8.

[DEWI91] DeWitt, D., ‘‘The Wisconsin Benchmark: Past, Present, and Future,’’ The Benchmark
Handbook for Database and Transaction Processing Systems, J. Gray, editor, Morgan Kaufman,
1991, 119-166.

[DUBO82] DuBourdieux, D., ‘‘Implementation of Distributed Transactions,’’ Proceedings of the
Sixth Berkeley Workshop on Distributed Data Bases and Computer Networks, Asilomar, CA,
February 1982.

[ELKH84] Elkhardt, K., Bayer, R., ‘‘A Database Cache for High Performance and Fast Restart in
Database Systems,’’ ACM Transactions on Database Systems 9, 4 (December 1984), 503-525.

[FIN87] Finlayson, R., Cheriton, D., ‘‘Log Files: An Extended File Service Exploiting Write-
Once Storage,’’ Proceedings of the Eleventh Symposium on Operating Systems Principles, Aus-
tin, TX, November 1987, 139-148. Published as Operating Systems Review 21, 5 (November
1987).

115

[FUJI84] M2361A Mini-Disk Drive Engineering Specifications, Fujitsu Limited, 1984.

[GRAY76] Gray, J., Lorie, R., Putzolu, F., and Traiger, I., ‘‘Granularity of locks and degrees of
consistency in a large shared data base,’’ Modeling in Data Base Management Systems, Elsevier
North Holland, New York, 365-394.

[HAER83] Haerder, T. Reuter, A. ‘‘Principles of Transaction-Oriented Database Recovery,’’
Computing Surveys 15, 4 (1983), 237-318.

[HASK88] Haskin, R., Malachi, Y., Sawdon, W., Chan, G., ‘‘Recovery Management in Quick-
silver,’’ ACM Transactions on Computer Systems 6, 1 (February 1988), 82-108.

[HELL89] Helland, P., ‘‘The TMF Application Programming Interface,’’ Tandem Computers,
Technical Report 89.3, 21680, February 1989.

[HOWA88] Howard, J., Kazar, Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, N.,
West, M., ‘‘Scale and Performance in a Distributed File System,’’ ACM Transaction on Com-
puter Systems 6, 1 (February 1988), 51-81.

[IBM] MVS/XA JCL User’s Guide, International Business Machines Corporation, chapter 15, 15-
29.

[IBM80] IMS/VS Version 1 General Information Manual, GH20-1260, IBM Corporation, White
Plains, NY, September 1980.

[KAZ90] Kazar, M., Leverett, B., Anderson, O., Vasilis, A., Bottos, B., Chutani, S., Everhart, C.,
Mason, A., Tu, S., Zayas, E., ‘‘DECorum File System Architectural Overview,’’ Proceedings of
the 1990 Summer Usenix Anaheim, CA, June 1990, 151-164.

[KLEI86] S. R. Kleiman, "Vnodes: An Architecture for Multiple File System Types in Sun
UNIX," Usenix Conference Proceedings, June 1986, 238-247.

[KOCH87] Philip D. L. Koch, ‘‘Disk File Allocation Based on the Buddy System,’’ ACM Tran-
sactions on Computer Systems, 5, 4 (November 1987), 352-370.

[KOND92] Kondoff, A., Hewlett-Packard Company, Private Conversation, March 1992.

[KNOW65] Knowlton, K.D., "A Fast Storage Allocator," Communications of the ACM 8, 10
(October 1965), 623-625.

[KNUT69] Knuth, D., The Art of Computer Programming,Vol 1, Fundamental Algorithms,
Addison-Wesley, Reading, MA, 1969, 442-445.

[KUM87] Kumar, A., Stonebraker, M., ‘‘Performance Evaluation of an Operating System Tran-
saction Manager,’’ Proceedings of the 13th International Conference on Very Large Data Bases,
Brighton, England, 473-481.

[KUM89] Kumar, A., Stonebraker, M., ‘‘Performance Considerations for an Operating System
Transaction Manager,’’ IEEE Transactions on Software Engineering 15, 6 (June 1989), 705-714.

[KUNG81] Kung, H. T., Richardson, J., ‘‘On Optimistic Methods for Concurrency Control,’’
ACM Transactions on Database Systems 6 2 (June 1981), 213-226.

116

[LEHM81] Lehman, P., Yao, S., ‘‘Efficient Locking for Concurrent Operations on B-trees,’’
ACM Transactions on Database Systems 6, 4 (December 1981).

[LISK83] Liskov, B., Scheifler, R., ‘‘Guardians and actions: Linguistic support for robust, distri-
buted programs,’’ ACM Transactions on Programming Language Systems 5 3 (July, 1983), 381-
404.

[MCKU84] McKusick, M., Joy, W., Leffler, S., Fabry, R., ‘‘A Fast File System for UNIX,’’
Transactions on Computer Systems 2, 3 (August 1984), 181-197.

[MCKU86] McKusick, M., Karels, M., ‘‘A New Virtual Memory Implementation for Berkeley
UNIX,’’ Computer Systems Research Group, University of California, Berkeley, CA, 1986.

[MCKU90] McKusick, M., Karels, M., Bostic, K., ‘‘A Pageable Memory Based Filesystem,’’
Proceedings of the 1990 Summer Usenix, Anaheim, CA, June 1990, 137-144.

[MCVO91] McVoy, L, Kleiman, S., ‘‘Extent-like Performance from a UNIX File System,’’
Proceedings of the 1991 Winter Usenix, Dallas, TX, January 1991, 33-44.

[MILL91] Miller, E., ‘‘Input/Output Behavior of Supercomputing Applications,’’ Technical
Report CSD-91-616, Dept. of Computer Science, Univ of California, Berkeley, December 1991.

[MITC82] Mitchell, J., Dion, J., ‘‘A Comparison of Two Network-Based File Servers,’’ Com-
munications of the ACM, 25 4 (April 1982), 233-245.

[MUEL83] Mueller, E. etc al., ‘‘A Nested Transaction Mechanism for LOCUS,’’ Proceedings
Ninth Symposium on Operating System Principles, October 1983, 71-89. Published as Operating
Systems Review 17, 5 (October 1983).

[ORA89] Oracle Database Administrator’s Guide, Oracle Corporation, 3601-V6.0, April 1989.

[OUST85] Ousterhout, J., Costa, H., Harrison, D., Kunze, J., Kupfer, M., Thompson, J., ‘‘A
Trace-Driven Analysis of the UNIX 4.2BSD File System,’’ Proceedings of the Tenth Symposium
on Operating System Principles, December 1985, 15-24. Published as Operating Systems Review
19, 5 (December 1985).

[OUST88] Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M., Welch, B., ‘‘The Sprite Net-
work Operating System,’’ IEEE Computer 21, 2 (February 1988), 23-36.

[OUST89] Ousterhout, J., Douglis, F., ‘‘Beating the I/O Bottleneck: A Case for Log-structured
File Systems,’’ Operating Systems Review 23, 1, January 1989, 11-27. Also published as UCB.
technical report UCB/CSD 88/467.

[PATT88] Patterson, D., Gibson, G., Katz, R., ‘‘A Case for Redundant Arrays of Inexpensive
Disks (RAID),’’ Proceedings of SIGMOD, Chicago, IL, June 1988, 109-116.

[PU86] Pu, C., Noe, J., ‘‘Design of Nested Transactions in Eden,’’ Technical Report 85-12-03,
Dept. of Computer Science, Univ of Washington, Seattle, WA, 1986.

[ROSE90] Rosenblum, M., Ousterhout, J., ‘The LFS Storage Manager,’’ Proceedings of the 1990
Summer Usenix, Anaheim, CA, June 1990, 315-324.

117

[ROSE91] Rosenblum, M., Ousterhout, J. K., ‘‘The Design and Implementation of a Log-
Structured File System,’’ Proceedings of the Symposium on Operating System Principles, Mon-
terey, CA, October 1991, 1-15. Published as Operating Systems Review 25, 5 (October 1991).
Also available in Transactions on Computer Systems 10, 1 (February 1992), 26-52.

[ROSE92] Rosenblum, M., ‘‘The Design and Implementation of a Log-structured File System,’’
PhD Thesis, University of California, Berkeley, June 1992. Also available as Technical Report
UCB/CSD 92/696.

[RTI83] Relational Technology, Inc., INGRES Reference Manual, 1983.

[SCHL90] Schloss, G., Stonebraker, M., ‘‘Distributed RAID -- A New Multiple Copy Algo-
rithm,’’ Proceedings 6th Annual International Conference on Data Engineering, April 1990.

[SCHM91] Schmuck, F., Wyllie, J., ‘‘Experience with Transactions in QuickSilver,’’ Proceed-
ings of the Thirteenth ACM Symposium on Operating System Principles, Monterey, CA, October
1991, 239-253. Published as Operating Systems Review 25, 5 (October 1991).

[SELT90] Seltzer, M., Chen, P., Ousterhout, J., ‘‘Disk Scheduling Revisited,’’ Proceedings of the
1990 Winter Usenix, Washington, D.C., January 1990, 313-324.

[SELT91] Seltzer, M., Stonebraker, M., ‘‘Read Optimized File Systems: A Performance Evalua-
tion,’’ Proceedings 7th Annual International Conference on Data Engineering, Kobe, Japan,
April 1991, 602-611.

[SELT92] Seltzer, M., Olson, M., ‘‘LIBTP: Portable, Modular Transactions for UNIX,’’
Proceedings of the 1992 Winter Usenix, San Francisco, CA, January 1992, 9-25.

[SPE88A] Spector, Rausch, Bruell, ‘‘Camelot: A Flexible, Distributed Transaction Processing
System,’’ Proceedings of Spring COMPCON 1988, February 1988, 432-437.

[SPE88B] Spector, A, Swedlow, K., Guide to the Camelot Distributed Transaction Facility,
Computer Science Department, Carnegie-Mellon University, Release 1, edition 0.98(51), May
1988.

[STON81] Stonebraker, M., ‘‘Operating System Support for Database Management,’’ Communi-
cations of the ACM 24 7 (July 1981), 412-418.

[STON85] Stonebraker, M., ‘‘Problems in Supporting Data Base Transactions in an Operating
System Transaction Manager,’’ Operating System Review 19 1 (January 1985), 6-14.

[STON89] Stonebraker, M., Aoki, P., Seltzer, M., ‘‘Parallelism in XPRS,’’ Electronics Research
Laboratory, University of California, Berkeley, CA, Report M89/16, February 1989.

[STRA89] VOS Transaction Processing Facility Guide, Stratus Computer, Inc., R215-00, VOS
Release 9.0, November 1989, 1:1-1:14, 4:1-4:30.

[SULL92] Sullivan, M., Olson, M., ‘‘An Index Implementation Supporting Fast Recovery for the
POSTGRES Storage System,’’ Proceedings 8th Annual International Conference on Data
Engineering, Tempe, Arizona, February 1992.

[SULL91] Sullivan, M., Chillarege, R., ‘‘Software Defects and Their Impact on System

118

Availability -- A Study of Field Failures in Operating Systems,’’ Digest 21st International Sym-
posium on Fault Tolerant Computing, June 1991.

[SYB90] Sybase Administration Guide, Sybase Corporation, 3250-4.2-Rev. 3 May 1990.

[TPCB90] Transaction Processing Performance Council, ‘‘TPC Benchmark B Standard
Specification,’’ Waterside Associates, Fremont, CA., August 1990.

[THOM78] Thompson, K., ‘‘Unix Implementation,’’ Bell Systems Technical Journal, 57(6), part
2, July-August 1978, 1931-1946.

[TRA82] Traiger, I., ‘‘Virtual Memory Management for Data Base Systems,’’ Operating System
Review 16 4 (October 1982), 26-48.

[WALK83] Walker, Popek, English, Kline, Thie, ‘‘The LOCUS Distributed Operating System,’’
Proceedings 9th Symposium on Operating System Principles, October 1983, 49-70. Published as
Operating Systems Review 17, 5 (October 1983).

[WRI91] Wright, R., ‘‘Automatic Generation of Synthetic Disk Traces,’’ Hewlett-Packard
Laboratories, HPL-CSP-91-16, July 1991.

