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Fig. 4. USHER components and data flow: (1) model a form and its data,
(2) generate question ordering according to greedy information gain, (3)
instantiate the form in a data entry interface, (4) during and immediately
after data entry, provide dynamic re-ordering, feedback and re-confirmation
according to contextualized error likelihood.

one is based on a modified version of JavaBayes [17], an
open source Java software for Bayesian inference. Because
JavaBayes only supports discrete probability variables, we
implemented the error prediction version of our model using
Infer.NET [18], a Microsoft .NET Framework toolkit for
Bayesian inference.

IV. LEARNING A MODEL FOR DATA ENTRY
The core of the USHER system is its probabilistic model of

the data, represented as a Bayesian network over form ques-
tions. This network captures relationships between different
question elements in a stochastic manner. In particular, given
input values for some subset of the questions of a particular
form instance, the model can infer probability distributions
over values of that instance’s remaining unanswered questions.
In this section, we show how standard machine learning
techniques can be used to induce this model from previous
form entries.
We will use F = {F1, . . . , Fn} to denote a set of random

variables representing the values of n unknown questions
comprising a data entry form. We assume that each question
response takes on a finite set of discrete values; continuous
values can be discretized by dividing the data range into
intervals and assigning each interval one value.2 To learn the
probabilistic model, we assume access to prior entries for the
same form.
USHER first builds a Bayesian network over the form ques-

tions, which will allow it to compute probability distributions
over arbitrary subsets G of form question random variables,
given already entered question responses G′ = g′ for that
instance, i.e., P (G | G′ = g′). Constructing this network
requires two steps: first, the induction of the graph structure
of the network, which encodes the conditional independencies

2Our present formulation ignores dependencies between ordinal values;
modeling such relationships is an important direction of future work.

between the question random variables F; and second, the
estimation of the resulting network’s parameters.
The naı̈ve approach to structure selection would be to

assume complete dependence of each question on every other
question. However, this would blow up the number of free
parameters in our model, leading to both poor generalization
performance of our predictions, and prohibitively slow model
queries. Instead, we learn the structure using the prior form
submissions in the database. In our implementation, we use the
BANJO software [16] for structure learning, which searches
through the space of possible structures using simulated
annealing, and chooses the best structure according to the
Bayesian Dirichlet Equivalence criterion [19]. Figures 1 and
2 show example automatically learned structures for two data
domains.3

Note that in certain domains, form designers may already
have strong common sense notions of questions that should be
related (e.g., education level and income). As a postprocessing
step, the form designer can manually tune the resulting model
to incorporate such intuitions. In fact, the entire structure
could be manually constructed in domains where an expert
has comprehensive prior knowledge of the questions’ interde-
pendencies.
Given a graphical structure of the questions, we can then

estimate the conditional probability tables that parameterize
each node in a straightforward manner, by counting the
proportion of previous form submissions with those response
assignments. The probability mass function for a single ques-
tion Fi with m possible discrete values, conditioned on its set
of parent nodes G from the Bayesian network, is:

P (Fi = fi | {Fj = fj : Fj ∈ G})

=
N(Fi = fi, {Fj = fj : Fj ∈ G})

N({Fj = fj : Fj ∈ G})
. (1)

In this notation, P (Fi = fi | {Fj = fj : Fj ∈ G}) refers
to the conditional probability of question Fi taking value fi,
given that each question Fj in set G takes on value fj . Here,
N(X) is the number of prior form submissions that match the
conditions X — in the denominator, we count the number of
times a previous submission had the subset G of its questions
set according to the listed fj values; and in the numerator, we
count the number of times when those previous submissions
additionally had Fi set to fi.
Because the number of prior form instances may be limited,

and thus may not account for all possible combinations of prior
question responses, equation 1 may assign zero probability to
some combinations of responses. Typically, this is undesir-
able; just because a particular combination of values has not
occurred in the past does not mean that combination cannot
occur at all. We overcome this obstacle by smoothing these
parameter estimates, interpolating each with a background

3It is important to note that the arrows in the network do not represent
causality, only that there is a probabilistic relationship between the questions.


