
Optimization Techniques For Queries with Expensive

Methods

JOSEPH M. HELLERSTEIN

U.C. Berkeley

Object-Relational database management systems allow knowledgeable users to de�ne new data

types, as well as new methods (operators) for the types. This
exibility produces an attendant

complexity, which must be handled in new ways for an Object-Relational database management

system to be e�cient.

In this paper we study techniques for optimizing queries that contain time-consumingmethods.

The focus of traditional query optimizers has been on the choice of join methods and orders;

selections have been handled by \pushdown" rules. These rules apply selections in an arbitrary

order before as many joins as possible, using the assumption that selection takes no time. However,

users of Object-Relational systems can embed complexmethods in selections. Thus selections may

take signi�cant amounts of time, and the query optimization model must be enhanced.

In this paper, we carefully de�ne a query cost framework that incorporates both selectivity and

cost estimates for selections. We developan algorithmcalledPredicate Migration, and prove that it

produces optimal plans for queries with expensive methods. We then describe our implementation

of PredicateMigration in the commercialObject-Relationaldatabasemanagement system Illustra,

and discuss practical issues that a�ect our earlier assumptions. We compare Predicate Migration

to a variety of simpler optimization techniques, and demonstrate that Predicate Migration is the

best general solution to date. The alternative techniques we present may be useful for constrained

workloads.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems|Query Process-

ing

General Terms: Query Optimization, Expensive Methods

Additional Key Words and Phrases: Object-Relational databases, extensibility, Predicate Migra-

tion, predicate placement

Preliminary versions of this work appeared in Proceedings ACM-SIGMOD International Con-

ference on Management of Data, 1993 and 1994. This work was funded in part by a National

Science FoundationGraduate Fellowship. Any opinions, �ndings, conclusions or recommendations

expressed in this publication are those of the author and do not necessarily re
ect the views of the

National Science Foundation. This work was also funded by NSF grant IRI-9157357. This is a pre-

liminary release of an article accepted by ACM Transactions on Database Systems. The de�nitive

version is currently in production at ACM and, when released, will supersede this version.

Address: Author's current address: University of California, Berkeley, EECS Computer Science

Division, 387 Soda Hall #1776, Berkeley, California, 94720-1776. Email: jmh@cs.berkeley.edu.

Web: http://www.cs.berkeley.edu/~jmh/.

ACM Copyright Notice: Copyright 1997 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroomuse is

grantedwithout fee provided that copies are not made or distributed for pro�t or direct commercial

advantage and that copies show this notice on the �rst page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior

speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � J.M. Hellerstein

1. OPENING

One of the major themes of database research over the last 15 years has been the

introduction of extensibility into Database Management Systems (DBMSs). Rela-

tional DBMSs have begun to allow simple user-de�ned data types and functions

to be utilized in ad-hoc queries [Pirahesh 1994]. Simultaneously, Object-Oriented

DBMSs have begun to o�er ad-hoc query facilities, allowing declarative access to

objects and methods that were previously only accessible through hand-coded, im-

perative applications [Cattell 1994]. More recently, Object-Relational DBMSs were

developed to unify these supposedly distinct approaches to data management [Il-

lustra Information Technologies, Inc. 1994; Kim 1993].

Much of the original research in this area focused on enabling technologies, i.e.

system and language designs that make it possible for a DBMS to support extensi-

bility of data types and methods. Considerably less research explored the problem

of making this new functionality e�cient.

This paper addresses a basic e�ciency problem that arises in extensible database

systems. It explores techniques for e�ciently and e�ectively optimizing declara-

tive queries that contain time-consuming methods. Such queries are natural in

modern extensible database systems, which were expressly designed to support

declarative queries over user-de�ned types and methods. Note that \expensive"

time-consuming methods are natural for complex user-de�ned data types, which

are often large objects that encode signi�cant complexity of information (e.g., ar-

rays, images, sound, video, maps, circuits, documents, �ngerprints, etc.) In order to

e�ciently process queries containing expensive methods, new techniques are needed

to handle expensive methods.

1.1 A GIS Example

To illustrate the issues that can arise in processing queries with expensive meth-

ods, consider the following example over the satellite image data presented in the

Sequoia benchmark for Geographic Information Systems (GIS) [Stonebraker et al.

1993]. The query retrieves names of digital \raster" images taken by a satellite;

particularly, it selects the names of images from the �rst time period of observation

that show a given level of vegetation in over 20% of their pixels:

Example 1.

SELECT name

FROM rasters

WHERE rtime = 1

AND veg(raster) > 20;

In this example, the method veg reads in 16 megabytes of raster image data (infrared

and visual data from a satellite), and counts the percentage of pixels that have the

characteristics of vegetation (these characteristics are computed per pixel using a

standard technique in remote sensing [Frew 1995].) The veg method is very time-

consuming, taking many thousands of instructions and I/O operations to compute.

It should be clear that the query will run faster if the selection rtime = 1 is applied
before the veg selection, since doing so minimizes the number of calls to veg. A

traditional optimizer would order these two selections arbitrarily, and might well

Optimization Techniques For Queries with Expensive Methods � 3

apply the veg selection �rst. Some additional logic must be added to the optimizer

to ensure that selections are applied in a judicious order.

While selection ordering such as this is important, correctly ordering selections

within a table-access is not su�cient to solve the general optimization problem of

where to place predicates in a query execution plan. Consider the following example,

which joins the rasters table with a table that contains notes on the rasters:

Example 2.

SELECT rasters.name, notes.note

FROM rasters, notes

WHERE rasters.rtime = notes.rtime

AND notes.author = 'Cli�ord'

AND veg(rasters.raster) > 20;

Traditionally, an optimizer would plan this query by applying all the single-table

selections in the WHERE clause before performing the join of rasters and notes. This
heuristic, often called \predicate pushdown", is considered bene�cial since early

selections usually lower the complexity of join processing, and are traditionally

considered to be trivial to check [Palermo 1974]. However in this example the cost

of evaluating the expensive selection predicate may outweigh the bene�t gained by

doing selection before join. In other words, this may be a case where predicate

pushdown is precisely the wrong technique. What is needed here is \predicate

pullup", namely postponing the time-consuming selection veg(rasters.raster) > 20
until after computing the join of rasters and notes.
In general it is not clear how joins and selections should be interleaved in an opti-

mal execution plan, nor is it clear whether the migration of selections should have an

e�ect on the join orders and methods used in the plan. We explore these query opti-

mization problems from both a theoretical point of view, and from the experience of

producing an industrial-strength implementation for the Illustra Object-Relational

DBMS.

1.2 Bene�ts for RDBMS: Subqueries

It is important to note that expensive methods do not exist only in next-generation

Object-Relational DBMSs. Current relational languages, such as the industry stan-

dard, SQL [ISO ANSI 1993], have long supported expensive predicate methods in

the guise of subquery predicates. A subquery predicate is one of the form expres-

sion operator query. Evaluating such a predicate requires executing an arbitrary

query and scanning its result for matches | an operation that is arbitrarily expen-

sive, depending on the complexity and size of the subquery. While some subquery

predicates can be converted into joins (thereby becoming subject to traditional

join-based optimization and execution strategies) even sophisticated SQL rewrite

systems such as that of DB2/CS [Pirahesh et al. 1992; Seshadri et al. 1996; Seshadri

et al. 1996] cannot convert all subqueries to joins. When one is forced to compute

a subquery in order to evaluate a predicate, then the predicate should be treated

as an expensive method. Thus the work presented in this paper is applicable to

the majority of today's production RDBMSs, which support SQL subqueries but

do not intelligently place subquery predicates in a query plan.

4 � J.M. Hellerstein

1.3 Outline

Chapter 2 presents the theoretical underpinnings of Predicate Migration, an algo-

rithm to optimally place expensive predicates in a query plan. Chapter 3 discusses

three simpler alternatives to Predicate Migration, and uses performance of queries

in Illustra to demonstrate the situations in which each technique works. Chapter 4

discusses related work in the research literature. Concluding remarks and directions

for future research appear in Chapter 5.

1.4 Environment for Experiments

In the course of the paper we will examine the behavior of various algorithms via

both analysis and experiments. All the experiments presented in the paper were

run in the commercial Object-Relational DBMS Illustra. A development version

of Illustra was used, similar to the publicly released version 2.4.1. Except when

otherwise noted, Illustra was run with its default con�guration, with the exception

of settings to produce traces of query plans and execution times. The machine used

was a Sun Sparcstation 10/51 with 2 processors and 64 megabytes of RAM, running

SunOS Release 4.1.3. One Seagate 2.1-gigabyte SCSI disk (model #ST12400N) was

used to hold the databases. The binaries for Illustra were stored on an identical Sea-

gate 2.1-gigabyte SCSI disk, Illustra's logs were stored on a Seagate 1.05-gigabyte

SCSI disk (model #ST31200N), and 139 megabytes of swap space was allocated on

another Seagate 1.05-gigabyte SCSI disk (model #ST31200N).

Due to restrictions from Illustra Information Technologies, most of the perfor-

mance numbers presented in the paper are relative rather than absolute: the graphs

are scaled so that the lowest data point has the value 1.0. Unfortunately, commercial

database systems typically have a clause in their license agreements that prohibits

the release of performance numbers. It is unusual for a database vendor to permit

publication of any performance results at all, relative or otherwise [Carey et al.

1994]. The scaling of results in this paper does not a�ect the conclusions drawn

from the experiments, which are based on the relative performance of various ap-

proaches.

2. A THEORETICAL BASIS

In general it is not clear how joins and selections should be interleaved in an opti-

mal execution plan, nor is it clear whether the migration of selections should have

an e�ect on the join orders and methods used in the plan. This section describes

and proves the correctness of the Predicate Migration Algorithm, which produces

an optimal query plan for queries with expensive predicates. Predicate Migration

modestly increases query optimization time: the additional cost factor is polyno-

mial in the number of operators in a query plan. This compares favorably to the

exponential join enumeration schemes used by standard query optimizers, and is

easily circumvented when optimizing queries without expensive predicates | if

no expensive predicates are found while parsing the query, the techniques of this

section need not be invoked. For queries with expensive predicates, the gains in

execution speed should o�set the extra optimization time. We have implemented

Predicate Migration in Illustra, integrating it with Illustra's standard System R-

style optimizer [Selinger et al. 1979]. With modest overhead in optimization time,

Optimization Techniques For Queries with Expensive Methods � 5

Predicate Migration can reduce the execution time of many practical queries by

orders of magnitude. This is illustrated further below.

2.1 Background: Optimizer Estimates

To develop our optimizations, we must enhance the traditional model for analyzing

query plan cost. This will involve some modi�cation of the usual metrics for the

expense and selectivity of relational operators. This preliminary discussion of our

model will prove critical to the analysis below.

A relational query in a language such as SQL may have a WHERE clause, which

contains an arbitrary Boolean expression over constants and the range variables of

the query. We break such clauses into a maximal set of conjuncts, or \Boolean

factors" [Selinger et al. 1979], and refer to each Boolean factor as a distinct \pred-

icate" to be satis�ed by each result tuple of the query. When we use the term

\predicate" below, we refer to a Boolean factor of the query's where clause. A join

predicate is one that refers to multiple tables, while a selection predicate refers only

to a single table.

2.1.1 Selectivity. Traditional query optimizers compute selectivities for both joins

and selections. That is, for any predicate p (join or selection) they estimate the

value

selectivity(p) =
cardinality(output(p))

cardinality(input(p))
:

Typically these estimations are based on default values and statistics stored by the

DBMS [Selinger et al. 1979], although recent work suggests that inexpensive sam-

pling techniques can be used [Lipton et al. 1993; Hou et al. 1988; Haas et al. 1995].

Accurate selectivity estimation is a di�cult problem in query optimization, and has

generated increasing interest in recent years [Ioannidis and Christodoulakis 1991;

Faloutsos and Kamel 1994; Ioannidis and Poosala 1995; Poosala et al. 1996; Poosala

and Ioannidis 1996]. In Illustra, selectivity estimation for user-de�ned methods can

be controlled through the selfunc
ag of the create function command [Illustra

Information Technologies, Inc. 1994]. In this paper we make the standard assump-

tions of most query optimization algorithms, namely that estimates are accurate

and predicates have independent selectivities.

2.1.2 Di�erential Cost of User-De�ned Methods. In an extensible system such as

Illustra, arbitrary user-de�ned methods may be introduced into both selection and

join predicates. These methods can be written in a general programming language

such as C, or in a database query language, e.g., SQL. In this section we discuss

programming language methods; we handle query language methods and subqueries

in Section 2.1.3.

Given that user-de�ned methods may be written in a general purpose language

such as C, it is di�cult for the database to correctly estimate the cost of predicates

containing these methods, at least initially.1 As a result, Illustra includes syntax

1After repeated applications of a method, one could collect performance statistics and use curve-

�tting techniques to make estimates about the method's behavior| see for example [Boulos et al.

1997].

6 � J.M. Hellerstein

ag name description

percall cpu execution time per invocation, regardless of argument size

perbyte cpu execution time per byte of arguments

byte pct percentage of argument bytes that the method needs to access

Table 1. Method expense parameters in Illustra.

to give users control over the optimizer's estimates of cost and selectivity for user-

de�ned methods.

To introduce a method to Illustra, a user �rst writes the method in C and compiles

it, and then issues Illustra SQL's create function statement, which registers the

method with the database system. To capture optimizer information, the create

function statement accepts a number of special
ags, which are summarized in

Table 1.

The cost of evaluating a predicate on a single tuple in Illustra is computed by

adding up the costs for all the expensive methods in the predicate expression. Given

an Illustra predicate p(a1; : : : ; an), the expense per tuple is recursively de�ned as:

ep =

8>>><
>>>:

Pn

i=1 eai+percall cpu(p)

+perbyte cpu(p) � (byte pct(p)=100) �
Pn

i=1bytes(ai)+access cost

if p is a method

0 if p is a constant or tuple variable

where eai is the recursively computed expense of argument ai, bytes is the expected

(return) size of the argument in bytes, and access cost is the cost of retrieving any

data necessary to compute the method.

Note that the expense of a method re
ects the cost of evaluating the method

on a single tuple, not the cost of evaluating it for every tuple in a relation. While

this \cost per tuple" metric is natural to method invocations, it is less natural for

predicates, since predicates take relations as inputs. Predicate costs are typically

expressed as a function of the cardinality of their input. Thus the per-tuple cost of a

predicate can be thought of as the di�erential cost of the predicate on a relation |

i.e. the increase in processing time that would result if the cardinality of the input

relation were increased by one. This is the derivative of the cost of the predicate

with respect to the cardinality of its input.

2.1.3 Di�erential Cost of Query Language Methods. Since its inception, SQL has

allowed a variety of subquery predicates of the form expression operator query. Such

predicates require computation of an arbitrary SQL query for evaluation. Simple

uncorrelated subqueries have no references to query blocks at higher nesting levels,

while correlated subqueries refer to tuple variables in higher nesting levels.

In principle, the cost to check an uncorrelated subquery selection is the cost ec
of computing and materializing the subquery once, and the cost es of scanning

the subquery's result once per tuple. Thus the di�erential cost of an uncorrelated

subquery is es. This should be intuitive: since the cost of initially materializing

an uncorrelated subquery must be paid regardless of the subquery's location in the

plan, we can ignore the overhead of the computation and materialization cost ec.

Optimization Techniques For Queries with Expensive Methods � 7

Correlated subqueries must be recomputed for each tuple that is checked against

the subquery predicate, and hence the di�erential cost for correlated subqueries is

ec. We ignore es here since scanning can be done during each recomputation, and

does not represent a separate cost. Illustra also allows for user-de�ned methods

that can be written in SQL; these are essentially named, correlated subqueries.

The cost estimates presented here for query language methods form a simple

model and raise some issues in setting costs for subqueries. The cost of a subquery

predicate may be lowered by transforming it to another subquery predicate [Lohman

et al. 1984], and by \early stop" techniques, which stop materializing or scanning a

subquery as soon as the predicate can be resolved [Dayal 1987]. Incorporating such

schemes is beyond the scope of this paper, but including them into the framework of

the later sections merely requires more careful estimates of the di�erential subquery

costs.

2.1.4 Estimates for Joins. In our subsequent analysis, we will be treating joins

and selections uniformly in order to optimally balance their costs and bene�ts. In

order to do this, we will need to measure the expense of a join per tuple of each

of the join's inputs; that is, we need to estimate the di�erential cost of the join

with respect to each input. We are given a join algorithm over outer relation R and

inner relation S, with cost function f(jRj; jSj), where jRj and jSj are the numbers of

tuples in R and S respectively. From this information, we compute the di�erential

cost of the join with respect to its outer relation as @f
@jRj ; the di�erential cost of the

join with respect to its inner relation is @f

@jSj
. We will see in Section 3 that these

partial di�erentials are constants for all the well-known join algorithms, and hence

the cost of a join per tuple of each input is typically well de�ned and independent

of the cardinality of either input.

We also need to characterize the selectivity of a join with respect to each of

its inputs. Traditional selectivity estimation [Selinger et al. 1979] computes the

selectivity sJ of a join J of relations R and S as the expected number of tuples in

the output of J (OJ) over the number of tuples in the Cartesian product of the input

relations, i.e., sJ = jOJ j=jR�Sj = jOJ j=(jRj � jSj). The selectivity sJ(R) of the join

with respect to R can be derived from the traditional estimation: it is the size of

the output of the join relative to the size of R, i.e., sJ(R) = jOJ j=jRj= sJ � jSj. The

selectivity sJ(S) with respect to S is derived similarly as sJ(S) = jOJ j=jSj = sJ � jRj.

Note that a query may contain multiple join predicates over the same set of

relations. In an execution plan for a query, some of these predicates are used in

processing a join, and we call these primary join predicates. Merge join, hash join,

and index nested-loop join all have primary join predicates implicit in their pro-

cessing. Join predicates that are not applicable in processing the join are merely

used to select from its output, and we refer to these as secondary join predicates.

Secondary join predicates are essentially no di�erent from selection predicates, and

we treat them as such. These predicates may then be reordered and even pulled up

above higher join nodes, just like selection predicates. Note, however, that a sec-

ondary join predicate must remain above its corresponding primary join. Otherwise

the secondary join predicate would be impossible to evaluate.2

2Nested-loop join without an index is essentially a Cartesian product followed by selection, but

8 � J.M. Hellerstein

2.2 Optimal Plans for Queries With Expensive Predicates

At �rst glance, the task of correctly optimizing queries containing expensive pred-

icates appears exceedingly complex. Traditional query optimizers already search

a plan space that is exponential in the number of relations being joined; multi-

plying this plan space by the number of permutations of the selection predicates

could make traditional plan enumeration techniques prohibitively expensive. In

this section we prove the reassuring results that:

(1) Given a particular query plan, its selection predicates can be optimally inter-

leaved based on a simple sorting algorithm.

(2) As a result of the previous point, we need merely enhance the traditional join

plan enumeration with techniques to interleave the predicates of each plan

appropriately. This interleaving takes time that is polynomial in the number

of operators in a plan.

2.2.1 Optimal Predicate Ordering in Table Accesses. We begin our discussion by

focusing on the simple case of queries over a single table. Such queries can have

an arbitrary number of selection predicates, each of which may be a complicated

Boolean function over the table's range variables, possibly containing expensive

subqueries or user-de�ned methods. Our task is to order these predicates in such

a way as to minimize the expense of applying them to the tuples of the relation

being scanned.

If the access path for the query is an index scan, then all the predicates that

match the index and can be satis�ed during the scan are applied �rst. This is

because such predicates have essentially zero cost: they are not actually evaluated,

rather the indices are traversed to retrieve only those tuples that qualify.3 We will

represent the subsequent non-index predicates as p1; : : : ; pn, where the subscript of

the predicate represents its place in the order in which the predicates are applied to

each tuple of the base table. We represent the (di�erential) expense of a predicate pi
as epi , and its selectivity as spi . Assuming the independence of distinct predicates,

the cost of applying all the non-index predicates to the output of a scan containing

t tuples is

e = ep1t + sp1ep2 t+ : : :+ sp1sp2 � � �spn�1 epn t:

The following lemma demonstrates that this cost can be minimized by a simple

sort on the predicates. It is analogous to the Least-Cost Fault Detection problem

addressed by Monma and Sidney [Monma and Sidney 1979].

Lemma 1. The cost of applying expensive selection predicates to a set of tuples

is minimized by applying the predicates in ascending order of the metric

rank =
selectivity� 1

di�erential cost

inexpensive predicates on an unindexed nested-loop join may be considered primary join predi-

cates, since they will not be pulled up. All expensive join predicates are considered secondary,

since they are not essential to the join method and may be pulled up in the plan.
3It is possible to index tables on method values as well as on table attributes [Maier and Stein

1986; Lynch and Stonebraker 1988]. If a scan is done on such a \method" index, then predicates

over the method may be satis�ed during the scan without invoking the method. As a result, these

predicates are considered to have zero cost, regardless of the method's expense.

Optimization Techniques For Queries with Expensive Methods � 9

Plan 1

veg(raster) > 50

Select

ScanScan

rasters rasters

Select Select

Select

rtime = 1

veg(raster) > 50

rank = − rank = −0.001

rank = −rank = −0.001

 Plan 2
(ordered by rank)

rtime = 1

Fig. 1. Two execution plans for Example 1.

Query Plan Optimization Time Execution Time

CPU Elapsed CPU Elapsed

Plan 1 0.01 sec 0.02 sec 2 min 18.09 sec 3 min 25.40 sec

Plan 2 0.10 sec 0.10 sec 0 min 0.03 sec 0 min 0.10 sec

Table 2. Performance of plans for Example 1.

Thus we see that for single table queries, predicates can be optimally ordered by

simply sorting them by their rank. Swapping the position of predicates with equal

rank has no e�ect on the cost of the sequence.

To see the e�ects of reordering selections, we return to Example 1 from the

introduction. We ran the query in Illustra without the rank-sort optimization,

generating Plan 1 of Figure 1, and with the rank-sort optimization, generating

Plan 2 of Figure 1. As we expect from Lemma 1, the �rst plan has higher cost than

the second plan, since the second is correctly ordered by rank. The optimization

and execution times were measured for both runs, as illustrated in Table 2. We

see that correctly ordering selections can improve query execution time by orders

of magnitude, even for simple queries of two predicates and one relation.

2.2.2 Predicate Migration: Placing Selections Among Joins. In the previous sec-

tion, we established an optimal ordering for selections. In this section, we explore

the issue of ordering selections among joins. Since we will eventually be applying

our optimization to each plan produced by a typical join-enumerating query opti-

mizer, our model here is that we are given a �xed join plan, and want to minimize

the plan's cost under the constraint that we may not change the order of the joins.

This section develops a polynomial-time algorithm to optimally place selections

and secondary join predicates in a given join plan. In Section 2.5 we show how to

e�ciently integrate this algorithm into a traditional optimizer, so that the optimal

plan is chosen from the space of all possible join orders, join methods, and selection

placements.

2.2.3 De�nitions. The thrust of this section is to handle join predicates in our

ordering scheme in the same way that we handle selection predicates: by having

them participate in an ordering based on rank.

De�nition 1. A plan tree is a tree whose leaves are scan nodes, and whose internal

nodes are either joins or selections. Tuples are produced by scan nodes and
ow

10 � J.M. Hellerstein

upwards along the edges of the plan tree.4

Some optimization schemes constrain plan trees to be within a particular class,

such as the left-deep trees, which have scans as the right child of every join. Our

methods will not require this limitation.

De�nition 2. A stream in a plan tree is a path from a leaf node to the root.

Figure 3 illustrates a plan tree, with one of its two plan streams outlined. Within

the framework of a single stream, a join node is simply another predicate; although

it has a di�erent number of inputs than a selection, it can be treated in an identical

fashion. For each input to the join one can use the de�nitions of Section 2.1.4 to

compute the di�erential cost of the join on that stream, the selectivity on that

stream, and hence the rank of the join in that stream. These estimations require

some assumptions about the join cost and selectivity modelling, which we revisit

in Section 3. For the purposes of this section, however, we assume these costs and

selectivities are estimated accurately.

In later analysis it will prove useful to assume that all nodes have distinct ranks.

To make this assumption, we must prove that swapping nodes of equal rank has no

e�ect on the cost of a plan.

Lemma 2. Swapping the positions of two equi-rank nodes has no e�ect on the

cost of a plan tree.

Knowing this, we could achieve a unique ordering on rank by assigning unique ID

numbers to each node in the tree and ordering nodes on the pair (rank, ID). Rather

than introduce the ID numbers, however, we will make the simplifying assumption

that ranks are unique.

In moving selections around a plan tree, it is possible to push a selection down

to a location in which the selection cannot be evaluated. This notion is captured

in the following de�nition:

De�nition 3. A plan stream is semantically incorrect if some predicate in the

stream refers to attributes that do not appear in the predicate's input. Otherwise

it is semantically correct. A plan tree is semantically incorrect if it contains a

semantically incorrect stream; otherwise it is semantically correct.

Trees can be rendered semantically incorrect by pushing a secondary join predicate

below its corresponding primary join, or by pulling a selection from one input

stream above a join, and then pushing it down below the join into the other input

stream. We will need to be careful later on to rule out these possibilities.

In our subsequent analysis, we will need to identify plan trees that are equiva-

lent except for the location of their selections and secondary join predicates. We

formalize this as follows:

De�nition 4. Two plan trees T and T
0 are join-order equivalent if they contain

the same set of nodes, and there is a bijection g from the streams of T to the

streams of T 0 such that for any stream s of T , s and g(s) contain the same join

nodes in the same order.

4We do not consider common subexpressions or recursive queries, and hence disallow plans that

are dags or general graphs.

Optimization Techniques For Queries with Expensive Methods � 11

2.2.4 The Predicate Migration Algorithm: Optimizing a Plan Tree By Optimiz-

ing its Streams. Our approach to optimizing a plan tree will be to treat each of its

streams individually, and sort the nodes in the streams based on their rank. Un-

fortunately, sorting a stream in a general plan tree is not as simple as sorting the

selections in a table access, since the order of nodes in a stream is constrained in two

ways. First, we are not allowed to reorder join nodes, since join-order enumeration

is handled separately from Predicate Migration. Second, we must ensure that each

stream remains semantically correct. In some situations, these constraints may pre-

clude the option of simply ordering a stream by ascending rank, since a predicate

p1 may be constrained to precede a predicate p2, even though rank(p1) > rank(p2).

In such situations, we will need to �nd the optimal ordering of predicates in the

stream subject to the precedence constraints.

Monma and Sidney [Monma and Sidney 1979] have shown that �nding the op-

timal ordering for a single stream under these kinds of precedence constraints can

be done fairly simply. Their analysis is based on two key results:

(1) A set S of plan nodes can be grouped into job modules, where a job module is

de�ned as a subset of nodes S0 � S such that for each element n of S�S
0, n has

the same constraint relationship (must precede, must follow, or unconstrained)

with respect to all nodes in S
0. An optimal ordering for a job module forms a

subset of an optimal ordering for the entire stream.

(2) For a jobmodule fp1; p2g such that p1 is constrained to precede p2 and rank(p1) >

rank(p2), an optimal ordering will have p1 directly preceding p2, with no other

predicates in between.

Monma and Sidney use these principles to develop the Series-Parallel Algorithm

Using Parallel Chains, an O(n logn) algorithm that can optimize an arbitrarily

constrained stream. The algorithm repeatedly isolates job modules in a stream,

optimizing each job module individually, and using the resulting orders for job

modules to �nd a total order for the stream. We use a version of their algorithm

as a subroutine in our optimization algorithm:

Predicate Migration Algorithm: To optimize a plan tree, push all predicates

down as far as possible, and then repeatedly apply the Series-Parallel Algorithm

Using Parallel Chains [Monma and Sidney 1979] to each stream in the tree, until

no more progress can be made.

Pseudo-code for the Predicate Migration Algorithm is given in Figure 2, and we

provide a brief explanation of the algorithm here. The constraints in a plan tree

are not general series-parallel constraints, and hence our version of Monma and

Sidney's Series-Parallel Algorithm Using Parallel Chains is somewhat simpli�ed.

The function predicate migration �rst pushes all predicates down as far as

possible. This pre-processing is typically automatic in most System R-style opti-

mizers. The rest of predicate migration is made up of a nested loop. The outer

do loop ensures that the algorithm terminates only when no more progress can be

made (i.e. when all streams are optimally ordered). The inner loop cycles through

all the streams in the plan tree, applying a simple version of Monma and Sidney's

Series-Parallel Algorithm using Parallel Chains.

12 � J.M. Hellerstein

/* Optimally locate selections in a query plan tree. */

predicate_migration(tree)

{

push all predicates down as far as possible;

do {

for (each stream in tree)

series_parallel(stream);

} until no progress can be made;

}

/* Monma & Sidney's Series-Parallel Algorithm */

series_parallel(stream)

{

for (each join node J in stream, from top to bottom) {

if (there is a node N constrained to follow J,

and N is not constrained to precede anything else)

/* nodes following J form a job module */

parallel_chains(all nodes constrained to follow J);

}

/* stream is now a job module */

parallel_chains(stream);

discard any constraints introduced by parallel_chains;

}

/* Monma and Sidney's Parallel Chains Algorithm */

parallel_chains(module)

{

chain = {nodes in module that form a chain of constraints};

/* By default, each node forms a group by itself */

find_groups(chain);

if (groups in module aren't sorted by their group's ranks)

sort nodes in module by their group's ranks; /* progress! */

/* the resulting order reflects the optimized module */

introduce constraints to preserve the resulting order;

}

/* find adjacent groups constrained to be ill-ordered & merge them. */

find_groups(chain)

{

initialize each node in chain to be in a group by itself;

while (any 2 adjacent groups a,b aren't ordered by ascending group rank) {

form group ab of a and b;

group_cost(ab) = group_cost(a) + (group_selectivity(a) * group_cost(b));

group_selectivity(ab) = group_selectivity(a) * group_selectivity(b);

}

}

Fig. 2. Predicate Migration Algorithm.

Optimization Techniques For Queries with Expensive Methods � 13

The series parallel routine traverses the stream from the top down, repeatedly

�nding modules of the stream to optimize. Given a module, it calls parallel -

chains to order the nodes of the module optimally. When parallel chains �nds

the optimal ordering for the module, it introduces constraints to maintain that

ordering as a chain of nodes. Thus series parallel uses the parallel chains

subroutine to convert the stream, from the top down, into a chain. Once the lowest

join node of the stream has been handled by parallel chains, the resulting stream

has a chain of nodes and possibly a set of unconstrained selections at the bottom.

This entire stream is a job module, and parallel chains can be called to optimize

the stream into a single ordering.

Our version of the Parallel Chains algorithm expects as input a set of nodes that

can be partitioned into two subsets: one of nodes that are constrained to form

a chain, and another of nodes that are unconstrained relative to any node in the

entire set. Note that by traversing the stream from the top down, series parallel

always provides correct input to parallel chains.5 The parallel chains routine

�rst �nds groups of nodes in the chain that are constrained to be ordered sub-

optimally (i.e. by descending rank). As shown by Monma and Sidney [Monma

and Sidney 1979], there is always an optimal ordering in which such nodes are

adjacent, and hence such nodes may be considered as an undivided group. The

find groups routine identi�es the maximal-sized groups of poorly-ordered nodes.

After all groups are formed, the module can be sorted by the rank of each group.

The resulting total order of the module is preserved as a chain by introducing

extra constraints. These extra constraints are discarded after the entire stream is

completely ordered.

When predicate migration terminates, it leaves a tree in which each stream has

been ordered by the Series-Parallel Algorithm using Parallel Chains. The interested

reader is referred to [Monma and Sidney 1979] for justi�cation of why the Series-

Parallel Algorithm using Parallel Chains optimally orders a stream.

2.3 Predicate Migration: Proofs of Optimality

Upon termination, the Predicate Migration Algorithm produces a semantically cor-

rect tree in which each stream is well-ordered according to Monma and Sidney; that

is each stream, taken individually, is optimally ordered subject to its precedence

constraints. We proceed to prove that the Predicate Migration Algorithm is guar-

anteed to terminate in polynomial time, and that the resulting tree of well-ordered

streams represents the optimal choice of predicate locations for the entire plan tree.

Lemma 3. Given a join node J in a module, adding a selection or secondary

join predicate R to the stream does not increase the rank of J 's group.

Lemma 4. For any join J and selection or secondary join predicate R in a plan

tree, if the Predicate Migration Algorithm ever places R above J in any stream, it

will never subsequently place J below R.

5Note also that for each module S0 that series parallel constructs from a stream S, each node

of S � S0 is constrained in exactly the same way with respect to each node of S0: every element

of S � S0 is either a primary join predicate constrained to precede all of S0, or a selection or

secondary join predicate that is unconstrained with respect to all of S0. Thus parallel chains is

always passed a valid job module.

14 � J.M. Hellerstein

With Predicate Migration

Join

rtime = rtime

Select
veg(raster) > 50

outer rank = −41.46

rank = −0.001

Without Predicate Migration

Scan
rasters

Select

Scan

author = ’Clifford’

notes

rank = −

outer rank = −41.46

Select

Scan

veg(raster) > 50

rasters

Select

Scan

author = ’Clifford’

notes

rank = −0.001

Join

rtime = rtime

rank = −

An unoptimized
 plan stream

Fig. 3. Plans for Example 2, with and without Predicate Migration.

As a corollary to Lemma 4, we can modify the parallel chains routine: instead

of actually sorting a module, it can simply pull up each selection or secondary

join above as many groups as possible, thus potentially lowering the number of

comparisons in the routine. This optimization is implemented in Illustra.

Theorem 1. Given any plan tree as input, the Predicate Migration Algorithm

is guaranteed to terminate in polynomial time, producing a semantically correct,

join-order equivalent tree in which each stream is well-ordered.

We have now seen that the Predicate Migration Algorithm correctly orders each

stream within a polynomial number of steps. All that remains is to show that the

resulting tree is in fact optimal. We do this by showing that:

(1) There is only one semantically correct tree of well-ordered streams.

(2) Among all semantically correct trees, some tree of well-ordered streams is of

minimum cost.

(3) Since the output of the Predicate Migration Algorithm is the semantically

correct tree of well-ordered streams, it is a minimum cost semantically correct

tree.

Theorem 2. For every plan tree T1 there is a unique semantically correct, join-

order equivalent plan tree T2 with only well-ordered streams. Moreover, among all

semantically correct trees that are join-order equivalent to T1, T2 is of minimum

cost.

2.4 Example 2 Revisited

Theorems 1 and 2 demonstrate that the Predicate Migration Algorithm produces

our desired minimum-cost interleaving of predicates. As a simple illustration of

the e�cacy of Predicate Migration, we go back to Example 2 from the introduc-

tion. Figure 3 illustrates plans generated for this query by Illustra running both

with and without Predicate Migration. The performance measurements for the two

plans appear in Table 3. It is clear from this example that failure to pull expen-

sive selections above joins can cause performance degradation factors of orders of

magnitude. A more detailed study of placing selections among joins appears in the

next section.

Optimization Techniques For Queries with Expensive Methods � 15

Query Plan Optimization Time Execution time

CPU Elapsed CPU Elapsed

Without Pred. Mig. 0.10 sec 0.10 sec 2 min 24.49 sec 3 min 33.97 sec

With Pred. Mig. 0.30 sec 0.30 sec 0 min 0.04 sec 0 min 0.10 sec

Table 3. Performance of plans for Example 2.

2.5 Preserving Opportunities for Pruning

In the previous section we presented the Predicate Migration Algorithm, an algo-

rithm for optimally placing selection and secondary join predicates within a plan

tree. If applied to every possible join plan for a query, the Predicate Migration

Algorithm is guaranteed to generate a minimum-cost plan for the query.

A traditional query optimizer, however, does not enumerate all possible plans for

a query; it does some pruning of the plan space while enumerating plans [Selinger

et al. 1979]. Although this pruning does not a�ect the basic exponential nature

of join plan enumeration, it can signi�cantly lower the amounts of space and time

required to optimize queries with many joins. The pruning in a System R-style

optimizer is done by a dynamic programming algorithm, which builds optimal plans

in a bottom-up fashion. When all plans for some subexpression of a query are

generated, most of the plans are pruned out because they are of suboptimal cost.

Unfortunately, this pruning does not integrate well with Predicate Migration.

To illustrate the problem, we consider an example. We have a query that joins

three relations, A;B;C, and performs an expensive selection on C. A relational

algebra expression for such a query, after the traditional predicate pushdown, is

A 1 B 1 �p(C). A traditional query optimizer would, at some step, enumerate all

plans for B 1 �p(C), and discard all but the optimal plan for this subexpression.

Assume that because selection predicate p has extremely high rank, it will always

be pulled above all joins in any plan for this query. Then the join method that

the traditional optimizer saved for B 1 �p(C) is quite possibly sub-optimal, since

in the �nal tree we would want the optimal plan for the subexpression B 1 C,

not B 1 �p(C). In general, the problem is that subexpressions of the dynamic

programming algorithm may not actually form part of the optimal plan, since

predicates may later migrate. Thus the pruning done during dynamic programming

may actually discard part of an optimal plan for the entire query.

Although this looks troublesome, in many cases it is still possible to allow pruning

to happen: particularly, a subexpression may have its plans pruned if they will

not be changed by Predicate Migration. For example, pruning can take place for

subexpressions in which there are no expensive predicates. The following lemma

helps to isolate more situations in which pruning may take place:

Lemma 5. For a selection or secondary join predicate R in a subexpression, if

the rank of R is greater than the rank of any join in any plan for the subexpression,

then in the optimal complete tree R will appear above the highest join in a subtree

for the subexpression.

This lemma can be used to allow some predicate pullup to happen during join

enumeration. If all the expensive predicates in a subexpression have higher rank

16 � J.M. Hellerstein

than any join in any subtree for the subexpression, then the expensive predicates

may be pulled to the top of the subtrees, and the subexpression without the ex-

pensive predicates may be pruned as usual. As an example, we return to our

subexpression above containing the join of B and C, and the expensive selection

�p(C). Since we assumed that �p has higher rank than any join method for B and

C, we can prune all subtrees for B 1 C (and C 1 B) except the one of minimal

cost | we know that �p will reside above any of these subtrees in an optimal plan

tree for the full query, and hence the best subplan for joining B and C is all that

needs to be saved.6

Techniques of this sort, based on the observation of Lemma 5, will be used

in Section 3.2.4 to allow Predicate Migration to be e�ciently integrated into a

System R-style optimizer. As an additional optimization, note that the choice of

an optimal join algorithm is sometimes independent of the sizes of the inputs, and

hence of the placement of selections. For example, if both of the inputs to a join are

sorted on the join attributes, one may conclude that merge join will be a minimal-

cost algorithm, regardless of the sizes of the inputs. This is not implemented in

Illustra, but such cardinality-independent heuristics can be used to allow pruning

to happen even when all selections cannot be pulled out of a subtree during join

enumeration.

3. PRACTICAL CONSIDERATIONS

In the previous section we demonstrated that Predicate Migration produces prov-

ably optimal plans, under the assumptions of a theoretical cost model. In this

section we consider bringing the theory into practice, by addressing a few impor-

tant questions:

(1) Are the assumptions underlying the theory correct?

(2) Are there simple heuristics that work as well as Predicate Migration in gen-

eral? In constrained situations?

(3) How can Predicate Migration be e�ciently integrated with a standard op-

timizer? Does it require signi�cant modi�cation to the existing optimization

code?

The goal of this section is to guide query optimizer developers in choosing a prac-

tical optimization solution for queries with expensive predicates; in particular, one

whose implementation and performance complexity is suited to their application

domain. As a reference point, we describe our experience implementing the Predi-

cate Migration algorithm and three simpler heuristics in Illustra. We compare the

performance of the four approaches on di�erent classes of queries, attempting to

highlight the simplest solution that works for each class.

Table 4 provides a quick reference to the algorithms, their applicability and lim-

itations. When appropriate, the `C Lines' �eld gives a rough estimate of the total

number of lines of C code (with comments) needed in Illustra's System R-style

optimizer to support each algorithm. Note that much of the code is shared across

6Of course one may also choose to save particular subtrees for other reasons, such as \interesting

orders" [Selinger et al. 1979].

Optimization Techniques For Queries with Expensive Methods � 17

Algorithm Works For: : : C Lines Comments

queries without expensive

predicates, and queries OK for single table queries,

PushDown+ without joins 900 and thus some OODBMSs.

queries with either free OK when selection costs

or very expensive dominate. May be OK for

PullUp selections 1400 MMDBMSs.

queries with at most Also used as a preprocessor

PullRank one join 2000 for Predicate Migration.

Minor estimation problems.

Predicate Can cause enlargement of

Migration all queries 3000 System R plan space.

Exhaustive all queries 1100 complexity.

Table 4. Summary of algorithms.

algorithms: for PullUp, PullRank and Predicate Migration, the code for each entry

forms a superset of the code of the preceding entries.

3.1 Background: Analyzing Optimizer E�ectiveness

This section analyzes the e�ectiveness of a variety of strategies for predicate place-

ment. Predicate Migration produces optimal plans in theory, but we want to com-

pare it with a variety of alternative strategies that | though not theoretically

optimal | are easier to implement, and seem to be sensible optimization heuris-

tics. Developing a methodology to carry out such a comparison is particularly tricky

for query optimizers. In this section we discuss the choices for analyzing optimizer

e�ectiveness in practice, and describe the motivation for our chosen evaluation ap-

proach.

3.1.1 The Di�culty of Optimizer Evaluation. Analyzing the e�ectiveness of an

optimizer is a problematic undertaking. Optimizers choose plans from an enormous

search space, and within that search space plans can vary in performance by orders

of magnitude. In addition, optimization decisions are based on selectivity and cost

estimations that are often erroneous [Ioannidis and Christodoulakis 1991; Ioannidis

and Poosala 1995]. As a result, even an exhaustive optimizer that compares all

plans may not choose the best one, since its cost and selectivity estimates can be

inaccurate.7

As a result, it is a truism in the database community that a query optimizer

is \optimal enough" if it avoids the worst query plans and generally picks good

query plans [Krishnamurthy et al. 1986; Mackert and Lohman 1986a; Mackert and

Lohman 1986b; Swami and Iyer 1992]. What remains open to debate are the de�ni-

tions of \generally" and \good" in the previous statement. In any situation where

an optimizer chooses a suboptimal plan, a database and query can be constructed

to make that error look arbitrarily detrimental. Database queries are by de�nition

7In fact, the pioneering designs in query \optimization" were more accurately described by their

authors as schemes for \query decomposition" [Wong and Yousse� 1976] and \access path selec-

tion" [Selinger et al. 1979].

18 � J.M. Hellerstein

ad hoc, which leaves us with a signi�cant problem: how does one intelligently an-

alyze the practical e�cacy of an inherently rough technique over an in�nite space

of inputs?

Three approaches to this problem have traditionally been taken in the literature.

|Micro-Benchmarks: Basic query operators can be executed, and an optimizer's

cost and selectivity modeling can be compared to actual performance. This is the

technique used to study the R* distributed DBMS [Mackert and Lohman 1986a;

Mackert and Lohman 1986b], and it is very e�ective for isolating inaccuracies in

an optimizer's cost model.

|Randomized Macro-Benchmarks: Random data sets and queries can be

generated, and various optimization techniques used to generate competing plans.

This approach has been used in many studies (e.g., [Swami and Gupta 1988],

[Ioannidis and Kang 1990], [Hong and Stonebraker 1993], etc.) to give a rough

sense of average-case optimizer e�ectiveness, over a large space of workloads.

|StandardMacro-Benchmarks: An in
uential person or committee can de�ne

a standard representative workload (data and queries), and di�erent strategies

can be compared on this workload. Examples of such benchmarks include the

Wisconsin benchmark [Bitton et al. 1983], AS3AP [Turby�ll et al. 1989], and

TPC-D [Raab 1995]. Such domain-speci�c benchmarks [Gray 1991] are often

based on models of real-world workloads. Standard benchmarks typically expose

whether or not a system implements solutions to important details exposed by

the benchmark, e.g. use of indices and reordering of joins in the Wisconsin bench-

mark, or intelligent handling of complex subqueries in TPC-D. If an optimizer

chooses a particular execution strategy then it does well, otherwise it does quite

poorly. The evaluation of the optimizer in these benchmarks is binary, in the

sense that typically the relative performance of the good and bad strategies is

not interesting; what is important is that the optimizer choose the \correct ac-

cess plan" [Turby�ll et al. 1989]. It is worth noting that these binary benchmarks

have proven extremely in
uential, both in the commercial arena and in justifying

new optimizer research (especially in the case of TPC-D).

An alternative to benchmarking is to run queries that expose the logic that makes

one optimization strategy work where another fails. This binary outlook is quite

similar to the way in which the Wisconsin and TPC-D benchmarks re
ect optimizer

e�ectiveness, but is di�erent in the sense that there is no claim that the workload

re
ects any typical real-world scenario. Rather than being a \performance study"

in any practical sense, this is a form of empirical algorithm analysis, providing

insight into the algorithms rather than a quantitative comparison. The conclusion

of such an analysis is not to identify which optimization strategy should be used in

practice, but rather to highlight when and why each of the various schemes succeeds

and fails. This avoids the issue of identifying a \typical" workload, and hopefully

presents enough information to predict the behavior of each strategy for any such

workload.

Extensible database management systems are only now being deployed in com-

ercial settings, so there is little consensus on the de�nition of a real-world workload

containing expensive methods. As a result we decided not to de�ne a macro-

benchmark for expensive methods. We could have devised micro-benchmarks to

Optimization Techniques For Queries with Expensive Methods � 19

Table #Tuples #8K Pgs Table #Tuples #8K Pgs

T1 2 980 75 T6 45 900 1 134

T2 8 730 216 T7 65 810 1 618

T3 28 640 705 T8 71 560 1 759

T4 34 390 847 T9 77 310 1 900

T5 40 150 988 T10 97 230 2 389

Table 5. Benchmark database.

test cost and selectivity estimation techniques for expensive predicates. However,

the focus of our work was on optimization strategies rather than estimation tech-

niques, so we have left this exercise for future work, as discussed in Section 5.3.

We rejected the idea of a randomized macro-benchmark as well, for two reasons.

First, we do not yet feel able to de�ne a random distribution of queries that would

re
ect \typical" use of expensive methods. More importantly, a macro-benchmark

would not have provided us insight into the reasons why each optimization strategy

succeeded or failed. Since our goal was to further our understanding of the opti-

mization strategies in practice, we chose to do an algorithm analysis rather than a

benchmark.

3.1.2 Experiments in This Section. This section presents an empirical algorithm

analysis of Predicate Migration and alternate approaches, to illustrate the scenarios

in which each approach works and fails. In order to do this, we picked the simplest

queries we could develop that would illustrate the tradeo�s between di�erent choices

in predicate placement. As we will see, approaches other than Predicate Migration

can fail even on simple queries. This is indicative of the di�culty of predicate

placement, and supports our decision to forgo a large-scale randomized macro-

benchmark.

In the course of section, we will be using the performance of SQL queries run

in Illustra to demonstrate the strengths and limitations of the algorithms. The

database schema for these queries is based on the randomized benchmark of Hong

and Stonebraker [Hong and Stonebraker 1993], with the cardinalities scaled up by

a factor of 10. All tuples contain 100 bytes of user data. The tables are named

with numbers in ascending order of cardinality; this will prove important in the

analysis below. Attributes whose names start with the letter `u' are unindexed,

while all other attributes have B+-tree indices de�ned over them. Numbers in

attribute names indicate the approximate number of times each value is repeated

in the attribute. For example, each value in a column named ua20 is duplicated

about 20 times. Some physical characteristics of the relations appear in Table 5.

The entire database, with indices and catalogs, was about 155 megabytes in size.

While this is not enormous by modern standards, it is non-negligible, and was a

good deal larger than our virtual memory and bu�er pool.

In the example queries below, we refer to user-de�ned methods. Numbers in

the method names describe the cost of the methods in terms of random (i.e. non-

sequential) database I/Os. For example, the method costly100 takes as much time

per invocation as the I/O time used by a query that touches 100 unclustered tuples

in the database. In our experiments, however, the methods did not perform any

20 � J.M. Hellerstein

Query 1:

SELECT T3.a1

FROM T3, T2

WHERE T2.a1 = T3.ua1

AND costly100(T3.ua1) < 0;

0

1

2

3

ex
ec

ut
io

n
ti

m
e

of
 p

la
n

(s
ca

le
d)

PushDown
PullRank
Predicate Migration
PullUp

Fig. 4. Query execution times for Query 1.

computation; rather, we counted how many times each method was invoked, mul-

tiplied that number by the method's cost, and added the total to the measurement

of the running time for the query. This allowed us to measure the performance

of queries with very expensive methods in a reasonable amount of time; other-

wise, comparisons of good plans to suboptimal plans would have been prohibitively

time-consuming.

3.2 Predicate Placement Schemes, and The Queries They Optimize

In this section we analyze four algorithms for handling expensive predicate place-

ment, each of which can be easily integrated into a System R-style query optimizer.

We begin with the assumption that all predicates are initially placed as low as

possible in a plan tree, since this is the typical default in existing systems.

3.2.1 PushDown with Rank-Ordering. In our version of the traditional selection

pushdown algorithm, we add code to order selections. This enhanced heuristic

guarantees optimal plans for queries on single tables.

The cost of invoking each selection predicate on a tuple is estimated through

system metadata. The selectivity of each selection predicate is similarly estimated,

and selections over a given relation are ordered in ascending order of rank. As we

saw in Section 2, such ordering is optimal for selections, and intuitively it makes

sense: the lower the selectivity of the predicate, the earlier we wish to apply it,

since it will �lter out many tuples. Similarly, the cheaper the predicate, the earlier

we wish to apply it, since its bene�ts may be reaped at a low cost.8

Thus a crucial �rst step in optimizing queries with expensive selections is to

order selections by rank. This represents the minimum gesture that a system can

make towards optimizing such queries, providing signi�cant bene�ts for any query

with multiple selections. It can be particularly useful for current Object-Oriented

DBMSs (OODBMSs), in which the currently typical ad-hoc query is a collection

scan, not a join.9 For systems supporting joins, however, PushDown may often

produce very poor plans, as shown in Figure 4. All the remaining algorithms order

8This intuition applies when 0 � selectivity � 1. Though the intuition for selectivity > 0 is

di�erent, rank-ordering is optimal regardless of selectivity.
9This may change in the future, since most of the OODBMS vendors plan to support the OQL

query language, which includes facilities for joins [Cattell 1994].

Optimization Techniques For Queries with Expensive Methods � 21

Query 2:

SELECT T3.a1

FROM T3, T10

WHERE T10.a1 = T3.ua1

AND costly100(T3.ua1) < 0;

0.0

0.5

1.0

ex
ec

ut
io

n
ti

m
e

of
 p

la
n

(s
ca

le
d)

PushDown
PullRank
Predicate Migration
PullUp

Fig. 5. Query execution times for Query 2.

their selections by rank, and we will not mention selection-ordering explicitly from

this point on. In the remaining sections we focus on how the other algorithms order

selections with respect to joins.

3.2.2 PullUp. PullUp is the converse of PushDown. In PullUp, all selections with

non-trivial cost are pulled to the very top of each subplan that is enumerated during

the System R algorithm; this is done before the System R algorithm chooses which

subplans to keep and which to prune. The result is equivalent to removing the

expensive predicates from the query, generating an optimal plan for the modi�ed

query, and then pasting the expensive predicates onto the top of that plan.

PullUp represents the extreme in eagerness to pull up selections, and also the

minimum complexity required, both in terms of implementation and running time,

to intelligently place expensive predicates among joins. Most systems already esti-

mate the selectivity of selections, so in order to add PullUp to an existing optimizer,

one needs to add only three simple services: a facility to collect cost information

for predicates, a routine to sort selections by rank, and code to pull selections up

in a plan tree.

Though this algorithm is not particularly subtle, it can be a simple and e�ective

solution for those systems in which predicates are either negligibly cheap (e.g. less

time-consuming than an I/O) or extremely expensive (e.g. more costly than joining

a number of relations in the database). It is di�cult to quantify exactly where to

draw the lines for these extremes in general, however, since the optimal placement

of the predicates depends not only on the costs of the selections, but also their

selectivities, and on the costs and selectivities of the joins. Selectivities and join

costs depend on the sizes and contents of relations in the database, so this is a data-

speci�c issue. PullUp may be an acceptable technique in Main Memory Database

Management Systems (MMDBMSs), for example, or in disk-based systems that

store small amounts of data on which very complex operations are performed. Even

in such systems, however, PullUp can produce very poor plans if join selectivities

are greater than 1. This problem can be avoided by using method caching, as

described in [Hellerstein and Naughton 1996].

Query 2 (Figure 5) is the same as Query 1, except T10 is used instead of T2.
This minor change causes PullUp to choose a suboptimal plan. Recall that table

names re
ect the relative cardinality of the tables, so in this case T10.ua1 has more

22 � J.M. Hellerstein

Query 3:

SELECT T3.a1

FROM T3, T10

WHERE T10.a1 = T3.ua1

AND costly1(T3.ua100) < 0;

0

2

4

6

8

ex
ec

ut
io

n
ti

m
e

of
 p

la
n

(s
ca

le
d)

PushDown
PullRank
Predicate Migration
PullUp

Fig. 6. Query execution times for Query 3.

values than T3.ua1, and hence the join of T10 and T3 has selectivity 1 over T3.
As a result, pulling up the costly selection does not decrease the number of calls

to costly100, and increases the cost of the join of T10 and T3. All the algorithms

pick the same join method for Query 2, but PullUp incorrectly places the costly

predicate above the join.

Note, however, the unusual graph in Figure 5: all of the bars are about the

same height! The point of this experiment is to highlight the fact that the error

made by PullUp is insigni�cant. This is because the costly100 method requires

100 random I/Os per tuple, while a join typically costs at most a few I/Os per

tuple, and usually much less. Thus in this case the extra work performed by the

join in Query 2 is insigni�cant compared to the time taken for computing the costly

selection. The lesson here is that in general, over-eager pullup is less dangerous than

under-eager pullup, since join is usually less expensive than an expensive predicate.

As a heuristic, it is safer to overdo a cheap operation than an expensive one.

On the other hand, one would like to make as few over-eager pullup decisions

as possible. As we see in Figure 6, over-eager pullup can indeed cause signi�cant

performance problems for some queries, especially if the predicates are not very

expensive. Thus while it may be a \safer bet" in general to be over-eager in pullup

rather than under-eager, neither heuristic is generally e�ective. In the remaining

heuristics, we attempt to �nd a happy medium between PushDown and PullUp.

3.2.3 PullRank. Like PullUp, the PullRank heuristic works as a subroutine of the

System R algorithm: every time a join is constructed for two (possibly derived) in-

put relations, PullRank examines the selections over the two inputs. Unlike PullUp,

PullRank does not always pull selections above joins; it makes decisions about se-

lection pullup based on rank. The cost and selectivity of the join are calculated

for both the inner and outer stream, generating an inner-rank and outer-rank for

the join. Any selections in the inner stream that are of higher rank than the join's

inner-rank are pulled above the join. Similarly, any selections in the outer stream

that are of higher rank than the join's outer rank are pulled up. As indicated in

Lemma 5, PullRank never pulls a selection above a join unless the selection is pulled

above the join in the optimal plan tree.

This algorithm is not substantially more di�cult to implement than the PullUp

algorithm | the only addition is the computation of costs and selectivities for

Optimization Techniques For Queries with Expensive Methods � 23

Query 4:

SELECT T2.a100

FROM T2, T1, T3

WHERE T3.ua1 = T1.a1

AND T2.ua100 = T3.a1

AND costly100(T2.a100) < 10;

J 1

J 2

outer rank = 0

costlyrank = −.000865

outer rank = −19.477

T2

T3

T1

Fig. 7. A three-way join plan for Query 4.

costlyrank = −.000865

inner rank = −19.477

T2

T1T3

Fig. 8. Another three-way join plan for

Query 4.

0

1

2

3

4

ex
ec

ut
io

n
ti

m
e

of
 p

la
n

(s
ca

le
d)

PushDown
PullRank
Predicate Migration
PullUp

Fig. 9. Query execution times for Query 4.

joins (Section 3.3.1). Because of its simplicity, and the fact that it does rank-

based ordering, we had hoped that PullRank would be a very useful heuristic.

Unfortunately, it proved to be ine�ective in many cases. As an example, consider

the plan tree for Query 4 in Figure 7. In this plan, the outer rank of J1 is greater

than the rank of the costly selection, so PullRank would not pull the selection above

J1. However, the outer rank of J2 is low, and it may be appropriate to pull the

selection above the pair J1J2. PullRank does not consider such multi-join pullups.

In general, if nodes are constrained to be in decreasing order of rank while ascending

a stream in a plan tree, then it may be necessary to consider pulling up above groups

of nodes, rather than one join node at a time. PullRank fails in such scenarios.

As a corollary to Lemma 5, it is easy to show that PullRank is an optimal

algorithm for queries with only one join and selections on a single stream. PullRank

can be made optimal for all single-join queries as well: given a join of two relations R

and S, while optimizing the stream containing R PullRank can treat any selections

from S that are above the join as primary join predicates; this allows PullRank to

view the join and the selections from S as a group. A similar technique can be used

while optimizing the stream containing S. Unfortunately, PullRank does indeed

fail in many multi-join scenarios, as illustrated in Figure 9, since there is no way

for it to form a group of joins. Since PullRank cannot pull up the selection in the

plan of Figure 7, it chooses a di�erent join order in which the expensive selection

can be pulled to the top (Figure 8). This join order chosen by PullRank is not a

good one, however, and results in the poor performance shown in Figure 9. The

best plan used the join order of Figure 7, but with the costly selection pulled to

the top.

24 � J.M. Hellerstein

Query 5:

SELECT T2.a100

FROM T2, T1, T3, T4

WHERE T3.ua1 = T1.a1

AND T2.ua20 = T3.a1

AND costly100(T2.ua100, T4.a1) = 0

AND costly100(T2.ua20) < 10; 0

2

4

6

8

10

ex
ec

ut
io

n
ti

m
e

of
 p

la
n

(s
ca

le
d)

PushDown
PullRank
Predicate Migration
PullUp

(This bar extends to 98.13)

Fig. 10. Query execution times for Query 5.

3.2.4 Predicate Migration. The details of the Predicate Migration algorithm are

presented in Section 2. In essence, Predicate Migration augments PullRank by also

considering the possibility that two primary join nodes in a plan tree may be out

of rank order, e.g. join node J2 may appear just above node J1 in a plan tree, with

the rank of J2 being less than the rank of J1 (Figure 7). In such a scenario, it can

be shown that J1 and J2 should be treated as a group for the purposes of pulling

up selections | they are composed together as one operator, and the group rank

is calculated:

rank(J1J2) =
selectivity(J1J2) � 1

cost(J1J2)

=
selectivity(J1) � selectivity(J2) � 1

cost(J1) + selectivity(J1) � cost(J2)
:

Selections of higher rank than this group rank are pulled up above the pair. The

Predicate Migration algorithm forms all such groups before attempting pullup.

Predicate Migration is integrated with the System R join-enumeration algorithm

as follows. We start by running System R with the PullRank heuristic, but one

change is made to PullRank: when PullRank �nds an expensive predicate and

decides not to pull it above a join in a plan for a subexpression, we mark that

subexpression as unpruneable. Subsequently when constructing plans for larger

subexpressions, we mark a subexpression unpruneable if it contains an unpruneable

subplan within it. The System R algorithm is then modi�ed to save not only those

subplans that are min-cost or \interestingly ordered"; it also saves all plans for

unpruneable subexpressions. In this way, we assure that if multiple primary joins

should become grouped in some plan, we will have maximal opportunity to pull

expensive predicates over the group. At the end of the System R algorithm, a set

of plans is produced, including the cheapest plan so far, the plans with interesting

orders, and the unpruneable plans. Each of these plans is passed through the

Predicate Migration algorithm, which optimally places the predicates in each plan.

After reevaluating the costs of the modi�ed plans, the new cheapest plan is chosen

to be executed.

Note that Predicate Migration requires minimal modi�cation to an existing Sys-

tem R optimizer: PullRank must be invoked for each subplan, pruning must be

modi�ed to save unpruneable plans, and before choosing the �nal plan Predicate

Optimization Techniques For Queries with Expensive Methods � 25

Migration must be run on each remaining plan. This minimal intrusion into the

existing optimizer is extremely important in practice. Many commercial implemen-

tors are wary of modifying their optimizers, because their experience is that queries

that used to work well before the modi�cation may run di�erently, poorly, or not

at all afterwards. This can be very upsetting to customers [Lohman 1995; Gray

1995]. Predicate Migration has no e�ect on the way that the optimizer handles

queries without expensive predicates. In this sense it is entirely safe to implement

Predicate Migration in systems that newly support expensive predicates; no old

plans will be changed as a result of the implementation.10

A drawback of Predicate Migration is the need to consider unpruneable plans.

In the worst case, every subexpression has a plan in which an expensive predicate

does not get pulled up, and hence every subexpression is marked unpruneable. In

this scenario the System R algorithm exhaustively enumerates the space of join

orders, never pruning any subplan. This is preferable to earlier approaches such

as that of LDL [Chimenti et al. 1989] (c.f. Section 4.1.2), and has not caused

untoward di�culty in practice. The payo� of this investment in optimization time

is apparent in Figure 10.11 Note that Predicate Migration is the only algorithm to

correctly optimize each of Queries 1-5.

3.3 Theory to Practice: Implementation Issues

The four algorithms described in the previous section were implemented in the

Illustra DBMS. In this section we discuss the implementation experience, and some

issues that arose in our experiments.

The Illustra \Object-Relational" DBMS is based on the publicly available POST-

GRES system [Stonebraker and Kemnitz 1991]. Illustra extends POSTGRES in

many ways, most signi�cantly (for our purposes) by supporting an extended ver-

sion of SQL and by bringing the POSTGRES prototype code to an industrial grade

of performance and reliability.

The full Predicate Migration algorithmwas originally implemented by the author

in POSTGRES, an e�ort that took about two months of work | one month to add

the PullRank heuristic, and another month to implement the Predicate Migration

algorithm. Re�ning and upgrading that code for Illustra actually proved more

time-consuming than writing it initially for POSTGRES. Since Illustra SQL is a

signi�cantly more complex language than POSTQUEL, some modest changes had

to be made to the code to handle subqueries and other SQL-speci�c features. More

10Note that the cost estimates in an optimizer need not even be adjusted to conform to the

requirements of Section 3.3.1. The original cost estimates can be used for generating join orders.

However, when evaluating join costs during PullRank and Predicate Migration, a \linear" cost

model is used. This mixing of cost models is discouraged since it a�ects the global optimality of

plans. But it may be an appropriate approach from a practical standpoint, since it preserves the

behavior of the optimizer on queries without expensive predicates.
11In this particular query the plan chosen by PullUp took almost 100 times as long as the optimal

plan, although for purposes of illustration the bar for the plan is truncated in the graph. This

poor performance happened because PullUp pulled the costly selection on T2 above the costly

join predicate. The result of this was that the costly join predicate had to be evaluated on all

tuples in the Cartesian product of T4 and the subtree containingT2, T1, and T3. This extremely

bad plan required signi�cant e�ort in caching at execution time (as discussed in [Hellerstein and

Naughton 1996]) to avoid calling the costly selection multiple times on the same input.

26 � J.M. Hellerstein

signi�cant, however, was the e�ort required to debug, test, and tune the code so

that it was robust enough for use in a commercial product.

Of the three months spent on the Illustra version of Predicate Migration, about

one month was spent upgrading the optimization code for Illustra. This involved

extending it to handle SQL subqueries, making the code faster and less memory-

consuming, and removing bugs that caused various sorts of system failures. The

remaining time was spent �xing subtle optimization bugs.

Debugging a query optimizer is a di�cult task, since an optimizationbug does not

necessarily produce a crash or a wrong answer; it often simply produces a subopti-

mal plan. It can be quite di�cult to ensure that one has produced a minimum-cost

plan. In the course of running the comparisons for this paper, a variety of subtle

optimizer bugs were found, mostly in cost and selectivity estimation. The most

di�cult to uncover was that the original \global" cost model for Predicate Migra-

tion, presented in [Hellerstein and Stonebraker 1993], was inaccurate in practice.

Typically, bugs were exposed by running the same query under the various di�er-

ent optimization heuristics, and comparing the estimated costs and actual running

times of the resulting plans. When Predicate Migration, a supposedly superior op-

timization algorithm, produced a higher-cost or more time-consuming query plan

than a simple heuristic, it usually meant that there was a bug in the optimizer.

The lesson to be learned here is that comparative benchmarking is absolutely

crucial to thoroughly debugging a query optimizer and validating its cost model.

It has been noted fairly recently that a variety of commercial products still pro-

duce very poor plans even on simple queries [Naughton 1993]. Thus benchmarks |

particularly complex query benchmarks such as TPC-D [Raab 1995] | are critical

debugging tools for DBMS developers. In our case, we were able to easily com-

pare our Predicate Migration implementation against various heuristics, to ensure

that Predicate Migration always did at least as well as the heuristics. After many

comparisons and bug �xes we found Predicate Migration to be stable, producing

minimal-cost plans that were generally as fast or faster in practice than those pro-

duced by the simpler heuristics.

3.3.1 A Di�erential Cost Model for Standard Oprators. The Predicate Migration

algorithm presented in Section 2.2.4 only works when the di�erential join costs are

constants. In this section we examine how that cost model �ts the standard join

algorithms that are commonly used.

Given two relations R and S, and a join predicate J of selectivity s over them,

we represent the selectivity of J over R as s � jSj, where jSj is the number of tuples

that are passed into the join from S. Similarly we represent the selectivity of J over

S as s � jRj. In Section 3.3.2 we review the accuracy of these estimates in practice.

The cost of a selection predicate is its di�erential cost, as stored in the system

metadata. A constant di�erential cost of a join predicate per input also needs to

be computed, and this is only possible if one assumes that the cost model is well-

behaved: in particular, for relations R and S the join costs must be of the form

kjRj + ljSj + m; we do not allow any term of the form jjRjjSj. We proceed to

demonstrate that this strict cost model is su�ciently robust to cover the usual join

algorithms.

Recall that we treat traditional simple predicates as being of zero cost; similarly

Optimization Techniques For Queries with Expensive Methods � 27

here we ignore the CPU costs associated with joins. In terms of I/O, the costs

of merge and hash joins given by Shapiro, et al. [Shapiro 1986] �t our criterion.12

For nested-loop join with an indexed inner relation, the cost per tuple of the outer

relation is the cost of probing the index (typically 3 I/Os or less), while the cost

per tuple of the inner relation is essentially zero | since we never scan tuples of

the inner relation that do not qualify for the join, they are �ltered with zero cost.

So nested-loop join with an indexed inner relation �ts our criterion as well.

The trickiest issue is that of nested-loop join without an index. In this case, the

cost is jjRj[S]+kjRj+ ljSj+m, where [S] is the number of blocks scanned from the

inner relation S. Note that the number of blocks scanned from the inner relation

is a constant irrespective of expensive selections on the inner relation. That is, in a

nested-loop join, for each tuple of the outer relation one must scan every disk block

of the inner relation, regardless of whether expensive selections are pulled up from

the inner relation or not. So nested-loop join does indeed �t our cost model: [S]

is a constant regardless of where expensive predicates are placed, and the equation

above can be written as (j[S] + k)jRj + ljSj + m.13 Therefore we can accurately

model the di�erential costs of all the typical join methods per tuple of an input.

These \linear" cost models have been evaluated experimentally for nested-loop

and merge joins, and were found to be relatively accurate estimates of the perfor-

mance of a variety of commercial systems [Du et al. 1992].

3.3.2 In
uence of Performance Results on Estimates. The results of our perfor-

mance experiments in
uenced the way that we estimate selectivities in Illustra.

In the previus section, we estimated the selectivity of a join over table S as s � jRj.

This was a rough estimate, however, since jRj is not well de�ned | it depends on

the selections that are placed on R. Thus jRj could range from the cardinality of

R with no selections, to the minimal output of R after all eligible selections are

applied. In Illustra, we calculate jRj on the
y as needed, based on the number

of selections over R at the time that we need to compute the selectivity of the

join. Since some predicates over R may later be pulled up, this potentially under-

estimates the selectivity of the join for S. Such an under-estimate results in an

under-estimate of the rank of the join for S, possibly resulting in over-eager pullup

of selections on S. This rough selectivity estimation was chosen as a result of our

performance observations: it was decided that estimates resulting in somewhat over-

eager pullup are preferable to estimates resulting in under-eager pullup. In part,

this heuristic is based on the existence of method caching in Illustra, as described

in [Hellerstein and Naughton 1996] | as long as methods are cached, pulling a

selection above a join incorrectly cannot increase the number of times the selection

method is actually computed, it can only increase the number of duplicate input

values to the selection.

The potential for over-eager pullup in Predicate Migration is similar, though

12Actually, we ignore the
p
S savings available in merge join due to bu�ering. We thus slightly

over-estimate the costs of merge join for the purposes of predicate placement.
13This assumes that plan trees are left-deep, which is true for many systems including Illustra.

Even for bushy trees this is not a signi�cant limitation: one would be unlikely to have nested-loop

join with a bushy inner, since one might as well sort or hash the inner relation while materializing

it.

28 � J.M. Hellerstein

not as
agrant, as the over-eager pullup in the earlier LDL approach [Chimenti

et al. 1989], described in Section 4.1.2. Observe that if the Predicate Migration

approach pulls up from inner inputs �rst, then ranks of joins for inner inputs may

be underestimated, but ranks of joins for outer inputs are accurate, since pullup

from the inner input has already been completed. This will produce over-eager

pullup from inner tables, and accurate pullup from outer tables, which also occurs

in LDL. This is the approach taken in Illustra, but unlike LDL, Illustra only exhibits

this over-eagerness in a very constrained situation:

(1) when there are expensive selections on both inputs to a join, and

(2) some of the expensive selections on the outer input should be pulled up, and

(3) some of the expensive selections on the inner input should not be pulled up,

and

(4) treating the inner input before the outer results in selectivity estimations

that cause over-eager pullup of some of those selections from the inner input.

By contrast, the LDL approach pulls up expensive predicates from inner inputs in

all circumstances.

4. RELATED WORK

4.1 Optimization and Expensive Methods

4.1.1 Predicate Migration. Stonebraker raised the issue of expensive predicate

optimization in the context of the POSTGRES multi-level store [Stonebraker 1991].

The questions posed by Stonebraker are directly addressed in this paper.

Predicate Migration was �rst presented in 1992 [Hellerstein and Stonebraker

1993]. While the Predicate Migration Algorithm presented there was identical

to the one described in Section 2.2.4 of this paper, the early paper included a

\global" cost model which was inaccurate in modeling query cost; in particular, it

modeled the selectivity of a join as being identical with respect to both inputs. A

later paper [Hellerstein 1994] presented the corrected cost model described here in

Section 3.3.1 This paper extends our previous work with a thorough and correct

discussion of cost model issues, proofs of optimality and pseudocode for Predicate

Migration, and new experimental measurements using a later version of Illustra

enhanced with method caching techniques.

4.1.2 The LDL Approach. The �rst approach for optimizing queries with expen-

sive predicates was pioneered in the LDL logic database system [Chimenti et al.

1989], and was proposed for extensible relational systems by Yajima, et al. [Yajima

et al. 1991]. We refer to this as the LDL approach. To illustrate this approach,

consider the following example query:

SELECT *

FROM R, S

WHERE R.c1 = S.c1

AND p(R.c2)

AND q(S.c2);

In the query, p and q are expensive user-de�ned Boolean methods.

Optimization Techniques For Queries with Expensive Methods � 29

p q

R S

Fig. 11. A query plan with expensive selec-

tions p and q.

p qR S

Fig. 12. The same query plan, with the selec-

tions modeled as joins.

Assume that the optimal plan for the query is as pictured in Figure 11, where

both p and q are placed directly above the scans of R and S respectively. In the LDL
approach, p and q are treated not as selections, but as joins with virtual relations

of in�nite cardinality. In essence, the query is transformed to:

SELECT *

FROM R, S, p, q

WHERE R.c1 = S.c1

AND p.c1 = R.c2

AND q.c1 = S.c2;

with the joins over p and q having cost equivalent to the cost of applying the meth-

ods. At this point, the LDL approach applies a traditional join-ordering optimizer

to plan the rewritten query. This does not integrate well with a System R-style

optimization algorithm, however, since LDL increases the number of joins to order,

and System R's complexity is exponential in the number of joins. Thus [Krishna-

murthy and Zaniolo 1988] proposes using the polynomial-time IK-KBZ [Ibaraki and

Kameda 1984; Krishnamurthy et al. 1986] approach for optimizing the join order.

Unfortunately, both the System R and IK-KBZ optimization algorithms consider

only left-deep plan trees, and no left-deep plan tree can model the optimal plan tree

of Figure 11. That is because the plan tree of Figure 11, with selections p and q
treated as joins, looks like the bushy plan tree of Figure 12. E�ectively, the LDL

approach is forced to always pull expensive selections up from the inner relation of

a join, in order to get a left-deep tree. Thus the LDL approach can often err by

making over-eager pullup decisions.

This de�ciency of the LDL approach can be overcome in a number of ways. A

System R optimizer can be modi�ed to explore the space of bushy trees, but this

increases the complexity of the LDL approach yet further. No known modi�cation

of the IK-KBZ optimizer can handle bushy trees. Yajima et al. [Yajima et al. 1991]

successfully integrate the LDL approach with an IK-KBZ optimizer, but they use

an exhaustive mechanism that requires time exponential in the number of expensive

selections.

4.2 Other Related Work

Ibaraki and Kameda [Ibaraki and Kameda 1984], Krishnamurthy, Boral and Zan-

iolo [Krishnamurthy et al. 1986], and Swami and Iyer [Swami and Iyer 1992] have

30 � J.M. Hellerstein

developed and re�ned a query optimization scheme that is built on the the notion

of rank. However, their scheme uses rank to reorder joins rather than selections.

Their techniques do not consider the possibility of expensive selection predicates,

and only reorder nodes of a single path in a left-deep query plan tree. Furthermore,

their schemes are a proposal for a completely new method for query optimization,

not an extension that can be applied to the plans of any query optimizer.

The System R project faced the issue of expensive predicate placement early

on, since their SQL language had the notion of subqueries, which (especially when

correlated) are a form of expensive selection. At the time, however, the emphasis of

their optimization work was on �nding optimal join orders and methods, and there

was no published work on placing expensive predicates in a query plan. System R

and R* both had simple heuristics for placing an expensive subquery in a plan.

In both systems, subquery evaluation was postponed until simple predicates were

evaluated. In R*, the issue of balancing selectivity and cost was discussed, but

in the �nal implementation subqueries were ordered among themselves by a cost-

only metric: the more di�cult the subquery was to compute, the later it would

be applied. Neither system considered pulling up subquery predicates from their

lowest eligible position [Lohman and Haas 1993].

An orthogonal issue related to predicate placement is the problem of rewriting

predicates into more e�cient forms [Chaudhuri and Shim 1993; Chen et al. 1992].

In such semantic optimization work, the focus is on rewriting expensive predicates

in terms of other, cheaper predicates. Another semantic rewriting technique called

\Predicate Move-Around" [Levy et al. 1994] suggests rewriting SQL queries by

copying predicates and then moving the copies across query blocks. The authors

conjecture that this technique may be bene�cial for queries with expensive predi-

cates. A related idea occurs in Object-Oriented databases, which can have \path

expression" methods that follow references from tuples to other tuples. A typi-

cal technique for such methods is to rewrite them as joins, and then submit the

query for traditional join optimization.14 All of these ideas are similar to the query

rewrite facility of Starburst [Pirahesh et al. 1992], in that they are heuristics for

rewriting a declarative query, rather than cost-based optimizations for converting a

declarative query into an execution plan. It is important to note that these issues

are indeed orthogonal to our problems of predicate placement | once queries have

been rewritten into cheaper forms, they still need to have their predicates optimally

placed into a query plan.

Kemper, Steinbrunn, et al. [Kemper et al. 1994; Steinbrunn et al. 1995] address

the problem of planning disjunctive queries with expensive predicates; their work

is not easily integrated with a traditional (conjunct-based) optimizer. Like most

System R-based optimizers, Illustra focuses on Boolean factors (conjuncts). Within

Boolean factors, the operands of OR are ordered by the metric cost/selectivity.

14A mixture of path expressions and (expensive) user-de�nedmethods is also possible, e.g. SELECT

* FROM emp WHERE emp.children.photo.haircolor() = 'red'. Such expressions can be rewrit-

ten in functional notation (e.g. SELECT * FROM emp WHERE haircolor(emp.children.photo) =

'red'), and are typically converted into joins (i.e., something like SELECT emp.* FROM emp,

kids WHERE emp.kid = kids.id and haircolor(kids.photo) = 'red', possibly with variations

to handle duplicate semantics). Note that an expensive method whose argument is a path expres-

sion becomes an expensive secondary join clause.

Optimization Techniques For Queries with Expensive Methods � 31

Pre
dic

at
e

M
igr

at
ion

LD
L

Most EagerLeast Eager

Pull
Ran

k

Pus
hD

ow
n

Pull
Up

Fig. 13. Eagerness of pullup in algorithms.

This can easily be shown to be the optimal ordering for a disjunction of expensive

selections; the analysis is similar to the proof of Lemma 1 of Section 2.2.1.

Expensive methods can appear in various clauses of a query besides the predicates

in the WHERE clause; in such situations, method caching is an important query

execution technique for minimizing the costs of such queries. A detailed study of

method caching techniques is presented in [Hellerstein and Naughton 1996], along

with a presentation of the related work in that area. For the purposes of this paper,

we assume that the cost of caching is negligably cheap, i.e. less than 1 I/O per

tuple. This assumption is guaranteed by the algorithms presented in [Hellerstein

and Naughton 1996].

5. CONCLUSION

5.1 Summary

This paper presents techniques for e�ciently optimizing queries that utilize a core

feature of extensible database systems: user-de�ned methods and types. We present

the Predicate Migration Algorithm, and prove that it produces optimal plans. We

implemented Predicate Migration and three simpler predicate placement techniques

in Illustra, and studied the e�ectiveness of each solution as compared to its imple-

mentation complexity. Developers can choose optimization solutions from among

these techniques depending on their workloads and their willingness to invest in

new code. In our experience, Predicate Migration was not di�cult to implement.

Since it should provide signi�cantly better results than any known non-exhaustive

algorithm, we believe that it is the appropriate solution for any general-purpose

extensible DBMS.

Some roughness remains in our selectivity estimations. When forced to choose,

we opt to risk over-eager pullup of selections rather than under-eager pullup. This

is justi�ed by our example queries, which showed that leaving selections too low

in a plan was more dangerous than pulling them up too high. The algorithms

considered form a spectrum of eagerness in pullup, as shown in Figure 13.

5.2 Lessons

The research and implementation e�ort that went into this paper provided nu-

merous lessons. First, it became clear that query optimization research requires a

combination of theoretical insight and signi�cant implementation and testing. Our

original cost models for Predicate Migration were fundamentally incorrect, but nei-

ther we nor many readers and reviewers of the early work were able to detect the

errors. Only by implementing and experimenting were we able to gain the appro-

priate insights. As a result, we believe that implementation and experimentation

are critical for query optimization: query optimization researchers must implement

32 � J.M. Hellerstein

their ideas to demonstrate viability, and new complex query benchmarks are re-

quired to drive both researchers and industry into workable solutions to the many

remaining challenges in query optimization.

Implementing an e�ective predicate placement scheme proved to be a manage-

able task, and doing so exposed many over-simpli�cations that were present in the

original algorithms proposed. This highlights the complex issues that arise in im-

plementing query optimizers. Perhaps the most important lesson we learned in

implementing Predicate Migration in Illustra was that query optimizers require a

great deal of testing before they can be trusted. In practice this means that commer-

cial optimizers should be subjected to complex query benchmarks, and that query

optimization researchers should invest time in implementing and testing their ideas

in practice.

The limitations of the previously published algorithms for predicate placement

are suggestive. Both algorithms su�er from the same problem: the choice of which

predicates to pull up from one side of a join both depends on and in
uences the

choice of which predicates to pull up from the other side of the join. This interde-

pendency of separate streams in a query tree suggests a fundamental intractability

in predicate placement, that may only be avoidable through the sorts of compro-

mises found in the existing literature.

5.3 Open Questions

This paper leaves a number of interesting questions open. It would be satisfying

to understand the rami�cations of weakening the assumptions of the Predicate

Migration cost model. Is our roughness in estimation required for a polynomial-

time predicate placement algorithm, or is there a way to weaken the assumptions

and still develop an e�cient algorithm?

This question can be cast in di�erent terms. If one combines the LDL ap-

proach for expensive methods [Chimenti et al. 1989] with the IK-KBZ rank-based

join optimizer [Ibaraki and Kameda 1984; Krishnamurthy et al. 1986], one gets a

polynomial-time optimization algorithm that handles expensive selections. How-

ever as we pointed out in Section 4.1.2 this technique fails because IK-KBZ does

not handle bushy join trees. So an isomorphic question to the one above is whether

the IK-KBZ join-ordering algorithm can be extended to handle bushy trees in poly-

nomial time. Recent work [Scheufele and Moerkotte 1997] shows that the answer

to this question is in general negative.

Although Predicate Migration does not signi�cantly a�ect the asymptotic cost of

exponential join-ordering query optimizers, it can noticeably increase the memory

utilization of the algorithms by preventing pruning. A useful extension of this work

would be a deeper investigation of techniques to allow even more pruning than

already available via PullRank during Predicate Migration.

Our work on predicate placement has concentrated on the traditional non-recursive

select-project-join query blocks that are handled by most cost-based optimizers. It

would be interesting to try and extend our work to more di�cult sorts of queries.

For example, how can Predicate Migration be applied to recursive queries and com-

mon subexpressions? When should predicates be transferred across query blocks?

When should they be duplicated across query blocks [Levy et al. 1994]? These

questions will require signi�cant e�ort to answer, since there are no generally ac-

Optimization Techniques For Queries with Expensive Methods � 33

cepted techniques for cost-based optimization in these scenarios, even for queries

without expensive predicates.

5.4 Suggestions for Implementation

Practitioners are often wary of adding large amounts of code to existing systems.

Fortunately, the work in this paper can be implemented incrementally, providing

increasing bene�ts as more pieces are added. We sketch a plausible upgrade path

for existing extensible systems:

(1) As a �rst step in optimization, selections should be ordered by rank (the

PushDown+ heuristic). Since typical optimizers already estimate selectivities,

this only requires estimating selection costs, and sorting selections.

(2) As a further enhancement, the PullUp heuristic can be implemented. This

requires code to pull selections above joins, which is a bit tricky since it requires

handling projections and column renumbering. Note that PullUp is not nec-

essarily more e�ective than PushDown for all queries, but is probably a safer

heuristic if methods are expected to be very expensive.

(3) The PullUp heuristic can be be modi�ed to do PullRank, by including code

to compute the di�erential costs for joins. Since PullRank can leave methods

too low in a plan, it is in some sense more dangerous than PullUp. On the

other hand, it can correctly optimize all two-table queries, which PullUp can

not guarantee. A decision between PullUp and PullRank is thus somewhat

di�cult { a compromise may be met by implementing both and choosing the

cheaper plan that comes out of the two. Since PullRank is a preprocessor for

a full implementation of Predicate Migration, it is a further step in the right

direction.

(4) Predicate Migration itself, while somewhat complex to understand, is ac-

tually not di�cult to implement. It requires implementation of the Predicate

Migration Algorithm, PullRank, and also code to mark subplans as unprune-

able.

(5) Finally, execution can be further improved by implementinga caching scheme

such as Hybrid Cache [Hellerstein and Naughton 1996] for expensive methods.

This requires some modi�cation of the cost model in the optimizer as well.

ACKNOWLEDGMENTS

Special thanks are due to Je� Naughton and Mike Stonebraker for their assistance

with this work. Thanks are also due to the sta� of Illustra InformationTechnologies,

particularly Paula Hawthorn, Wei Hong, Michael Ubell, Mike Olson, Je� Meredith,

and Kevin Brown. In addition, the following all provided useful input on this

paper: Surajit Chaudhuri, David DeWitt, James Frew, Jim Gray, Laura Haas,

Eugene Lawler, Guy Lohman, Raghu Ramakrishnan, and Praveen Seshadri.

REFERENCES

Bitton, D., DeWitt, D. J., and Turbyfill, C. 1983. Benchmarking database systems,

a systematic approach. In Proc. 9th International Conference on Very Large Data Bases

(Florence, Italy, Oct. 1983).

34 � J.M. Hellerstein

Boulos, J., Vi�emont, Y., and Ono, K. 1997. Analytical Models and Neural Networks for

Query Cost Evaluation. In Proc. 3rd International Workshop on Next Generation Infor-

mation Technology Systems (Neve Ilan, Israel, 1997).

Carey, M. J., DeWitt, D. J., Kant, C., and Naughton, J. F. 1994. A Status Report

on the OO7 OODBMS Benchmarking E�ort. In Proc. Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications (Portland, Oct. 1994), pp. 414{426.

Cattell, R. 1994. The Object Database Standard: ODMG-93 (Release 1.1). Morgan Kauf-

mann, San Mateo, CA.

Chaudhuri, S. and Shim, K. 1993. Query Optimization in the Presence of Foreign Func-

tions. In Proc. 19th International Conference on Very Large Data Bases (Dublin, Aug.

1993), pp. 526{541.

Chen, H., Yu, X., Yamaguchi, K., Kitagawa, H., Ohbo, N., and Fujiwara, Y. 1992.

Decomposition | An Approach for Optimizing Queries Including ADT Functions. Infor-

mation Processing Letters 43, 6, 327{333.

Chimenti, D., Gamboa, R., and Krishnamurthy, R. 1989. Towards an Open Architecture

for LDL. In Proc. 15th International Conference on Very Large Data Bases (Amsterdam,

Aug. 1989), pp. 195{203.

Dayal, U. 1987. Of Nests and Trees: A Uni�ed Approach to Processing Queries that Con-

tain Nested Subqueries, Aggregates, and Quanti�ers. In Proc. 13th International Confer-

ence on Very Large Data Bases (Brighton, Sept. 1987), pp. 197{208.

Du, W., Krishnamurthy, R., and Shan, M.-C. 1992. Query Optimization in Heteroge-

neous DBMS. In Proc. 18th International Conference on Very Large Data Bases (Vancou-

ver, Aug. 1992), pp. 277{291.

Faloutsos, C. and Kamel, I. 1994. Beyond Uniformity and Independence: Analysis of

R-trees Using the Concept of Fractal Dimension. In Proc. 13th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (Minneapolis, May 1994), pp.

4{13.

Frew, J. 1995. Personal correspondence.

Gray, J. Ed. 1991. The Benchmark Handbook: For Database and Transaction Processing

Systems. Morgan-Kaufmann Publishers, Inc.

Gray, J. 1995. Personal correspondence.

Haas, P. J., Naughton, J. F., Seshadri, S., and Stokes, L. 1995. Sampling-Based Es-

timation of the Number of Distinct Values of an Attribute. In Proc. 21st International

Conference on Very Large Data Bases (Zurich, Sept. 1995).

Hellerstein, J. M. 1994. Practical Predicate Placement. In Proc. ACM-SIGMOD Inter-

national Conference on Management of Data (Minneapolis, May 1994), pp. 325{335.

Hellerstein, J. M. and Naughton, J. F. 1996. Query Execution Techniques for Caching

ExpensiveMethods. In Proc. ACM-SIGMOD International Conference on Management of

Data (Montreal, June 1996), pp. 423{424.

Hellerstein, J. M. and Stonebraker, M. 1993. PredicateMigration: OptimizingQueries

With Expensive Predicates. In Proc. ACM-SIGMOD International Conference on Man-

agement of Data (Washington, D.C., May 1993), pp. 267{276.

Hong, W. and Stonebraker, M. 1993. Optimization of Parallel Query Execution Plans

in XPRS. Distributed and Parallel Databases, An International Journal 1, 1 (Jan.), 9{32.

Hou, W.-C., Ozsoyoglu, G., and Taneja, B. K. 1988. Statistical Estimators for Rela-

tional Algebra Expressions. In Proc. 7th ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems (Austin, March 1988), pp. 276{287.

Ibaraki, T. and Kameda, T. 1984. Optimal Nesting for Computing N-relational Joins.

ACM Transactions on Database Systems 9, 3 (Oct.), 482{502.

Illustra Information Technologies, Inc. 1994. Illustra User's Guide, Illustra Server Release

2.1. Illustra Information Technologies, Inc.

Ioannidis, Y. and Christodoulakis, S. 1991. On the Propagation of Errors in the Size of

Join Results. In Proc. ACM-SIGMOD International Conference on Management of Data

(Denver, June 1991), pp. 268{277.

Optimization Techniques For Queries with Expensive Methods � 35

Ioannidis, Y. and Poosala, V. 1995. Balancing Histogram Optimality and Practicality

for Query Result Size Estimation. In Proc. ACM-SIGMOD International Conference on

Management of Data (San Jose, May 1995), pp. 233{244.

Ioannidis, Y. E. and Kang, Y. C. 1990. Randomized Algorithms for Optimizing Large

Join Queries. In Proc. ACM-SIGMOD International Conference on Management of Data

(Atlantic City, May 1990), pp. 312{321.

ISO ANSI. 1993. Database Language SQL ISO/IEC 9075:1992.

Kemper, A., Moerkotte, G., Peithner, K., and Steinbrunn, M. 1994. Optimizing Dis-

junctive Queries with Expensive Predicates. In Proc. ACM-SIGMOD International Con-

ference on Management of Data (Minneapolis, May 1994), pp. 336{347.

Kim, W. 1993. Object-Oriented Database Systems: Promises, Reality, and Future. In Proc.

19th International Conference on Very Large Data Bases (Dublin, Aug. 1993), pp. 676{687.

Krishnamurthy, R., Boral, H., and Zaniolo, C. 1986. Optimization of Nonrecursive

Queries. In Proc. 12th International Conference on Very Large Data Bases (Kyoto, Aug.

1986), pp. 128{137.

Krishnamurthy, R. and Zaniolo, C. 1988. Optimization in a Logic Based Language for

Knowledge and Data IntensiveApplications. In J. W. Schmidt, S. Ceri, and M. Missikoff

Eds., Proc. International Conference on Extending Data Base Technology , Advances in

DatabaseTechnology - EDBT '88. Lecture Notes in Computer Science, Volume 303 (Venice,

March 1988). Springer-Verlag.

Levy, A. Y., Mumick, I. S., and Sagiv, Y. 1994. Query Optimization by Predicate Move-

Around. In Proc. 20th International Conference on Very Large Data Bases (Santiago, Sept.

1994), pp. 96{107.

Lipton, R. J., Naughton, J. F., Schneider, D. A., and Seshadri, S. 1993. E�cient Sam-

pling Strategies for Relational Database Operations. Theoretical Computer Science 116,

195{226.

Lohman, G. M. 1995. Personal correspondence.

Lohman, G. M., Daniels, D., Haas, L. M., Kistler, R., and Selinger, P. G. 1984. Op-

timization of Nested Queries in a Distributed Relational Database. In Proc. 10th Interna-

tional Conference on Very Large Data Bases (Singapore, Aug. 1984), pp. 403{415.

Lohman, G. M. and Haas, L. M. 1993. Personal correspondence.

Lynch, C. and Stonebraker, M. 1988. Extended User-De�ned Indexing with Application

to Textual Databases. In Proc. 14th International Conference on Very Large Data Bases

(Los Angeles, Aug.-Sept. 1988), pp. 306{317.

Mackert, L. F. and Lohman, G. M. 1986b. R* Optimizer Validation and Performance

Evaluation for Distributed Queries. In Proc. 12th International Conference on Very Large

Data Bases (Kyoto, Aug. 1986), pp. 149{159.

Mackert, L. F. and Lohman, G. M. 1986a. R* Optimizer Validation and Performance

Evaluation for Local Queries. In Proc. ACM-SIGMOD International Conference on Man-

agement of Data (Washington, D.C., May 1986), pp. 84{95.

Maier, D. and Stein, J. 1986. Indexing in an Object-Oriented DBMS. In K. R. Dittrich

and U. Dayal Eds., Proc. Workshop on Object-Oriented Database Systems (Asilomar,

Sept. 1986), pp. 171{182.

Monma, C. L. and Sidney, J. 1979. Sequencing with Series-Parallel Precedence Con-

straints.Mathematics of Operations Research 4, 215{224.

Naughton, J. 1993. Presentation at Fifth International High Performance Transaction

Workshop.

Palermo, F. P. 1974. A Data Base SearchProblem. In J. T. Tou Ed., Information Systems

COINS IV . New York: Plenum Press.

Pirahesh, H. 1994. Object-Oriented Features of DB2 Client/Server. In Proc. ACM-

SIGMOD International Conference on Management of Data (Minneapolis, May 1994),

pp. 483.

Pirahesh, H., Hellerstein, J. M., and Hasan, W. 1992. Extensible/Rule-Based Query

Rewrite Optimization in Starburst. In Proc. ACM-SIGMOD International Conference on

36 � J.M. Hellerstein

Management of Data (San Diego, June 1992), pp. 39{48.

Poosala, V. and Ioannidis, Y. 1996. Estimation of Query-Result Distribution and its

Application in Parallel-Join Load Balancing. In Proc. 22nd International Conference on

Very Large Data Bases (Bombay, Sept. 1996).

Poosala, V., Ioannidis, Y. E., Haas, P. J., and Shekita, E. J. 1996. Selectivity Es-

timation of Range Predicates Using Histograms. In Proc. ACM-SIGMOD International

Conference on Management of Data (Montreal, June 1996).

Raab, F. 1995. \TPC Benchmark D { Standard Speci�cation, Revision 1.0". Transaction

Processing Performance Council.

Scheufele, W. and Moerkotte, G. 1997. On the Complexity of Generating Optimal

Plans with Cross Products. In Proc. 16th ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems (Tucson, May 1997), pp. 238{248.

Selinger, P. G., Astrahan, M., Chamberlin, D., Lorie, R., and Price, T. 1979. Access

Path Selection in a Relational Database Management System. In Proc. ACM-SIGMOD

International Conference on Management of Data (Boston, June 1979), pp. 22{34.

Seshadri, P., Hellerstein, J. M., Pirahesh, H., Leung, T. C., Ramakrishnan, R., Sri-

vastava, D., Stuckey, P. J., and Sudarshan, S. 1996. Cost-Based Optimization for

Magic: Algebra and Implementation. In Proc. ACM-SIGMOD International Conference

on Management of Data (Montreal, June 1996), pp. 435{446.

Seshadri, P., Pirahesh, H., and Leung, T. C. 1996. Complex Query Decorrelation. In

Proc. 12th IEEE International Conference on Data Engineering (New Orleans, Feb. 1996).

Shapiro, L. D. 1986. Join Processing in Database Systems with Large Main Memories.

ACM Transactions on Database Systems 11, 3 (Sept.), 239{264.

Smith, W. E. 1956. Various Optimizers For Single-Stage Production. Naval Res. Logist.

Quart. 3, 59{66.

Steinbrunn, M., Peithner, K., Moerkotte, G., and Kemper, A. 1995. Bypassing Joins

in Disjunctive Queries. In Proc. 21st International Conference on Very Large Data Bases

(Zurich, Sept. 1995).

Stonebraker, M. 1991. Managing Persistent Objects in a Multi-Level Store. In Proc.

ACM-SIGMOD International Conference on Management of Data (Denver, June 1991),

pp. 2{11.

Stonebraker, M., Frew, J., Gardels, K., and Meredith, J. 1993. The Sequoia 2000

Storage Benchmark. In Proc. ACM-SIGMOD International Conference on Management of

Data (Washington, D.C., May 1993), pp. 2{11.

Stonebraker, M. and Kemnitz, G. 1991. The POSTGRES Next-Generation Database

Management System. Communications of the ACM 34, 10, 78{92.

Swami, A. and Gupta, A. 1988. Optimization of Large Join Queries. In Proc. ACM-

SIGMOD International Conference on Management of Data (Chicago, June 1988), pp.

8{17.

Swami, A. and Iyer, B. R. 1992. A Polynomial Time Algorithm for Optimizing Join

Queries. Research Report RJ 8812 (June), IBM Almaden Research Center.

Turbyfill, C., Orji, C., and Bitton, D. 1989. AS3AP - A Comparative Relational

Database Benchmark. In Proc. IEEE Compcon Spring '89 (Feb. 1989).

Wong, E. and Youssefi, K. 1976. Decomposition - A Strategy for Query Processing.ACM

Transactions on Database Systems 1, 3 (September), 223{241.

Yajima, K., Kitagawa, H., Yamaguchi, K., Ohbo, N., and Fujiwara, Y. 1991. Opti-

mization of Queries Including ADT Functions. In Proc. 2nd International Symposium on

Database Systems for Advanced Applications (Tokyo, April 1991), pp. 366{373.

APPENDIX

A. PROOFS

Optimization Techniques For Queries with Expensive Methods � 37

Lemma 1. The cost of applying expensive selection predicates to a set of tuples

is minimized by applying the predicates in ascending order of the metric

rank =
selectivity� 1

di�erential cost

Proof. This result dates back to early work in Operations Research [Smith

1956], but we review it in our context for completeness.

Assume the contrary. Then in a minimum-cost ordering p1; : : : ; pn, for some

predicate pk there is a predicate pk+1 where rank(pk) > rank(pk+1). Now, the cost

of applying all the predicates to t tuples is

e1 = ep1t + sp1ep2 t+ : : :+ sp1sp2 � � �spk�1 epk t

+ sp1sp2 � � �spk�1 spkepk+1 t+ : : :+ sp1sp2 � � �spn�1 epn t:

But if we swap pk and pk+1, the cost becomes

e2 = ep1t + sp1ep2 t+ : : :+ sp1sp2 � � �spk�1 epk+1 t

+ sp1sp2 � � �spk�1 spk+1epk t+ : : :+ sp1sp2 � � �spn�1 epn t:

By subtracting e1 from e2 and factoring we get

e2 � e1 = tsp1sp2 � � �spk�1 (epk+1 + spk+1epk � epk � spkepk+1)

Now recall that rank(pk) > rank(pk+1), i.e.

(spk � 1)=epk > (spk+1 � 1)=epk+1

After some simple algebra (taking into account the fact that expenses must be

non-negative), this inequality reduces to

epk+1 + spk+1epk � epk � spkepk+1 < 0

i.e. this shows that the parenthesized term in the equation e2� e1 is less than zero.

By de�nition both t and the selectivities must be non-negative, and hence e2 < e1,

demonstrating that the given ordering is not minimum-cost, a contradiction.

Lemma 2. Swapping the positions of two equi-rank nodes has no e�ect on the

cost of a plan tree.

Proof. Note that swapping two nodes in a plan tree only a�ects the costs of

those two nodes (this is the Adjacent Pairwise Interchange (API) property of [Smith

1956; Monma and Sidney 1979]). Consider two nodes p and q of equal rank, operat-

ing on input of cardinality t. If we order p before q, their joint cost is e1 = tep+tspeq .

Swapping them results in the cost e2 = teq + tsqep. Since their ranks are equal, it

is a matter of simple algebra to demonstrate that e1 = e2, and hence the cost of a

plan tree is independent of the order of equi-rank nodes.

Lemma 3. Given a join node J in a module, adding a selection or secondary

join predicate R to the stream does not increase the rank of J 's group.

Proof. Assume J is initially in a group of k members, p1 : : : pj�1Jpj+1 : : : pk

(from this point on we will represent grouped nodes as an overlined string). If R is

not constrained with respect to any of the members of this group, then it will not

a�ect the rank of the group | it will be placed either above or below the group, as

38 � J.M. Hellerstein

appropriate. If R is constrained with some member pi of the group, it is constrained

to be above pi (by semantic correctness); no selection or secondary join predicate is

ever constrained to be below any node. Now, the Predicate Migration Algorithm

will eventually call parallel chains on the module of all nodes constrained to

follow pi, and R will be pulled up within that module so that it is ordered by

ascending rank with the other groups in the module. Thus if R is part of J 's group

in any module, it is only because the nodes below R form a group of higher rank

than R. (The other possibility, i.e. that the nodes above R formed a group of lower

rank, could not occur since parallel chains would have pulled R above such a

group.)

Given predicates p1; p2 such that rank(p1) > rank(p2), it is easy to show that

rank(p1) > rank(p1p2). Therefore since R can only be constrained to be above

another node, when it is added to a subgroup it will not raise the subgroup's rank.

Although R may not be at the top of the total group including J , it should be

evident that since it lowers the rank of a subgroup, it will lower the rank of the

complete group. Thus if the rank of J 's group changes, it can only change by

decreasing.

Lemma 4. For any join J and selection or secondary join predicate R in a plan

tree, if the Predicate Migration Algorithm ever places R above J in any stream, it

will never subsequently place J below R.

Proof. Assume the contrary, and consider the �rst time that the Predicate

Migration Algorithm pushes a selection or secondary join predicate R back below

a join J . This can happen only because the rank of the group that J is now in is

higher than the rank of J 's group at the time R was placed above J . By Lemma 3,

pulling up nodes can not raise the rank of J 's group. Since this is the �rst time

that a node is pushed down, it is not possible that the rank of J 's group has gone

up, and hence R would not have been pushed below J , a contradiction.

Theorem 1. Given any plan tree as input, the Predicate Migration Algorithm

is guaranteed to terminate in polynomial time, producing a semantically correct,

join-order equivalent tree in which each stream is well-ordered.

Proof. From Lemma 4, we know that after the pre-processing phase, the Pred-

icate Migration Algorithm only moves predicates upwards in a stream. In the

worst-case scenario, each pass through the do loop of predicate migrationmakes

minimal progress, i.e. it pulls a single predicate above a single join in only one

stream. Each predicate can only be pulled up as far as the top of the tree, i.e. h

times, where h is the height of the tree. Thus the Predicate Migration Algorithm

visits each stream at most hk times, where k is the number of expensive selection

and secondary join predicates in the tree. The tree has r streams, where r is the

number of relations referenced in the query, and each time the Predicate Migration

Algorithm visits a stream of height h it performs Monma and Sidney's O(h logh)

algorithm on the stream. Thus the Predicate Migration Algorithm terminates in

O(hkrh logh) steps.

Now the number of selections, the height of the tree, and the number of relations

referenced in the query are all bounded by n, the number of operators in the

plan tree. Hence a trivial upper bound for the Predicate Migration Algorithm

Optimization Techniques For Queries with Expensive Methods � 39

is O(n4 logn). Note that this is a very conservative bound, which we present

merely to demonstrate that the Predicate Migration Algorithm is of polynomial

complexity. In general the Predicate Migration Algorithm should perform with

much greater e�ciency. After some number of steps in O(n4 logn), the Predicate

Migration Algorithm will have terminated, with each stream well-ordered subject

to the constraints of the given join order and semantic correctness.

Theorem 2. For every plan tree T1 there is a unique semantically correct, join-

order equivalent plan tree T2 with only well-ordered streams. Moreover, among all

semantically correct trees that are join-order equivalent to T1, T2 is of minimum

cost.

Proof. Theorem 1 demonstrates that for each tree there exists a semantically

correct, join-order equivalent tree of well-ordered streams (since the Predicate Mi-

gration Algorithm is guaranteed to terminate). To prove that the tree is unique,

we proceed by induction on the number of join nodes in the tree. Following the

argument of Lemma 2, we assume that all groups are of distinct rank; equi-rank

groups may be disambiguated via the IDs of the nodes in the groups.

Base case: The base case of zero join nodes is a simply a Scan node followed by

a series of selections, which can be uniquely ordered as shown in Lemma 1.

Induction Hypothesis: For any tree with k join nodes or less, there is a unique

semantically correct, join-order equivalent tree with well-ordered streams.

Induction: We consider two semantically correct, join-order equivalent plan trees,

T and T 0, each having k+1 join nodes and well-ordered streams. We will show that

these trees are identical, hence proving the uniqueness property of the theorem.

As illustrated in Figure 14, we refer to the uppermost join nodes of T and T
0

as J and J
0 respectively. We refer to the uppermost join or scan in the outer and

inner input streams of J as O and I respectively (O0 and I
0 for J 0). We denote

the set of selections and secondary join predicates above a given join node p as

Rp, and hence we have, as illustrated, RJ above J , RJ 0 above J
0, RO between O

and J , etc. We call a predicate in such a set mobile if there is a join below it in

the tree, and the predicate refers to the attributes of only one input to that join.

Mobile predicates can be moved below such joins without a�ecting the semantics

of the plan tree. First we establish that the subtrees O and O
0 are identical. The

corresponding proof for I and I
0 is analogous.

Consider a plan tree O+ composed of subtree O with a rank-ordered set RO+ of

predicates above it, where RO+ is made up of the union of RO and those predicates

of RJ that do not refer to attributes from I. If O and J are grouped together in

T , then let the cost and selectivity of O in O
+ be modi�ed to include the cost and

selectivity of J . Consider an analogous tree O
+0, with RO+0 being composed of

the union of RO0 and those predicates of RJ 0 that do not refer to I
0. Modify the

cost and selectivity of O0 in O
+0 as before. It should be clear that O+ and O

+0

are join-order equivalent trees of less than k nodes. Since T and T
0 are assumed

to have well-ordered streams, then clearly so do O and O
0. Hence by the induction

hypothesis O
+ and O

+0 are identical, and therefore the subtrees O and O
0 are

identical.

Thus the only di�erences between T and T
0 must occur above O; I;O0

; and I
0.

Now since the sets of predicates in the two trees are equal, and since O and O
0, I

40 � J.M. Hellerstein

R
J

...

T

J

O I

R

...

R

...

O I

R

...

R

...

R

...

T’

J’

J’

O’

O’ I’

I’

Fig. 14. Two semantically correct, join-order equivalent plan trees with well-ordered streams.

and I
0 are identical, it must be that RO[RI [RJ = RO0 [RI0[RJ 0. Semantically,

predicates can only travel downward along a single stream, and hence we see that

RO[RJ = RO0[RJ 0 , and RI[RJ = RI0[RJ 0 . Thus if we can show that RJ = RJ 0 ,

we will have shown that T and T
0 are identical.

Assume the contrary, i.e. RJ 6= RJ 0 . Without loss of generality we can also

assume that RJ �RJ 0 6= ;. Recalling that both trees are well-ordered, this implies

that either

|The minimum-rank mobile predicate of RJ has lower rank than the minimum-

rank mobile predicate of RJ 0 , or

|RJ 0 contains no mobile predicates.

In either case, we see that RJ is a proper superset of RJ 0 .

Knowing that, we proceed to show that RJ cannot contain any predicate not in

RJ 0 , hence demonstrating that RJ = RJ 0 , and therefore that T is identical to T
0,

completing the uniqueness portion of the proof.

We have assumed that T and T
0 have only well-ordered streams. The only

distinction between T and T
0 is that more predicates have been pulled above J

than above J 0. Consider the lowest predicate p in RJ . Since RJ � RJ 0 , p cannot

be in RJ 0 ; assume without loss of generality that p is in RO0 . If we consider the

stream in T containing O and J , p must have higher rank than J since the stream

Optimization Techniques For Queries with Expensive Methods � 41

is well-ordered and p is mobile { i.e., if p had lower rank than J it would be below

J . Further, J must be in a group by itself in this stream, since p is directly above

J and of higher rank than J . Now, consider the stream in T
0 containing O0 and J

0.

In this stream, J 0 can have rank no greater than the rank of J , since J is in a group

by itself and Lemma 3 tells us that adding nodes to a group can only lower the

group's rank. Since p has higher rank than J , and the rank of J 0 is no higher than

that of J , p must have higher rank than J 0. This contradicts our earlier assumption

that T 0 is well-ordered, and hence it must be that T and T
0 were identical to begin

with; i.e. there is only one unique tree with well-ordered streams.

It is easy to see that a minimum-cost tree is well-ordered, and hence that some

well-ordered tree has minimum cost. Assume the contrary, i.e. there is a semanti-

cally correct, join-order equivalent tree T of minimum cost that has a stream that

is not well ordered. Then in this stream there is a group v adjacent to a group

w such that v and w are not well-ordered, and v and w may be swapped without

violating the constraints. Since swapping the order of these two groups a�ects only

the cost of the nodes in v and w, the total cost of T can be made lower by swapping

v and w, contradicting our assumption that T was of minimum cost.

Since T2 is the only semantically correct tree of well-ordered streams that is join-

order equivalent to T1, it follows that T2 is of minimum cost. This completes the

proof.

Lemma 5. For a selection or secondary join predicate R in a subexpression, if

the rank of R is greater than the rank of any join in any plan for the subexpression,

then in the optimal complete tree R will appear above the highest join in a subtree

for the subexpression.

Proof. Recall that rank(p1) > rank(p1p2). Thus in any full plan tree T con-

taining a subtree T0 for the subexpression, the highest-rank group containing nodes

from T0 will be of rank less than or equal to the rank of the highest-rank join node

in T0. A selection or secondary join predicate of higher rank than the highest-rank

join node of T0 is therefore certain to be placed above T0 in T .

