Data Stream Processing (Part IV)

The Streaming Model

• **Underlying signal**: One-dimensional array $A[1...N]$ with values $A[i]$ all initially zero
 - Multi-dimensional arrays as well (e.g., row-major)

• Signal is implicitly represented via a **stream of updates**
 - j-th update is $<k, c[j]>$ implying
 - $A[k] := A[k] + c[j]$ ($c[j]$ can be >0, <0)

• **Goal**: Compute functions on $A[]$ subject to
 - Small space
 - Fast processing of updates
 - Fast function computation
 - ...
Streaming Model: Special Cases

- **Time-Series Model**

- **Cash-Register Model**
 - $c[j]$ is always ≥ 0 (i.e., increment-only)
 - Typically, $c[j]=1$, so we see a multi-set of items in one pass

- **Turnstile Model**
 - Most general streaming model
 - $c[j]$ can be >0 or <0 (i.e., increment or decrement)

- *Problem difficulty varies depending on the model*
 - E.g., MIN/MAX in Time-Series vs. Turnstile!
Data-Stream Processing Model

- **Approximate answers often suffice**, e.g., trend analysis, anomaly detection
- **Requirements for stream synopses**
 - *Single Pass*: Each record is examined at most once, in (fixed) arrival order
 - *Small Space*: Log or polylog in data stream size
 - *Real-time*: Per-record processing time (to maintain synopses) must be low
 - *Delete-Proof*: Can handle record deletions as well as insertions
 - *Composable*: Built in a *distributed fashion* and combined later

(GigaBytes)
Continuous Data Streams

Stream Synopses (in memory)

(KiloBytes)
Approximate Answer with Error Guarantees “Within 2% of exact answer with high probability”

Stream Processing Engine

Query Q

R1

Rk
Probabilistic Guarantees

• Example: Actual answer is within 5 ± 1 with prob ≥ 0.9

• **Randomized algorithms:** Answer returned is a specially-built random variable

• **User-tunable (ε, δ)-approximations**
 - Estimate is within a relative error of ε with probability $\geq 1-\delta$

• Use **Tail Inequalities** to give probabilistic bounds on returned answer
 - **Markov Inequality**
 - **Chebyshev’s Inequality**
 - **Chernoff Bound**
 - **Hoeffding Bound**
Overview

• Introduction & Motivation
• Data Streaming Models & Basic Mathematical Tools
• Summarization/Sketching Tools for Streams
 - Sampling
 - Linear-Projection (aka AMS) Sketches
 • Applications: Join/Multi-Join Queries, Wavelets
 - Hash (aka FM) Sketches
 • Applications: Distinct Values, Distinct sampling, Set Expressions
Linear-Projection (aka AMS) Sketch Synopses

- **Goal:** Build small-space summary for distribution vector $f(i)$ ($i=1,\ldots, N$) seen as a stream of i-values

Data stream: $3, 1, 2, 4, 2, 3, 5, \ldots$

- **Basic Construct:** Randomized Linear Projection of $f() = \text{project onto inner/dot product of f-vector}$

$$< f, \xi > = \sum f(i) \xi_i \quad \text{where} \quad \xi = \text{vector of random values from an appropriate distribution}$$

- Simple to compute over the stream: Add ξ_i whenever the i-th value is seen

Data stream: $3, 1, 2, 4, 2, 3, 5, \ldots$

$$\xi_1 + 2\xi_2 + 2\xi_3 + \xi_4 + \xi_5$$

- Generate ξ_i 's in small $(\log N)$ space using pseudo-random generators
- **Tunable probabilistic guarantees** on approximation error
- **Delete-Proof:** Just subtract ξ_i to delete an i-th value occurrence
- **Composable:** Simply add independently-built projections
Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

- Assume a hash function $h(x)$ that maps incoming values x in $[0, \ldots, N-1]$ uniformly across $[0, \ldots, 2^L-1]$, where $L = O(\log N)$

- Let $\text{lsb}(y)$ denote the position of the least-significant 1 bit in the binary representation of y
 - A value x is mapped to $\text{lsb}(h(x))$

- Maintain Hash Sketch = BITMAP array of L bits, initialized to 0
 - For each incoming value x, set $\text{BITMAP}[\text{lsb}(h(x))]=1$

$x = 5 \rightarrow h(x) = 101100 \rightarrow \text{lsb}(h(x)) = 2$

BITMAP

\[\begin{array}{cccccc}
5 & 4 & 3 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\]
Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

- By uniformity through \(h(x) \): \(\text{Prob}[\text{BITMAP}[k]=1] = \text{Prob}[10^k] = \frac{1}{2^{k+1}} \)
 - Assuming \(d \) distinct values: expect \(d/2 \) to map to BITMAP[0], \(d/4 \) to map to BITMAP[1], …

\[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \]

- Let \(R = \text{position of rightmost zero in BITMAP} \)
 - Use as indicator of \(\log(d) \)

- Average several iid instances (different hash functions) to reduce estimator variance
Generalization: Distinct Values Queries

- SELECT COUNT(DISTINCT target-attr)
- FROM relation
- WHERE predicate

- SELECT COUNT(DISTINCT o_custkey)
- FROM orders
- WHERE o_orderdate >= '2002-01-01'

 - “How many distinct customers have placed orders this year?”
 - Predicate not necessarily only on the DISTINCT target attribute

- Approximate answers with error guarantees over a stream of tuples?
Distinct Sampling [Gib01]

Key Ideas

- Use FM-like technique to collect a specially-tailored sample over the distinct values in the stream
 - Use hash function mapping to sample values from the data domain
- Uniform random sample of the distinct values
- Very different from traditional random sample: each distinct value is chosen uniformly regardless of its frequency
- DISTINCT query answers: simply scale up sample answer by sampling rate

- To handle additional predicates
 - Reservoir sampling of tuples for each distinct value in the sample
 - Use reservoir sample to evaluate predicates
Processing Set Expressions over Update Streams [GGRO3]

- Estimate cardinality of *general set expressions* over streams of updates
 - E.g., number of distinct (source,dest) pairs seen at both R1 and R2 but not R3? \(| (R1 \cap R2) - R3 |\)

- **2-Level Hash-Sketch (2LHS) stream synopsis**: Generalizes FM sketch
 - *First level*: \(\Theta(\log N)\) buckets with exponentially-decreasing probabilities (using \(\text{lsb}(h(x))\), as in FM)
 - *Second level*: Count-signature array (\(\log N+1\) counters)
 - One “total count” for elements in first-level bucket
 - \(\log N\) “bit-location counts” for 1-bits of incoming elements

Diagram:
- \(\text{insert}(17) \rightarrow \text{lsb}(h(17))\)
- \(17 = 0 0 0 0 1 0 0 0 1\)
- **-1 for deletes!!**
Extensions

• Key property of FM-based sketch structures: **Duplicate-insensitive!!**
 - Multiple insertions of the same value don’t affect the sketch or the final estimate
 - Makes them ideal for use in broadcast-based environments
 - E.g., wireless sensor networks (broadcast to many neighbors is critical for **robust** data transfer)
 - Considine et al. ICDE’04; Manjhi et al. SIGMOD’05

• Main deficiency of **traditional random sampling**: Does not work in a Turnstile Model (inserts+deletes)
 - “Adversarial” deletion stream can deplete the sample

• **Exercise**: Can you make use of the ideas discussed today to build a “delete-proof” method of maintaining a random sample over a stream??
New stuff for today...

- A different sketch structure for multi-sets: *The CountMin (CM) sketch*
- The Sliding Window model and Exponential Histograms (EHs)
- Peek into distributed streaming
The CountMin (CM) Sketch

- Simple sketch idea, can be used for point queries, range queries, quantiles, join size estimation
- Model input at each node as a vector x_i of dimension N, where N is large
- Creates a small summary as an array of $w \times d$ in size
- Use d hash functions to map vector entries to $[1..w]$
CM Sketch Structure

- Each entry in vector A is mapped to one bucket per row
- Merge two sketches by entry-wise summation
- Estimate $A[j]$ by taking $\min_k \text{sketch}[k, h_k(j)]$

[Cormode, Muthukrishnan ’05]
CM Sketch Summary

- **CM sketch** guarantees approximation error on point queries less than $\varepsilon \| A \|_1$ in size $O(1/\varepsilon \log 1/\delta)$

 - Probability of more error is less than $1-\delta$

 - Similar guarantees for range queries, quantiles, join size

- **Hints**

 - Counts are biased! Can you limit the expected amount of extra “mass” at each bucket? (*Use Markov*)

 - Use Chernoff to boost the confidence for the min{} estimate

- **Food for thought:** How do the CM sketch guarantees compare to AMS??
Sliding Window Streaming Model

• Model
 - At every time t, a data record arrives
 - The record “expires” at time $t+N$ (N is the window length)

• When is it useful?
 - Make decisions based on “recently observed” data
 - Stock data
 - Sensor networks
Time in Data Stream Models

Tuples arrive $X_1, X_2, X_3, \ldots, X_t, \ldots$

- Function $f(X,t,\text{NOW})$
 - Input at time t: $f(X_1,1,t)$, $f(X_2,2,t)$, $f(X_3,3,t)$, ..., $f(X_t,t,t)$
 - Input at time $t+1$: $f(X_1,1,t+1)$, $f(X_2,2,t+1)$, $f(X_3,3,t+1)$, ..., $f(X_{t+1},t+1,t+1)$

- Full history: $f = \text{identity}$

- Partial history: Decay
 - Exponential decay: $f(X,t,\text{NOW}) = 2^{-\text{NOW}-t}X$
 - Input at time t: $2^{-(t-1)}X_1$, $2^{-(t-2)}X_2$, ..., $\frac{1}{2} \cdot X_{t-1}, X_t$
 - Input at time $t+1$: $2^{-t}X_1$, $2^{-(t-1)}X_2$, ..., $\frac{1}{4} \cdot X_{t-1}, \frac{1}{2} \cdot X_t, X_{t+1}$
 - Sliding window (special type of decay):
 - $f(X,t,\text{NOW}) = X$ if $\text{NOW}-t < N$
 - $f(X,t,\text{NOW}) = 0$, otherwise
 - Input at time t: $X_1, X_2, X_3, \ldots, X_t$
 - Input at time $t+1$: $X_2, X_3, \ldots, X_t, X_{t+1}$
Simple Example: Maintain Max

- Problem: Maintain the maximum value over the last N numbers.

- Consider all non-decreasing arrangements of N numbers (Domain size R):
 - There are \((N+R)\ choose N\) distinct arrangements
 - Lower bound on memory required:
 \[\log(N+R \ choose N) \geq N \log(R/N) \]
 - So if \(R=\text{poly}(N)\), then lower bound says that we have to store the last N elements (\(\Omega(N \log N)\) memory)
Statistics Over Sliding Windows

• Bitstream: Count the number of ones [DGIM02]
 - Exact solution: $\Theta(N)$ bits
 - Algorithm BasicCounting:
 • $1 + \varepsilon$ approximation (relative error!)
 • Space: $O(1/\varepsilon \cdot (\log^2 N))$ bits
 • Time: $O(\log N)$ worst case, $O(1)$ amortized per record
 - Lower Bound:
 • Space: $\Omega(1/\varepsilon \cdot (\log^2 N))$ bits
Approach: Temporal Histograms

Example: ... 01101010011111110110 0101 ...

Equi-width histogram:

... 0110 1010 0111 1111 0110 0101 ...

• Issues:

 - Error is in the last (leftmost) bucket.
 - Bucket counts (left to right): $C_m, C_{m-1}, ..., C_2, C_1$
 - Absolute error $\leq C_m/2$.
 - Answer $\geq C_{m-1}+...+C_2+C_1+1$.
 - Relative error $\leq C_m/2(C_{m-1}+...+C_2+C_1+1)$.
 - Maintain: $C_m/2(C_{m-1}+...+C_2+C_1+1) \leq \epsilon (=1/k)$.

Naïve: Equi-Width Histograms

• Goal: Maintain $C_m/2 \leq \varepsilon (C_{m-1} + \ldots + C_2 + C_1 + 1)$

Problem case:
... 0110 1010 0111 1111 0110 1111 0000 0000 0000 0000 ...

• Note:
 - Every Bucket will be the last bucket sometime!
 - New records may be all zeros ➔
 For every bucket i, require $C_i/2 \leq \varepsilon (C_{i-1} + \ldots + C_2 + C_1 + 1)$
Exponential Histograms

• Data structure invariant:
 - Bucket sizes are non-decreasing powers of 2
 - For every bucket size other than that of the last bucket, there are at least \(\frac{k}{2} \) and at most \(\frac{k}{2}+1 \) buckets of that size
 - Example: \(k=4 \): \((8,4,4,4,2,2,2,1,1,\ldots)\)

• Invariant implies:
 - Assume \(C_i=2^j \), then
 • \(C_{i-1}+\ldots+C_2+C_1+1 \geq k/2*(\Sigma(1+2+4+\ldots+2^{j-1})) \geq k*2^j /2 \)
 • \(\geq k/2*C_i \)
 - Setting \(k = \frac{1}{\varepsilon} \) implies the required error guarantee!
Space Complexity

- Number of buckets m:
 - $m \leq \lceil \# \text{ of buckets of size } j \rceil \times \lceil \# \text{ of different bucket sizes} \rceil$
 - $\leq (k/2 + 1) \times ((\log(2N/k)+1) = O(k \times \log(N))$

- Each bucket requires $O(\log N)$ bits.

- Total memory:
 $O(k \log^2 N) = O(1/\varepsilon \times \log^2 N)$ bits

- Invariant (with $k = 1/\varepsilon$) maintains error guarantee!
EH Maintenance Algorithm

Data structures:
- For each bucket: timestamp of most recent 1, size = #1's in bucket
- LAST: size of the last bucket
- TOTAL: Total size of the buckets

New element arrives at time t
- If last bucket expired, update LAST and TOTAL
- If (element == 1)
 - Create new bucket with size 1; update TOTAL
- Merge buckets if there are more than k/2+2 buckets of the same size
- Update LAST if changed

Anytime estimate: TOTAL - (LAST/2)
Example Run

- If last bucket expired, update LAST and TOTAL
- If (element == 1)
 Create new bucket with size 1; update TOTAL
- Merge two oldest buckets if there are more than k/2+2 buckets of the same size
- Update LAST if changed

Example (k=2):

32,16,8,8,4,4,2,1,1
32,16,8,8,4,4,2,2,1
32,16,8,8,4,4,2,2,1,1
32,16,16,8,4,2,1
Lower Bound

• Argument: Count number of different arrangements that the algorithm needs to distinguish
 - $\log(N/B)$ blocks of sizes $B, 2B, 4B, ..., 2^iB$ from right to left.
 - Block i is subdivided into B blocks of size 2^i each.
 - For each block (independently) choose $k/4$ sub-blocks and fill them with 1.

• Within each block: (B choose $k/4$) ways to place the 1s

• (B choose $k/4$)$^{\log(N/B)}$ distinct arrangements
Lower Bound (continued)

- Example:

```
+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+
```

- Show: An algorithm has to distinguish between any such two arrangements
Assume we do not distinguish two arrangements:
- Differ at block d, sub-block b

Consider time when b expires
- We have c full sub-blocks in A1, and c+1 full sub-blocks in A2 [note: c+1≤k/4]
- A1: \(c2^d + \text{sum1} \) to \(d-1\) \(k/4 \times (1+2+4+..+2^{d-1})\)
 = \(c2^d + k/2(2^d-1)\)
- A2: \((c+1)2^d + k/4 \times (2^d-1)\)
- Absolute error: \(2^{d-1}\)
- Relative error for A2:
 \(2^{d-1}/[(c+1)2^d + k/4 \times (2^d-1)]\) \(\geq 1/k = \varepsilon\)
Lower Bound (continued)

Calculation:

- **A1:** \(c2^d + \text{sum1 to } d-1 \frac{k}{4^*}(1+2+4+..+2^{d-1}) \)
 \[= c2^d + k \frac{2^d-1}{2} \]

- **A2:** \((c+1)2^d + k \frac{4^*}{2^d-1} \)

- **Absolute error:** \(2^{d-1} \)

- **Relative error:**
 \[2^{d-1}/[(c+1)2^d + k/4^* \cdot 2^d]\]
 \[= 2^{d-1}/[2^d \cdot k/4^*] = 1/k = \varepsilon\]
The Power of EHs

- Counter for N items = $O(\log N)$ space
- EH = ε–approximate counter over sliding window of N items that requires $O(1/\varepsilon \times \log^2 N)$ space
 - $O(1/\varepsilon \log N)$ penalty for (approx) sliding-window counting

- Can plug EH-counters to counter-based streaming methods ⇒ work in sliding-window model!!
 - Examples: histograms, CM-sketches, ...
- Complication: counting is now ε–approximate
 - Account for that in analysis
Data-Stream Algorithmics Model

Continuous Data Streams

Stream Synopses (in memory)

Approximate Answer with Error Guarantees “Within 2% of exact answer with high probability”

- Approximate answers- e.g. trend analysis, anomaly detection
- Requirements for stream synopses
 - Single Pass: Each record is examined at most once
 - Small Space: Log or polylog in data stream size
 - Small-time: Low per-record processing time (maintain synopses)
 - Also: delete-proof, composable, ...
Distributed Streams Model

- Large-scale querying/monitoring: *Inherently distributed!*
 - Streams physically distributed across remote sites
 E.g., stream of UDP packets through subset of edge routers
- Challenge is “holistic” querying/monitoring
 - Queries over the union of distributed streams $Q(S_1 \cup S_2 \cup \ldots)$
 - Streaming data is spread throughout the network
Distributed Streams Model

- Need timely, accurate, and efficient query answers
- Additional complexity over centralized data streaming!
- Need space/time- and communication-efficient solutions
 - Minimize network overhead
 - Maximize network lifetime (e.g., sensor battery life)
 - Cannot afford to “centralize” all streaming data
Conclusions

- Querying and finding patterns in massive streams is a real problem with many real-world applications
- Fundamentally rethink data-management issues under stringent constraints
 - Single-pass algorithms with limited memory resources
- A lot of progress in the last few years
 - Algorithms, system models & architectures
 - GigaScope (AT&T), Aurora (Brandeis/Brown/MIT), Niagara (Wisconsin), STREAM (Stanford), Telegraph (Berkeley)
- Commercial acceptance still lagging, but will most probably grow in coming years
 - Specialized systems (e.g., fraud detection, network monitoring), but still far from “DSMSs”