The Streaming Model

- **Underlying signal:** One-dimensional array $A[1..N]$ with values $A[i]$, all initially zero
- Multi-dimensional arrays as well (e.g., row-major)
- Signal is implicitly represented via a stream of updates
 - j-th update is $<k, c[j]>$ implying $A[k] = A[k] + c[j]$ ($c[j]$ can be $>0, <0$)
- **Goal:** Compute functions on $A[]$ subject to
 - Small space
 - Fast processing of updates
 - Fast function computation

Streaming Model: Special Cases

- **Time-Series Model**
- **Cash-Register Model**
 - $c[j]$ is always $= 0$ (i.e., increment-only)
 - Typically, $c[j] \geq 1$, so we see a multi-set of items in one pass
- **Turnstile Model**
 - Most general streaming model
 - $c[j]$ can be >0 or <0 (i.e., increment or decrement)
 - Problem difficulty varies depending on the model
 - E.g., MIN/MAX in Time-Series vs. Turnstile!

Probabilistic Guarantees

- Example: Actual answer is within 5 ± 1 with prob ≥ 0.9
- Randomized algorithms: Answer returned is a specially-built random variable
- User-tunable (c, δ)-approximations
 - Estimate is within a relative error of c with probability $\geq 1-\delta$
- Use Tail Inequality to give probabilistic bounds on returned answer
 - Markov Inequality
 - Chebyshev’s Inequality
 - Chernoff Bound
 - Hoeffding Bound

Overview

- Introduction & Motivation
- Data Streaming Models & Basic Mathematical Tools
- Summarization/Sketching Tools for Streams
 - Sampling
 - Linear-Projection (aka AMS) Sketches
 - Applications: Join/Multi-Join Queries, Wavelets
 - Hash (aka FM) Sketches
 - Applications: Distinct Values, Distinct Sampling, Set Expressions
Linear-Projection (aka AMS) Sketch Synopses

- **Goal:** Build small-space summary for distribution vector $(f(i)), i=1...N$ seen as a stream of i-values.
- **Data stream:** $3, 1, 2, 4, 2, 3, 5, ...$
- **Basic construct:** Randomized Linear Projection of $f()$ onto inner/dot product of T-vector

 \[
 \langle f, \hat{c} \rangle := \sum_i f(i) \hat{c}_i,
 \]

 where \hat{c}_i = vector of random values from an appropriate distribution.

 - Simple to compute over the stream: Add \hat{c}_i whenever the i-th value is seen.
 - Data stream: $3, 1, 2, 4, 2, 3, 5, ...$
 - Generate \hat{c}_i in small (\logN) space using pseudo-random generators.
 - Tunable probabilistic guarantee on approximation error.
 - Delete-Proof: Just subtract \hat{c}_i to delete an i-th value occurrence.
 - Composable: Simply add independently-built projections.

Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

- **Assume a hash function $h(x)$ that maps incoming values $x \in [0, N-1]$ uniformly across $[0, 2L-1]$, where $L = O(\log N)$.
- Let $\text{lsb}(y)$ denote the position of the least-significant 1 bit in the binary representation of y.
- A value x is mapped to $\text{lsb}(h(x))$.
- Maintain Hash Sketch: BITMAP array of L bits, initialized to 0.

 - For each incoming value x, set $\text{BITMAP}[\text{lsb}(h(x))] = 1$.

Generalization: Distinct Values Queries

- **SELECT COUNT(DISTINCT target-attr)**

 Template

- **FROM** relation

 WHERE predicate

 - **SELECT COUNT(DISTINCT e_custkey)**

 TPC-H example

 - **FROM** orders

 WHERE e_orderdate = ‘2002-01-01’

 - "How many distinct customers have placed orders this year?"**
 - Predicate not necessarily only on the DISTINCT target attribute.

 - Approximate answers with error guarantees over a stream of tuples.

Distinct Sampling [Gib01]

Key Ideas

- Use FM-like technique to collect a specially-tailored sample over the distinct values in the stream.
 - Use hash function mapping to sample values from the data domain.
 - Uniform random sample of the distinct values.
 - Very different from traditional random sample: each distinct value is chosen uniformly regardless of its frequency.
 - DISTINCT query answers: simply scale up sample answer by sampling rate.

- To handle additional predicates
 - **Reservoir sampling** of tuples for each distinct value in the sample.
 - Use reservoir sample to evaluate predicates.

Processing Set Expressions over Update Streams [GGRO03]

- **Estimate cardinality of general set expressions over streams of updates**

 - E.g., number of distinct (source,dest) pairs seen at both R1 and R2 but not R3 $\setminus (R1 \cap R2)$ $\setminus R3$.

- **2-Level Hash-Sketch (2LHS) stream synopsis:** Generalizes FM sketch.

 - **First level:** $O(\log N)$ buckets with exponentially-decreasing probabilities (using $\text{lsb}(h(x))$, as in FM).
 - **Second level:** Count-signature array ($\log N$-1 counters)

 - One total count for elements in first level bucket.
 - $\log N$ bit-location counts for 1-bits of incoming elements.

- **Template**

 - **SELECT COUNT(DISTINCT e_custkey)**

 WHERE e_orderdate = ‘2002-01-01’

 - "How many distinct customers have placed orders this year?"**
 - Predicate not necessarily only on the DISTINCT target attribute.

 - Approximate answers with error guarantees over a stream of tuples.

Processing Set Expressions over Update Streams [GGRO03]

- **Estimate cardinality of general set expressions over streams of updates**

 - E.g., number of distinct (source,dest) pairs seen at both R1 and R2 but not R3 $\setminus (R1 \cap R2)$ $\setminus R3$.

- **2-Level Hash-Sketch (2LHS) stream synopsis:** Generalizes FM sketch.

 - **First level:** $O(\log N)$ buckets with exponentially-decreasing probabilities (using $\text{lsb}(h(x))$, as in FM).
 - **Second level:** Count-signature array ($\log N$-1 counters)

 - One total count for elements in first level bucket.
 - $\log N$ bit-location counts for 1-bits of incoming elements.

- **Insert(17)**

 - $\text{lsb}(h(17))$**

 - **Insert(17)**

 - **Insert(17)**

 - **-1 for deletes**

 - **Template**

 - **SELECT COUNT(DISTINCT e_custkey)**

 WHERE e_orderdate = ‘2002-01-01’

 - "How many distinct customers have placed orders this year?"**
 - Predicate not necessarily only on the DISTINCT target attribute.

 - Approximate answers with error guarantees over a stream of tuples.
Extensions

- Key property of FM-based sketch structures: Duplicate-insensitive!
 - Multiple insertions of the same value don’t affect the sketch or the final estimate.
 - Makes them ideal for use in broadcast-based environments.
 - E.g., wireless sensor networks (broadcast to many neighbors is critical for robust data transfer).
 - Considine et al. ICDE’04; Manjhi et al. SIGMOD’05.

- Main deficiency of traditional random sampling: Does not work in a Turnstile Model (inserts-deletes).
 - “Adversarial” deletion stream can deplete the sample.

- Exercise: Can you make use of the ideas discussed today to build a “delete-proof” method of maintaining a random sample over a stream?

The CountMin (CM) Sketch

- Simple sketch idea, can be used for point queries, range queries, quantiles, join size estimation.
- Model input at each node as a vector \(x_j \), of dimension \(N \), where \(N \) is large.
- Creates a small summary as an array of \(w \times d \) in size.
- Use \(d \) hash functions to map vector entries to \([1, w]\).

\[W \quad \text{d} \]

\[h_i(j) \]

\[A[j] \]

\[h_1(j) \]

\[h_d(j) \]

- Each entry in vector \(A \) is mapped to one bucket per row.
- Merge two sketches by entry-wise summation.
- Estimate \(A[j] \) by taking \(\min_i \text{sketch}[h_i(j)] \).

[Comodo, Muthukrishnan ’05]

CM Sketch Summary

- CM sketch guarantees approximation error on point queries less than \(\sqrt{|A|} \), in size \(O(\sqrt{N \log 1/\delta}) \).
 - Probability of more error is less than \(1-\delta \).
 - Similar guarantees for range queries, quantiles, join size estimation.

- Hints:
 - Counts are biased! Can you limit the expected amount of extra “mass” at each bucket? (Use Markov)
 - Use Chernoff to boost the confidence for the \(\min_i \) estimate.

- Food for thought: How do the CM sketch guarantees compare to AMS??

New stuff for today...

- A different sketch structure for multi-sets: The CountMin (CM) sketch.
- The Sliding Window model and Exponential Histograms (EHs).
- Peek into distributed streaming.

Sliding Window Streaming Model

- Model:
 - At every time \(t \), a data record arrives.
 - The record “expires” at time \(t+N \) (\(N \) is the window length).
- When is it useful?
 - Make decisions based on “recently observed” data.
 - Stock data.
 - Sensor networks.
Time in Data Stream Models

- Function f: $f(x,y,z)$
 - Input at time t: $f(x_1, y_1, z_1, t_1)$
 - Input at time $t=1$: $f(x_1, y_1, z_1, t+1)$
 - Input at time $t=1, 2$: $f(x_1, y_1, z_1, t+1)$
 - Input at time $t=1, 2, 3$: $f(x_1, y_1, z_1, t+1)$
- Full history: f = identity
- Partial history: Decay
 - Exponential decay: $f(x, y, z) = 2 \cdot \text{now} \cdot x$
 - Input at time t: $2 \cdot \text{now} \cdot x_1, 2 \cdot \text{now} \cdot x_2, \ldots$, x_i, X_i
 - Input at time $t=1$: $2 \cdot \text{now} \cdot x_1, 2 \cdot \text{now} \cdot x_2, \ldots, 1/4 \cdot x_i, X_i$
 - Sliding window (special case of decay):
 - $f(x, y, z) = X$ if $\text{now} < t$
 - $f(x, y, z) = 0$, otherwise
 - Input at time t: $x_1, x_2, x_3, \ldots x_t$
 - Input at time $t=1$: $x_1, x_2, x_3, \ldots x_t$

Simple Example: Maintain Max

- Problem: Maintain the maximum value over the last N numbers.
- Consider all non-decreasing arrangements of N numbers (Domain size R):
 - There are $(N+R)$ choose N distinct arrangements
 - Lower bound on memory required: $\log(N+R)$ choose N > $N^2 \log R / N$
 - So if R is poly(N), then lower bound says that we have to store the last N elements ($\Omega(N \log N)$ memory)

Statistics Over Sliding Windows

- Bitstream: Count the number of ones [DGIM02]
 - Exact solution: $O(N)$ bits
 - Algorithm BasicCounting:
 - $1 + \epsilon$ approximation (relative error)
 - Space: $O(1/\epsilon \log N)$ bits
 - Time: $O(\log N)$ worst case, $O(1)$ amortized per record
 - Lower Bound:
 - Space: $\Omega(1/\epsilon \log N)$ bits

Approach: Temporal Histograms

Example: ... 0110101001111110110 0101 ...

Equi-width histogram:
... 0110 1110 1010 1011 1111 1111 1010 0101 ...

- Issues:
 - Error is in the last (leftmost) bucket.
 - Bucket counts (left to right): $C_{n+1}, \ldots, C_2, C_1$
 - Absolute error <= $C_n / 2$
 - Answer <= $C_{n+1} + \ldots + C_2 + C_1$
 - Relative error <= $C_n / 2(C_{n+1} + \ldots + C_2 + C_1)$
 - Maintain $C_n / 2(C_{n+1} + \ldots + C_2 + C_1) <= \epsilon (1/\epsilon)$

Naive: Equi-Width Histograms

- Goal: Maintain $C_n / 2 < \epsilon (C_{n+1} + \ldots + C_2 + C_1)$
- Problem case:
 ... 0110 1010 0111 1111 0110 1111 0000 0000 0000 ...

- Note:
 - Every bucket will be the last bucket sometime!
 - New records may be all zeros → For every bucket i, require $C_i / 2 <= \epsilon (C_{i+1} + \ldots + C_2 + C_1)$

Exponential Histograms

- Data structure invariant:
 - Bucket sizes are non-decreasing powers of 2
 - For every bucket size other than that of the last bucket, there are at least $k/2$ and at most $k/2+1$ buckets of that size
 - Example: $k=4$: (8, 4, 4, 4, 2, 2, 2, 1, 1)

- Invariant implies:
 - Assume $C_i = 2^i$, then
 - $C_i + \ldots + C_2 + C_1$ = $k/2(2^1 + 2^2 + \ldots + 2^i)$ = $k2^i / 2$
 - Setting $k = 1/\epsilon$ implies the required error guarantee!
Space Complexity

- Number of buckets m:
 - $m \leq [\# \text{ of buckets of size } j]*[\# \text{ of different bucket sizes}]
 - $(k/2+1)*((\log(2N/k)-1) = O(k^* \log(N))$
- Each bucket requires $O(\log N)$ bits.
- Total memory:
 - $O(k \log^2 N) = O(1/e \times \log^3 N)$ bits
- Invariant (with $k = 1/e$) maintains error guaranteed

EH Maintenance Algorithm

- Data structures:
 - For each bucket: timestamp of most recent 1, size = #1's in bucket
 - LAST: size of the last bucket
 - TOTAL: Total size of the buckets

New element arrives at time t

- If last bucket expired, update LAST and TOTAL
- If (element $= 1$)
 - Create new bucket with size 1, update TOTAL
 - Merge buckets if there are more than $k/2+2$ buckets of the same size
- Update LAST if changed

Anytime estimate: $\text{TOTAL} - (\text{LAST}/2)$

Example Run

- If last bucket expired, update LAST and TOTAL
- If (element $= 1$)
 - Create new bucket with size 1, update TOTAL
 - Merge two oldest buckets if there are more than $k/2+2$ buckets of the same size
- Update LAST if changed

Example ($k=2$):

- $32,16,8,8,4,4,2,1,1$
- $32,16,8,8,4,4,2,2,1$
- $32,16,8,8,4,4,2,2,1,1$
- $32,16,16,8,4,2,1$

Lower Bound

- Argument: Count number of different arrangements that the algorithm needs to distinguish
 - $\log(N/B)$ blocks of sizes $B,2B,4B,...,2^B$ from right to left.
 - Block i is subdivided into B blocks of size 2^i each.
 - For each block (independently) choose $k/4$ sub-blocks and fill them with 1.
 - Within each block: (B choose $k/4$) ways to place the 1s
 - (B choose $k/4$)$^{(\log(N/B))}$ distinct arrangements

Lower Bound (continued)

- Example:

- Show: An algorithm has to distinguish between any such two arrangements

Assume we do not distinguish two arrangements:
- Differ at block d, sub-block b

Consider time when b expires
- We have c full sub-blocks in A1, and $c+1$ full sub-blocks in A2 [note: $c\leq k/4$]
- $A1: c2^d=\text{sum of d-1,} k/4^i[1+2+4+...+2^{d-1}]$
- $A2: (\leq c+1)\frac{k}{4}^d2^{d-i}$
- Absolute error: 2^d
- Relative error for A2: $2^d/((\leq c+1)\frac{k}{4}^d2^{d-i}) = 1/k + \varepsilon$
Lower Bound (continued)

Calculation:
- A1: \(c2k^{h} \sum_{k=1}^{d} \frac{k}{4^k} / ((1+2+4+...+2^d-1))\) = \(c2^k k / (2^k-1)\)
- A2: \((c+1)2^{k/4} / (2^k-1)\)
- Absolute error: \(2^{k/2} (1/4^k) \leq \varepsilon\)

The Power of EHs

- Counter for N items = \(O(\log N)\) space
- EH = \(\varepsilon\)-approximate counter over sliding window of N items that requires \(O(1/\varepsilon \cdot \log^2 N)\) space
- \(O(1/\varepsilon \cdot \log N)\) penalty for (approx) sliding-window counting

Data-Stream Algorithmics Model

- Approximate answers: e.g., trend analysis, anomaly detection
- Requirements for stream synopsis
 - Single Pass: Each record is examined at most once
 - Small Space: Log or polylog in data stream size
 - Small-time: Low per-record processing time (maintain synopsis)
 - Also: deletions proof, composable...

Distributed Streams Model

- Large-scale querying/monitoring: Inherently distributed
- Streams physically distributed across remote sites
 - E.g., streams of UDP packets through subset of edge routers
- Challenge is "holistic" querying/monitoring
 - Queries over union of distributed streams \(Q(S_1, S_2, ..., S_k)\)
- Streaming data is spread throughout the network

Conclusions

- Querying and finding patterns in massive streams is a real problem with many real-world applications
- Fundamentally rethink data-management issues under stringent constraints
 - Single-pass algorithms with limited memory resources
- A lot of progress in the last few years
 - Algorithms, system models & architectures
 - Gigascope (AT&T), Aurora (Brandani/Brown/MIT), Niagara (Wisconsin), STREAM (Stanford), Telegraph (Berkeley)
- Commercial acceptance still lagging, but will most probably grow in coming years
 - Specialized systems (e.g., fraud detection, network monitoring), but still far from "DSMSSs"