Data Stream Processing (Part III)

• SURVEY-1: S. Muthukrishnan. “Data Streams: Algorithms and Applications”
The Streaming Model

- **Underlying signal:** One-dimensional array $A[1...N]$ with values $A[i]$ all initially zero
 - Multi-dimensional arrays as well (e.g., row-major)
- Signal is implicitly represented via a stream of updates
 - j-th update is $<k, c[j]>$ implying
 - $A[k] := A[k] + c[j]$ (c[j] can be >0, <0)

- **Goal:** Compute functions on $A[]$ subject to
 - Small space
 - Fast processing of updates
 - Fast function computation
 - ...
Streaming Model: Special Cases

- **Time-Series Model**

- **Cash-Register Model**
 - $c[j]$ is always ≥ 0 (i.e., increment-only)
 - Typically, $c[j]=1$, so we see a multi-set of items in one pass

- **Turnstile Model**
 - Most general streaming model
 - $c[j]$ can be >0 or <0 (i.e., increment or decrement)

- **Problem difficulty varies depending on the model**
 - E.g., MIN/MAX in Time-Series vs. Turnstile!
Data-Stream Processing Model

- Approximate answers often suffice, e.g., trend analysis, anomaly detection
- Requirements for stream synopses
 - *Single Pass*: Each record is examined at most once, in (fixed) arrival order
 - *Small Space*: Log or polylog in data stream size
 - *Real-time*: Per-record processing time (to maintain synopses) must be low
 - *Delete-Proof*: Can handle record deletions as well as insertions
 - *Composable*: Built in a *distributed fashion* and combined later
Probabilistic Guarantees

- Example: Actual answer is within 5 ± 1 with prob ≥ 0.9

- **Randomized algorithms:** Answer returned is a specially-built random variable

- **User-tunable (\(\varepsilon, \delta\))-approximations**
 - Estimate is within a relative error of ε with probability $\geq 1-\delta$

- **Use Tail Inequalities** to give probabilistic bounds on returned answer
 - Markov Inequality
 - Chebyshev’s Inequality
 - Chernoff Bound
 - Hoeffding Bound
Linear-Projection (aka AMS) Sketch Synopses

- **Goal:** Build small-space summary for distribution vector \(f(i) \) (\(i=1,\ldots, N \)) seen as a stream of \(i \)-values

Data stream: \[3, 1, 2, 4, 2, 3, 5, \ldots \]

- **Basic Construct:** Randomized Linear Projection of \(f() \) = project onto inner/dot product of \(f \)-vector

\[
< f, \xi > = \sum f(i)\xi_i \quad \text{where } \xi = \text{vector of random values from an appropriate distribution}
\]

- Simple to compute over the stream: Add \(\xi_i \) whenever the \(i \)-th value is seen

Data stream: \[3, 1, 2, 4, 2, 3, 5, \ldots \]

- Generate \(\xi_i \)'s in small (log\(N \)) space using pseudo-random generators
- **Tunable probabilistic guarantees** on approximation error
- **Delete-Proof:** Just subtract \(\xi_i \) to delete an \(i \)-th value occurrence
- **Composable:** Simply add independently-built projections
Overview

• Introduction & Motivation
• Data Streaming Models & Basic Mathematical Tools
• Summarization/Sketching Tools for Streams
 - Sampling
 - Linear-Projection (aka AMS) Sketches
 • Applications: Join/Multi-Join Queries, Wavelets
 - Hash (aka FM) Sketches
 • Applications: Distinct Values, Distinct sampling, Set Expressions
Distinct Value Estimation

- Problem: Find the number of distinct values in a stream of values with domain $[0,\ldots,N-1]$
 - Zeroth frequency moment F_0, L0 (Hamming) stream norm
 - Statistics: number of species or classes in a population
 - Important for query optimizers
 - Network monitoring: distinct destination IP addresses, source/destination pairs, requested URLs, etc.

- Example (N=64) Data stream: [3 0 5 3 0 1 7 5 1 0 3 7]
 Number of distinct values: 5

- Hard problem for random sampling! \cite{CCMNO00}
 - Must sample almost the entire table to guarantee the estimate is within a factor of 10 with probability $>\frac{1}{2}$, regardless of the estimator used!
Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

- Assume a hash function $h(x)$ that maps incoming values x in $[0, \ldots, N-1]$ uniformly across $[0, \ldots, 2^L-1]$, where $L = O(\log N)$

- Let $\text{lsb}(y)$ denote the position of the least-significant 1 bit in the binary representation of y
 - A value x is mapped to $\text{lsb}(h(x))$

- Maintain Hash Sketch = BITMAP array of L bits, initialized to 0
 - For each incoming value x, set $\text{BITMAP}[\text{lsb}(h(x))] = 1$

$x = 5 \quad \rightarrow \quad h(x) = 101100 \quad \rightarrow \quad \text{lsb}(h(x)) = 2$
Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

- By uniformity through $h(x)$: $\text{Prob}[\ \text{BITMAP}[k]=1 \] = \text{Prob}[10^k] = \frac{1}{2^{k+1}}$
 - Assuming d distinct values: expect $d/2$ to map to BITMAP[0], $d/4$ to map to BITMAP[1], ...

\[\begin{array}{ccccccccccccccc}
\text{BITMAP} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \]

- Let $R = \text{position of rightmost zero in BITMAP}$
 - Use as indicator of $\log(d)$

- [FM85] prove that $E[R] = \log(\phi d)$, where $\phi = 0.7735$
 - Estimate $d = 2^R/\phi$
 - Average several iid instances (different hash functions) to reduce estimator variance

- position $\gg \log(d)$
- fringe of 0/1s around $\log(d)$
- position $\ll \log(d)$
Hash Sketches for Distinct Value Estimation

- [FM85] assume “ideal” hash functions \(h(x) \) (N-wise independence)
 - [AMS96]: pairwise independence is sufficient
 * \(h(x) = (a \cdot x + b) \mod N \), where \(a, b \) are random binary vectors in \([0,\ldots,2^L-1]\)
 - Small-space \((\varepsilon, \delta)\) estimates for distinct values proposed based on FM ideas
- **Delete-Proof:** Just use counters instead of bits in the sketch locations
 - +1 for inserts, -1 for deletes
- **Composable:** Component-wise OR/add distributed sketches together
 - Estimate \(|S_1 \cup S_2 \cup \ldots \cup S_k| = \text{set-union cardinality}\)
Generalization: Distinct Values Queries

- **Template**
 - SELECT COUNT(DISTINCT target-attr)
 - FROM relation
 - WHERE predicate

- **TPC-H example**
 - SELECT COUNT(DISTINCT o_custkey)
 - FROM orders
 - WHERE o_orderdate >= '2002-01-01'

 - “How many distinct customers have placed orders this year?”
 - Predicate not necessarily only on the DISTINCT target attribute

- **Approximate answers with error guarantees over a stream of tuples?**
Distinct Sampling [Gib01]

Key Ideas

• Use FM-like technique to collect a specially-tailored sample over the distinct values in the stream
 - Use hash function mapping to sample values from the data domain!!
 - Uniform random sample of the distinct values
 - Very different from traditional random sample: each distinct value is chosen uniformly regardless of its frequency
 - DISTINCT query answers: simply scale up sample answer by sampling rate

• To handle additional predicates
 - Reservoir sampling of tuples for each distinct value in the sample
 - Use reservoir sample to evaluate predicates
Building a Distinct Sample [Gib01]

- Use FM-like hash function $h()$ for each streaming value x

 $$\text{Prob}[h(x) = k] = \frac{1}{2^{k+1}}$$

- **Key Invariant:** "All values with $h(x) \geq$ level (and only these) are in the distinct sample"

```java
DistinctSampling(B, r)

// B = space bound, r = tuple-reservoir size for each distinct value
level = 0; S = φ

for each new tuple t do
  let x = value of DISTINCT target attribute in t
  if $h(x) \geq$ level then // x belongs in the distinct sample
    use t to update the reservoir sample of tuples for x
  if |S| >= B then // out of space
    evict from S all tuples with $h$(target-attribute-value) = level
    set level = level + 1
```
Using the Distinct Sample [Gib01]

- If level = 1 for our sample, then we have selected all distinct values x such that h(x) >= 1
 - $\text{Prob}[h(x) \geq 1] = \frac{1}{2^l}$
 - By h()'s randomizing properties, we have uniformly sampled a 2^{-l} fraction of the distinct values in our stream

- Query Answering: Run distinct-values query on the distinct sample and scale the result up by 2^l

- Distinct-value estimation: Guarantee ϵ relative error with probability $1 - \delta$ using $O(\log(1/\delta)/\epsilon^2)$ space
 - For $q\%$ selectivity predicates the space goes up inversely with q

- Experimental results: 0-10% error vs. 50-250% error for previous best approaches, using 0.2% to 10% synopses
Distinct Sampling Example

- B=3, N=8 (r = 0 to simplify example)

<table>
<thead>
<tr>
<th>Data stream:</th>
<th>3 0 5 3 0 1 7 5 1 0 3 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash:</td>
<td>0 1 3 5 7</td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data stream:</th>
<th>1 7 5 1 0 3 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S={3,0,5},</td>
<td>level = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S={1,5},</th>
</tr>
</thead>
<tbody>
<tr>
<td>level = 1</td>
<td></td>
</tr>
</tbody>
</table>

- Computed value: 4
Processing Set Expressions over Update Streams [GGRO3]

- Estimate cardinality of general set expressions over streams of updates
 - E.g., number of distinct (source,dest) pairs seen at both R1 and R2 but not R3? \(|R1 \cap R2| - |R3|\)

- **2-Level Hash-Sketch (2LHS) stream synopsis:** Generalizes FM sketch
 - **First level:** \(\Theta(\log N)\) buckets with exponentially-decreasing probabilities (using \(\text{lsb}(h(x))\), as in FM)
 - **Second level:** Count-signature array (\(\log N + 1\) counters)
 - One “total count” for elements in first-level bucket
 - \(\log N\) “bit-location counts” for 1-bits of incoming elements

```
insert(17)       lsb(h(17))
```

```
+1
+1
+1
```

-1 for deletes!!

17 = 0 0 0 0 1 0 0 0 0 1

TotCount count7 count6 count5 count4 count3 count2 count1 count0
Processing Set Expressions over Update Streams: Key Ideas

- Build several independent 2LHS, fix a level \(l \), and look for *singleton first-level buckets* at that level \(l \)

- Singleton buckets and singleton element (in the bucket) are easily identified using the *count signature*

 Singleton bucket count signature

<table>
<thead>
<tr>
<th>Total</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
</table>

 Singleton element = \(1010_2 = 10 \)

- Singletons discovered form a *distinct-value sample* from the union of the streams
 - Frequency-independent, each value sampled with probability \(\frac{1}{2^{l+1}} \)

- Determine the fraction of "witnesses" for the set expression \(E \) in the sample, and scale-up to find the estimate for \(|E| \)
Example: Set Difference, |A-B|

- Parallel (same hash function), independent 2LHS synopses for input streams A, B
- Assume robust estimate \(\hat{\mu} \) for \(|A \cup B|\) (using known FM techniques)
- Look for buckets that are singletons for \(A \cup B\) at level \(l \approx \log \hat{\mu}\)
 - \(\text{Prob}[\text{singleton at level } l] > \text{constant (e.g., } 1/4\)
 - Number of singletons (i.e., size of distinct sample) is at least a constant fraction (e.g., \(> 1/6\)) of the number of 2LHS (w.h.p.)
- "Witness" for set difference \(A-B\): Bucket is singleton for stream A and empty for stream B
 - \(\text{Prob}[\text{witness } | \text{ singleton}] = \frac{|A-B|}{|A \cup B|}\)
- Estimate for \(|A-B| = \frac{\# \text{witnesses for } A-B}{\# \text{singleton buckets}} \times \hat{\mu}\)
Estimation Guarantees

- Our set-difference cardinality estimate is within a relative error of ε with probability $\geq 1 - \delta$ when the number of 2LHS is $O\left(\frac{|A \cup B| \log(1/\delta)}{|A - B| \varepsilon^2}\right)$.

- Lower bound of $\Omega\left(\frac{|A \cup B|}{|A - B| \varepsilon}\right)$ space, using communication-complexity arguments.

- Natural generalization to arbitrary set expressions $E = f(S_1, ..., S_n)$

 - Build parallel, independent 2LHS for each $S_1, ..., S_n$

 - Generalize “witness” condition (inductively) based on E’s structure

 - (ε, δ) estimate for $|E|$ using $O\left(\frac{|S_1 \cup ... \cup S_n| \log(1/\delta)}{|E| \varepsilon^2}\right)$

 2LHS synopses

- Worst-case bounds! Performance in practice is much better [GGR03]
Extensions

• Key property of FM-based sketch structures: **Duplicate-insensitive!!**
 - Multiple insertions of the same value don’t affect the sketch or the final estimate
 - Makes them ideal for use in broadcast-based environments
 - E.g., wireless sensor networks (broadcast to many neighbors is critical for robust data transfer)
 - Considine et al. ICDE’04; Manjhi et al. SIGMOD’05

• Main deficiency of traditional random sampling: Does not work in a Turnstile Model (inserts+deletes)
 - “Adversarial” deletion stream can deplete the sample

• **Exercise:** Can you make use of the ideas discussed today to build a “delete-proof” method of maintaining a random sample over a stream??