Data Stream Processing
(Part III)

SURVEY 1: S. Muthukrishnan. "Data Streams: Algorithms and Applications".

Streaming Model: Special Cases

- Time-Series Model
 - Only j-th update updates A[j] (i.e., A[j]:= c[j])
- Cash-Register Model
 - c[j] is always := 0 (i.e., increment-only)
 - Typically, c[j]>1, so we see a multi-set of items in one pass
- Turnstile Model
 - Most general streaming model
 - c[j] can be ±0 or ±1 (i.e., increment or decrement)
 - Problem difficulty varies depending on the model
 - E.g., MIN/MAX in Time-Series vs. Turnstile!

The Streaming Model

- Underlying signal: One-dimensional array A[1...N] with values A[i] all initially zero
 - Multi-dimensional arrays as well (e.g., row-major)
- Signal is implicitly represented via a stream of updates
 - j-th update is <k, c[j]>
 - c[j] can be ±0, ±1
- Goal: Compute functions on A[] subject to
 - Small space
 - Fast processing of updates
 - Fast function computation

Probabilistic Guarantees

- Example: Actual answer is within 5 ± 1 with prob ≥ 0.9
- Randomized algorithms: Answer returned is a specially-built random variable
- User-tunable (ε,δ)-approximations
 - Estimate is within a relative error of ε with probability ≥ 1-δ
- Use Tail Inequalities to give probabilistic bounds on returned answer
 - Markov Inequality
 - Chebyshev’s Inequality
 - Chernoff Bound
 - Hoeffding Bound

Data-Stream Processing Model

- Approximate answers often suffice, e.g., trend analysis, anomaly detection
- Requirements for stream synopsis
 - Single Pass: Each record is examined at most once, in (fixed) arrival order
 - Small Space: Log or polylog in data stream size
 - Real-time: Per-record processing time (to maintain synopsis) must be low
 - Delete-Proof: Can handle record deletions as well as insertions
 - Composable: Built in a distributed fashion and combined later

Linear-Projection (aka AMS) Sketch Synopses

- Goal: Build small-space summary for distribution vector f(i)(t) in (stream of i-values)
- Basic Construct: Randomized Linear Projection of f = project onto inner-dot product of f-vector
 - Simple to compute over the stream: Add f[i] whenever the i-th value is seen
 - Generate f[i] is small (logN) space using pseudo-random generators
 - Turnstile probabilistic guarantees on approximation error
 - Delete-Proof: Just subtract f[i] to delete an i-th value occurrence
 - Composable: Simply add independently-built projections
Overview

• Introduction & Motivation
• Data Streaming Models & Basic Mathematical Tools
• Summarization/Sketching Tools for Streams
 - Sampling
 - Linear-Projection (aka AMS) Sketches
 • Applications: Join/Multi-Join Queries, Wavelets
 - Hash (aka FM) Sketches
 • Applications: Distinct Values, Distinct Sampling, Set Expressions

Distinct Value Estimation

• Problem: Find the number of distinct values in a stream of values with
 domain \{0, \ldots, N-1\}
 - Zerth frequency moment \(F_0 \), L0 (Hamming) stream norm
 - Statistics: number of species or classes in a population
 - Important for query optimizers
 - Network monitoring: distinct destination IP addresses, source/destination pairs, requested URLs, etc.

• Example (N=64)
 • Data stream: 5 0 5 3 0 1 7 5 1 0 3 7
 • Number of distinct values: 5

 • Hard problem for random sampling (CC-MNS00)
 - Must sample almost the entire table to guarantee the estimate is
 within a factor of 10 with probability 1/2, regardless of the
 estimator used

Hash (aka FM) Sketches for Distinct Value Estimation [FM85]

• Assume a hash function \(h(x) \) that maps incoming values \(x \) in \([0, \ldots, N-1]\)
 uniformly across \([0, \ldots, 2^L-1]\), where \(L = \Theta(\log N) \)

• Let \(\text{lab}(y) \) denote the position of the least-significant 1 bit in the binary
 representation of \(y \)
 - A value \(x \) is mapped to \(\text{lab}(h(x)) \)

• Maintain \(\text{Hash Sketch} = \text{BITMAP} \) array of \(L \) bits, initialized to 0
 - For each incoming value \(x \), set \(\text{BITMAP} [\text{lab}(h(x))] = 1 \)

\(x = 5 \Rightarrow h(x) = 101100 \Rightarrow \text{lab}(h(x)) = 2 \)

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Hash Sketches for Distinct Value Estimation

(FM85) assume "ideal" hash functions \(h(x) \) (N-wise independence)

• [AMS96]: pairwise independence is sufficient
 - \(h(x) = (a \cdot x + b) \mod N \), where \(a, b \) are random binary vectors
 in \([0, \ldots, 2^L-1]\)
 - Small-space \((c,d)\) estimates for distinct values proposed based on
 FM ideas

• Delete-Proof: Just use counters instead of bits in the sketch locations
 - +1 for inserts, -1 for deletes

• Composable: Component-wise OR/ADD distributed sketches together
 - Estimate \(|S_1 \cup S_2 \cup \ldots \cup S_k| \) = set-union cardinality

Generalization: Distinct Values Queries

• SELECT COUNT(DISTINCT target-attr)
 • FROM relation
 • WHERE predicate

• SELECT COUNT(DISTINCT a, c, t, ikey)
 • FROM orders
 • WHERE a_orderdate > '2002-01-01'
 - "How many distinct customers have placed orders this year?"
 - Predicate not necessarily on the DISTINCT target attribute

• Approximate answers with error guarantees over a stream of tuples
Distinct Sampling [Gib01]

Key Ideas
- Use FM-like technique to collect a specially-tailored sample over the distinct values in the stream
 - Use hash function mapping to sample values from the data domain
 - Uniform random sample of the distinct values
 - Very different from traditional random sample: each distinct value is chosen uniformly regardless of its frequency
 - DISTINCT query answers: simply scale up sample answer by sampling rate
- To handle additional predicates
 - Reservoir sampling of tuples for each distinct value in the sample
 - Use reservoir sample to evaluate predicates

Using the Distinct Sample [Gib01]
- If level \(l \) for our sample, then we have selected all distinct values \(x \) such that \(h(x) = l \)
 - \(\text{Prob}(h(x) = l) = \frac{1}{l} \)
 - By \(h(x) \)'s randomizing properties, we have uniformly sampled a fraction of the distinct values in our stream
 - Our sampling rate!
- Query Answering: Run distinct-values query on the distinct sample and scale the result up by \(l \)
- Distinct-value estimation: Guarantees a relative error with probability \(1 - \delta \) using \(O(\log (1/\delta)/\epsilon^2) \) space
 - For \(\epsilon \times \delta \) selectivity predicates the space goes up inversely with \(\delta \)
- Experimental results: 0.01% error vs. 50-250% error for previous best approaches, using 0.2% to 10% synopses

Building a Distinct Sample [Gib01]
- Use FM-like hash function \(h() \) for each streaming value \(x \)
 - \(\text{Prob}(h(x) = k) = \frac{1}{2^k} \)
- Key Invariant: "All values with \(h(x) \geq k \) (and only these) are in the distinct sample"

Distinct Sampling Example
- \(B = 3, N = 8 \) (\(r = 0 \) to simplify example)
 \[0 1 3 5 7 \]

Distinct Sampling Example
- \(B = 3, N = 8 \) (\(r = 0 \) to simplify example)
 \[0 1 3 5 7 \]

Processing Set Expressions over Update Streams [G6R03]
- Estimate cardinality of general set expressions over streams of updates
 - E.g., number of distinct \((\text{source,dest})\) pairs seen at both \(R_1 \) and \(R_2 \) but not \(R_3 \)
 - \(R_1 \subseteq R_2 \subseteq R_3 \)
- 2-Level Hash-Sketch (2LHS) stream synopsis: Generalizes FM sketch
 - First level: \(\log(N) \) buckets with exponentially-decreasing probabilities (using \(\log(h(x)) \), as in FM)
 - Second level: Count signature array (\(\log(W) \) counters)
 - One "total count" for elements in first-level bucket
 - \(\log(h(x)) \) bit-location counts for \(b \)-bits of incoming elements
 - \(\text{insert}(17) \to \text{ld}(h(17)) \)

Processing Set Expressions over Update Streams: Key Ideas
- Build several independent 2LHS, fix a level \(l \), and look for singleton first-level buckets at that level
 - \(\text{lookup}(l) \to \text{count}(l) \to \text{buckets}(l) \to \text{signature}(l) \to \text{singleton}(l) \)
 - Singleton buckets and singleton element (in the bucket) are easily identified using the count signature
 - Singletons discovered form a "distinct value sample" from the union of the streams
 - Frequency-independent, each value sampled with probability \(\frac{1}{N} \)
 - Determine the fraction of "witnesses" for the set expression \(E \) in the sample, and scale-up to find the estimate for \(|E| \)
Example: Set Difference, |A-B|

- Parallel (same hash function), independent 2LHS synopses for input streams A, B
- Assume robust estimate $\hat{\mu}$ for $|A\cup B|$ (using known FM techniques)
- Look for buckets that are singletons for $A\cup B$ at level $1-\log\hat{\mu}$
 - Prob[singleton at level 1] \leq constant (e.g., $1/4$)
 - Number of singletons (i.e., size of distinct sample) is at least a constant fraction (e.g., $1/6$) of the number of 2LHS (w.h.p.)
- "Witness" for set difference A-B: Bucket is singleton for stream A and empty for stream B
 - Prob[witness | singleton] $= |A-B| / |A\cup B|$
- Estimate for $|A-B| = \#$ witnesses for $A-B$ / $\#$ singleton buckets

Estimation Guarantees

- Our set-difference cardinality estimate is within a relative error of ϵ with probability $\geq 1-\delta$ when the number of 2LHS is $\Omega\left(\frac{|A\cup B|}{\epsilon^2} \log(1/\delta)\right)$
- Lower bound of $\Omega\left(\frac{|A\cup B|}{\epsilon^2} \log(1/\delta)\right)$ space, using communication-complexity arguments
- Natural generalization to arbitrary set expressions $E = f(S_1, \ldots, S_n)$
 - Build parallel, independent 2LHS for each S_1, \ldots, S_n
 - Generalize "witness" condition (inductively) based on E's structure
 - (ϵ, δ) estimate for $|E|$ using $O\left(\frac{|S_1| \ldots |S_n|}{\epsilon^2} \log(1/\delta)\right)$
 2LHS synopses
- Worst-case bounds! Performance in practice is much better [GGR03]

Extensions

- Key property of FM-based sketch structures: Duplicate-insensitive!
 - Multiple insertions of the same value don't affect the sketch or the final estimate
 - Makes them ideal for use in broadcast-based environments
 - E.g., wireless sensor networks (broadcast to many neighbors is critical for robust data transfer)
 - Considine et al. ICU'04; Manki et al. SIGMOD'05
- Main deficiency of traditional random sampling: Does not work in a Turnstile Model (inserts-deletes)
 - "Adversarial" deletion stream can deplete the sample
- Exercise: Can you make use of the ideas discussed today to build a "delete-proof" method of maintaining a random sample over a stream??