What is a Query Language?

Universality of Data Retrieval Languages, Aho and Ullman, POPL 1979

Raghu Ramakrishnan

What is a Query Language?

- A language that allows retrieval and manipulation of data from a database.
- What is A Database?
 - A large collection of DATA
 - The data can be grouped into sets whose elements have similar structure.
- What Kind of Structure Can the Data Have?
- What Kind of Manipulation Should Be Allowed?

Some Ideas

- Relations should be treated as sets of tuples.
- The query language must have a simple, non-operational meaning that is independent of physical data representation.
- There must be efficient ways to process queries over (large) sets of similarly structured facts.

We will focus on the relational model

Principles for A Relational Query Language*

*Proposed by Aho & Ullman

1) Relation = Set of Tuples.
 Ordering & other storage details should not be visible.
2) Data Values should not be ‘Interpreted’.
 Def: Let \(\mu = D \rightarrow D \) be a Bijection.
 A Function \(f \) is Allowable if \(\mu(f(a_1, \ldots, a_k)) = f(\mu(a_1), \ldots, \mu(a_k)) \)

Note: (2) Says that no special meaning should be attached to data values (as far as the query language is concerned); thus, Arithmetic is Disallowed!

\[5 + 6 = 11, 8 < 9, \ldots \]

Allowable Fns – Transitive Closure

- Aho & Ullman’s notation of allowable function is rather restrictive. However:
 1. All Relational Algebra queries are allowable.
 2. Transitive Closure is allowable.
- And they prove that:
 * There is no Relational Algebra query that computes the Transitive Closure of a Relation.

Any R.A expression has a fixed size, say \(n \). Choose Relation R:

\[
\begin{align*}
\alpha_1 & \quad \alpha_2 & \quad \ldots & \quad \alpha_k \quad \text{such that} \quad k > n
\end{align*}
\]

The relational algebra expression cannot deal with \(\alpha_n, \alpha_k \).
Proposal

- We should extend RA to support a least fixpoint operator.
 - Leads to recursive queries
 - Some systems (e.g., Oracle) support limited forms of recursion like transitive closure. Others (DB2) support linear recursion, following SQL:1999.

Least Fixpoints

- The LFP operator is defined as follows:
 \[\text{LFP}(R = f(R)) = r, \]
 where:
 1. \(r = f(r) \)
 2. if \(r' = f(r) \) then \(r \subseteq r' \)

- Theorem (Tarski):
 There is a least fixpoint satisfying \(\text{LFP}(R = f(R)) \) if \(f \) is monotone.
 \[r_1 \subseteq r_2 \Rightarrow f(r_1) \subseteq f(r_2) \]
 Note: If \(f \) is a relation algebra expression without `-' (set diff.), then it is monotone.

Least Fixpoint – Cont.

- Theorem (Kleene)
 If \(f \) is continuous & over a complete lattice,
 \[\text{LFP}(R = f(R)) = \lim_{n \to \infty} f^n(\emptyset) \]

- Example: Transitive Closure
 \[R = R \cup r, \]
 \[f(\emptyset) = r, \]
 \[f(f(\emptyset)) = f(r) = r \cup r, \]
 \[f^*(\emptyset) = \bigcup_{n \geq 1} r \cup r \cdots \cup r \]

Proof

Consider a set of \(l \) arbitrary symbols:
\[\Sigma = \{a_1, a_2, \ldots, a_l\} \]
We consider a family of relations
\[R'_l = \{(a_1, a_1), (a_1, a_2), \ldots, (a_{l-1}, a_l)\} \]

We show that NO relational algebra expression computes exactly the tuples in \(R'_l \) for all \(l \)

LFP - Cont.

- Claim:
 The LFP operator satisfies principles 1&2

- Theorem (Aho-Ullman):
 There is no relational algebra expression \(E(R) \) that computes the transitive closure of an arbitrary input relation \(R \).

We will prove that every R.A. expr. \(E(R, j) \) can be expressed as:
\[\{b_1, b_2, \ldots, b_k | \Psi(b_1, b_2, \ldots, b_k)\} \]
Where
\[\Psi \] is of the form: clause1 \(\lor \) clause2 \(\lor \cdots \) Each clause is of the form: atom1 \(\land \) atom2 \(\land \cdots \) Each atom is of the form:
\[b_j = a_j, b_j \neq a_j, b_j = b_j + c, b_j \neq b_j + c \]
The \(b_j \)'s are variables taking values from \(\Sigma \), and the \(c \)'s are constants \((0 \leq c \leq l) \)

Note: Here \((b_1 + c) \Rightarrow a_j \) s.t. \(b_j = a_j \)
Lemma: If \(E \) is any R.A. expr.
\[E(R) = [b_1, \ldots, b_n | \Psi(b_1, \ldots, b_n)] \]
Suppose the lemma is true, we can then prove the theorem as follows:
Suppose \(E(R) = R' \), for some \(E \), for all \(R \), then \(R'' = [b_1, \ldots, b_n | \Psi(b_1, \ldots, b_n)] \)

Case 1: Every clause in \(\Psi \) has an atom of the form:
\[b_i = a_j, b_i = a_k, \text{ or } b_i = b_i + c \]
Consider \((b_i, b_j) = (a_{a_{a_{a_{\ldots}}}}) \) where
\(m > i \) s.t. \(b_i = a_k \) or \(b_i = a_1 \) is an atom;
\(d > i \) s.t. \(b_i = b_i + c \) is an atom
\[\vdash (a_{a_{a_{a_{\ldots}}}}) \] is not computed, but is in \(R'' \)

Case 2: Some clause in \(\Psi \) has ONLY atoms with \(\neq \)
Consider \((b_i, b_j) = (a_{a_{a_{a_{\ldots}}}}) \)
Where no atom
\[b_i \neq a_k, a_k \neq a_{a_{a_{a_{\ldots}}}} \]
appears in \(\Psi \), and
\(d > c, \) for all \(c \) s.t. \(b_j = b_i + c \) or \(b_j = b_i + c \)
appears in \(\Psi \),
\[\vdash (a_{a_{a_{a_{\ldots}}}}) \] is computed, but is not in \(R'' \)

\[
\begin{array}{c}
\vdash (a_{a_{a_{a_{\ldots}}}}) \text{ is not computed, but is in } R'' \\
\end{array}
\]

\[
\begin{array}{c}
\vdash (a_{a_{a_{a_{\ldots}}}}) \text{ is computed, but is not in } R'' \\
\end{array}
\]

Proof of lemma

Base: 0 operators. \(\vdash E(R) = R \) or constant relation.
\[R = [b_1, b_2, \ldots, b_n | b_i = b_i + 1] \]
\[[c_1, c_2, \ldots, c_m] = [b_1, c_1 = c_2 = \ldots =] \]

Induction:
\[E = E_1 \cup E_2, E_1 \cup E_2, \text{ or } E_1 \times E_2 \]
\[E = [b_1, \ldots, b_n | \Psi(b_1, \ldots, b_n)] \]
\[E_i = [b_i, \ldots, b_n | \Psi(b_i, \ldots, b_n)] \]
\[E_i = [b_i, \ldots, b_n | \Psi(b_i, \ldots, b_n) \cup \Psi(b_i, \ldots, b_n)] \]
\[E = \sigma_{(E_1 \times E_2)} F \text{ has only } \vdash \]
\[E = [b_1, \ldots, b_n | \Psi(b_1, \ldots, b_n) \times F(b_1, \ldots, b_n)] \]
\[E = \sigma_{(E_1 \times E_2)} ; \text{ proceeding similarly} \]

Transitive closure - more

\[R_i = \{(a_1, a_2), (a_2, a_3), \ldots, (a_{n-1}, a_n)\} \]
\[\sigma_{(E_1 \times E_2)} \]
Does this relational algebra expr. computes \(R'' \)?

YES! But it is NOT a relation algebra expression!

\[
\begin{array}{c}
\vdash (a_{a_{a_{a_{\ldots}}}}) \text{ is not computed, but is in } R'' \\
\end{array}
\]

BP-Completeness

\[A \text{ query language is BP-complete if:} \]
\[\bullet \] All functions that can be expressed in the language are allowable.
\[\bullet \] Let \(r_1 \) and \(r_2 \) be two relations (instances), such that for all renamings \(\mu \)
\[r_1 = \mu(r_1) \Rightarrow r_2 = \mu(r_2) \]
Then there is a function \(f \) in the language such that
\[r_2 = f(r_1) \]

Transitive closure - more

\[R_i = \{(a_1, a_2), (a_2, a_3), \ldots, (a_{n-1}, a_n)\} \]
\[\sigma_{(E_1 \times E_2)} \]
Does this relational algebra expr. computes \(R'' \)?

YES! But it is NOT a relation algebra expression!

\[
\begin{array}{c}
\vdash (a_{a_{a_{a_{\ldots}}}}) \text{ is not computed, but is in } R'' \\
\end{array}
\]
Example of BP-Complete

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

1. If ‘A’ is used as ‘r1’ in previous slide, which of the others qualifies as ‘r1’?

2. For each such relation, find relational algebra function f.