A Quick Introduction to Approximate Query Processing

Part-IV

CS286, Spring'07
Minos Garofalakis

Logistics...

- Draft CS286 web site is finally up!
 - http://db.cs.berkeley.edu/cs286sp07/

- Project list and guidelines being worked on
 - Please email me & Raghu to discuss your own project ideas...

Outline

- Intro & Approximate Query Answering Overview
 - Synopses, System architectures, Commercial offerings
- One-Dimensional Synopses
 - Histograms: Equi-depth, Compressed, V-optimal, Incremental maintenance, Self-tuning
 - Samples: Basics, Sampling from DBs, Reservoir Sampling
 - Wavelets: 1-D Haar-wavelet histogram construction & maintenance
- Multi-Dimensional Synopses and Joins
- Set-Valued Queries
- Discussion & Comparisons
- Advanced Techniques & Future Directions

Outline

- Intro & Approximate Query Answering Overview
 - Synopses, System architecture, Commercial offerings
- One-Dimensional Synopses
 - Histograms, Samples, Wavelets
- Multi-Dimensional Synopses and Joins
 - Multi-D Histograms, Join synopses, Wavelets
- Set-Valued Queries
 - Error metrics; Using Histograms, Samples, Wavelets
 - Discussion & Comparisons
 - Advanced Techniques & Future Directions
 - Dependency-based, Streaming data

Relations as Frequency Distributions

One-dimensional distribution

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>34</td>
<td>100K</td>
</tr>
<tr>
<td>JG</td>
<td>33</td>
<td>90K</td>
</tr>
<tr>
<td>RR</td>
<td>40</td>
<td>190K</td>
</tr>
<tr>
<td>JH</td>
<td>36</td>
<td>110K</td>
</tr>
<tr>
<td>MF</td>
<td>39</td>
<td>150K</td>
</tr>
<tr>
<td>DD</td>
<td>45</td>
<td>150K</td>
</tr>
<tr>
<td>JN</td>
<td>43</td>
<td>140K</td>
</tr>
<tr>
<td>AP</td>
<td>32</td>
<td>70K</td>
</tr>
<tr>
<td>EM</td>
<td>24</td>
<td>50K</td>
</tr>
<tr>
<td>DW</td>
<td>24</td>
<td>50K</td>
</tr>
</tbody>
</table>

Three-dimensional distribution

<table>
<thead>
<tr>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Outline

- Intro & Approximate Query Answering Overview
 - Synopses, System architecture, Commercial offerings
- One-Dimensional Synopses
 - Histograms, Samples, Wavelets
- Multi-Dimensional Synopses and Joins
 - Multi-D Histograms, Join synopses, Wavelets
- Set-Valued Queries
 - Error metrics; Using Histograms, Samples, Wavelets
 - Discussion & Comparisons
 - Advanced Techniques & Future Directions
 - Dependency-based, Streaming data

Outline

- Intro & Approximate Query Answering Overview
 - Synopses, System architecture, Commercial offerings
- One-Dimensional Synopses
 - Histograms, Samples, Wavelets
- Multi-Dimensional Synopses and Joins
 - Multi-D Histograms, Join synopses, Wavelets
- Set-Valued Queries
 - Error metrics; Using Histograms, Samples, Wavelets
 - Discussion & Comparisons
 - Advanced Techniques & Future Directions
 - Dependency-based, Streaming data
Two-dimensional Haar Wavelets -- Non-standard decomposition

- Averaging &
- Differencing

Wavelet Transform Array:

```
+---+---+---+---+
|   | a+b+c+d   |   |
|---+---+---+---|
+---+---+---+---+
```

```
+---+---+---+---+
|   | a+b+c+d   |   |
|---+---+---+---|
+---+---+---+---+
```

Multi-dimensional Haar Wavelets

- Haar decomposition in d dimensions = d-dimensional array of wavelet coefficients
- Coefficient support region = d-dimensional rectangle of cells in the original data array
- Sign of coefficient's contribution can vary along the quadrants of its support

Support regions & signs for the 16 nonstandard 2-dimensional Haar coefficients of a 4X4 data array A

```
+---+---+---+---+
|   |   |   |
|---+---+---+---|
+---+---+---+---+
```

Range-sum Estimation Using Wavelet Synopses

- Coefficient thresholding
 - As in 1-d case, normalizing by appropriate constants and retaining the largest coefficients minimizes the overall L2 error
- Range-sums: selectivity estimation or OLAP-cube aggregates [VW99] ("measure attribute as count")
- Only coefficients with support regions intersecting the query hyper-rectangle can contribute
 - Many contributions can cancel each other [CGR00, VW99]

Approximate Query Processing Using Wavelets [CGR00]

- Reduce relations into compact wavelet-coefficient synopses

Entire query processing in the compressed (wavelet) domain

```
  Querying in Wavelet Domain
    Query Results in Wavelet Domain
      Render
  Compressed domain (FAST)
  Relation domain (SLOW)
  Final Approximate Results
```

Wavelet Query Processing

- Each operator (e.g., select, project, join, aggregates, etc.)
 - input: set of wavelet coefficients
 - output: set of wavelet coefficients
- Finally, rendering step
 - input: set of wavelet coefficients
 - output: (multi)set of tuples

Selection -- Relational Domain

- In relational domain, interested in only those cells inside query range
- In wavelet domain, interested in only the coefficients that contribute to those cells
Selection -- Wavelet Domain

![Diagram](image)

Equi-join -- Relational Domain

- Consider all pairs of coefficients: (1) check joinability (overlap in join dimension(s)), (2) compute output coefficients

![Diagram](image)

Equi-join -- Wavelet Domain

![Diagram](image)

Wavelet Query Processing

- Each operator (e.g., select, project, join, aggregates, etc.)
 - input: set of wavelet coefficients
 - output: set of wavelet coefficients
- Finally, rendering step
 - input: set of wavelet coefficients
 - output: (multi)set of tuples

![Diagram](image)

Outline

- Intro & Approximate Query Answering Overview
- One-Dimensional Synopses
- Multi-Dimensional Synopses and Joins
- Set-Valued Queries
- Discussion & Comparisons
- Advanced Techniques & Future Directions
- Conclusions

![Diagram](image)

Discussion & Comparisons (1)

- Histograms & Waves: Limited by "curse of dimensionality"
 - Rely on data space partitioning in "regions"
 - Ineffective above 5-6 dimensions
 - Value/frequency uniformity assumptions within buckets break down in medium-to-high dimensionality!
- Sampling: No such limitations, BUT...
 - Ineffective for ad-hoc relational joins over arbitrary schemas
 - Uniformity property is lost
 - Quality guarantees degrade
 - Effectiveness for set-valued approximate queries is unclear
 - Only (very) small subsets of the answer set are returned (especially, when joins are present)
Discussion & Comparisons (2)
- Histograms & Wavelets: Compress data by accurately capturing rectangular “regions” in the data space
 - Advantage over sampling for typical, "range-based" relational DB queries
 - BUT, unclear how to effectively handle unordered/non-numeric data sets (no issues with sampling...)
- Sampling: Provides strong probabilistic quality guarantees (unbiased answers) for individual aggregate queries
 - Histograms & Wavelets: Can guarantee a bound on the overall error (e.g., L2 for the approximation, BUT answers to individual queries can be heavily biased!

No clear winner exists! (Hybrids??)

Outline
- Intro & Approximate Query Answering Overview
- One-Dimensional Synopses
- Multi-Dimensional Synopses and Joins
- Set-Valued Queries
- Discussion & Comparisons
 - Advanced Techniques & Future Directions
 - Dependency-based Synopses
 - Streaming Data
 - XML Synopses
 - Conclusions

Dependency-based Histogram Synopses [DGRO1]
- **Attribute Value Independence**: *inaccurate
- Multi-dimensional histograms on joint data distribution
 - Fully independent attributes
 - Fully correlated attributes
- Extremes in terms of the underlying correlations!
- Dependency-Based Histograms: explore space between extremes by explicitly identifying data correlations/independencies
 - Build a statistical interaction model on data attributes
 - Based on the model, build a collection of low-dimensional histograms
 - Use this histogram collection to provide approximate answers
- General methodology, also applicable to other synopsis techniques (e.g., wavelets)

Dependency-based Histograms
- Identify (and exploit) attribute correlation and independence
 - Partial Independence:
 - \(p(\text{salary}, \text{height}, \text{weight}) \neq p(\text{salary}) \cdot p(\text{height}, \text{weight}) \)
 - Conditional Independence:
 - \(p(\text{salary}, \text{age} | \text{YPE}) \neq p(\text{salary} | \text{YPE}) \cdot p(\text{age} | \text{YPE}) \)
- Use forward selection to build a decomposable statistical model [BFH75, Lue96] on the attributes
 - A, B are conditionally independent given C
 - \(p(\text{AB|C}) = p(\text{A|C}) \cdot p(\text{B|C}) \)
 - Joint distribution
 - \(p(\text{AB|C}) = p(\text{ABC}) / p(\text{C}) \)
 - Build histograms on model cliques
- Significant accuracy improvements (factor of 5) over pure MHIEST
- New histogram construction & usage algorithms, etc.

Workload-tuned Biased Sampling -- Congressional Samples [AGPO0]
- Decision support queries routinely segment data into groups & then aggregate the information within each group
 - Each table has a set of "grouping columns": queries can group by any subset of these columns
- **Goal**: Maximize the accuracy for all groups (large or small) in each group-by query
 - E.g., census DB with state (s), gender(g), and income (i)
 - Q: avg(s) group-by s: seek good accuracy for all 50 states
 - Q: avg(g) group-by g, i: seek good accuracy for all 100 groups
- **Technique**: Congressional Samples
 - House: Uniform sample: good for when no group-by
 - Senate: Same size sample per group when using all grouping columns: good for queries with all columns
 - Congress: Combines House & Senate, but considers all subsets of grouping columns, and then scales down

Workload-tuned Biased Sampling -- TCICLES [GRO0]
- Biased sampling scheme that dynamically adapts to query workload
 - Exploit data locality -- more focus (i.e., sample points) in frequentlyqueried regions
 - Let \(Q = (q_1, q_2, \ldots) \) be a query workload, \(R(q) \subseteq R \) used in answering query \(q \)
 - \(L(R, Q) = \) Extension of \(R \) wrt \(Q = R \cup \bigcup_{Q \in Q} R(Q) \) (multiset of tuples)
- **Icicle**: Uniform random sample of \(L(R, Q) \)
 - Incrementally maintained and adapt ("self-tune") to workload through Reservoir Sampling technique [VF85]
- **Unbiased Icicle estimators**: New formulas to account for duplicates and bias in sample selection
 - Provably better (smaller variance) than uniform for "focused" queries (that follow the workload model)
Workload-tuned Biased Sampling -- Lifted Workloads [CONJO]

- Formulate sample selection as an optimization problem
- Minimize query-answering error for a given workload model
- Technique for "lifting a fixed workload W" to produce a probability distribution over all possible queries
- Similar to kernel density estimation (queries in W = "sample points")
- \(W = \{ q_1, q_2 \} \)

\[\text{prob}(q \mid W) = \text{parametric function of } q \text{'s overlap with queries in } W \]

"Fundamental regions" induced by W

Data Streams

- Data is continually arriving. Collect & maintain synopses on the data. Goal: Highly-accurate approximate answers
 - State-of-the-art: Good techniques for narrow classes of queries
 - E.g., Any one-pass algorithm for collecting & maintaining a synopsis can be used effectively for data streams
- Alternative scenario: A collection of data sets. Compute a compact sketch of each data set & then answer queries (approximately) comparing the data sets
 - E.g., detecting near-duplicates in a collection of web pages: Altovista
 - E.g., estimating join sizes among a collection of tables [AGM99]

Looking Forward...

- Optimizing queries for approximation
 - e.g., minimize length of confidence interval at the plan root
- Exploiting mining-based techniques (e.g., decision trees) for data reduction and approximate query processing
 - see, e.g., [BGR01], [GTK01], [JMN99]
- Dynamic maintenance of complex (e.g., dependency-based [BGR01] or mining-based [BGR01]) synopses
- Synopses and approximate query processing for richer data models and data streams
 - e.g., XPath/XQuery over XML databases

XML Data (Text)

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<booklist>
  <book>
  <book>
</booklist>
```

XML Data (Tree)

```
<booklist>
  <book>
    <@bookgen>Science</bookgen> <title>The character of physical Law</title> <author><firstname>Richard</firstname> <lastname>Feynman</lastname></author> 
    <@bookgen>Fiction</bookgen> <title>Waiting for the Mahatma</title>
  </book>
</booklist>
```
XML Basics

- **Elements**
 - Encode "concepts" in the XML database
 - Nesting denotes association/inclusion
- **Attributes**
 - Record information specific to an element (e.g., the genre of a book)
- **References**
 - Links between elements in different parts of the document

XML vs. Relational Data

- A relation instance is basically a tree with:
 - Unbounded fanout at level 1 (i.e., any # of rows)
 - Fixed fanout at level 2 (i.e., fixed # fields)

- XML data is essentially an arbitrary tree:
 - Unbounded fanout at all nodes/levels
 - Any number of levels
 - Variable # of children at different nodes, variable path lengths

XPath Expressions

Examples:
- /booklist/book
- /booklist/book/author
- /booklist/book/author/lastname

Given an XML document, the value of a path expression is a set of elements (≠ XML subtrees)

Path Expressions

- XPath expressions
 - Simple: /A/P/T
 - Branching: /A[B]/P/T
 - Values: /A/P/T[vvII]
 - Result is a set
Path Expressions

- **XPath expressions**
 - Simple: `/A/P/T`
 - Branching: `/[A][B]/P/T`
 - Values: `/A/P/T[v<11]`
 - Result is a **set**

XPath Syntax

- Path wildcards
 - `//` = descendant at any level (or self)
 - `*` = any (single) tag
 - Example: `/booklist//lastname`
- Query attributes and attribute content
 - Use `@`:
- Branching predicates: `A[pre]`
 - Predicate on A's subtree using logical connectives (and, or, etc.), path expressions, built-in functions (e.g., `contains()`), etc.
 - Example: `/author[contains(/lastname, 'Fey')]`

Synopses for XML

- Summarize labeled tree/graph structure for approximate path navigation queries
 - **Selectivity estimation**: How many elements satisfy p?
 - **Approximate answers**: Return an approximate XML document as output of an XQuery fragment
- **Key idea**: Build a concise **Graph Synopsis** that captures the path/branching distribution in limited space
 - Use appropriate uniformity/independence assumptions to approximate path structure
 - Refine synopsis in parts of the XML document where assumptions fail
 - XS Sketches [SIGMOD’02, VLDB’02], Tree Sketches [SIGMOD’04]

Conclusions

- Commercial data warehouses: approaching several 100’s TB and continuously growing
 - Demand for high-speed, interactive analysis (click-stream processing, IP traffic analysis) also increasing
- **Approximate Query Processing**
 - "Tame" these Terabytes and satisfy the need for interactive processing and exploration
 - Great promise
 - Commercial acceptance still lagging, but will most probably grow in coming years
 - Still lots of interesting research to be done