A Quick Introduction to Approximate Query Processing

Part-III

CS286, Spring'2007

Minos Garofalakis
Decision Support Systems

- **Data Warehousing:** Consolidate data from many sources in one large repository.
 - Loading, periodic synchronization of replicas.
 - Semantic integration.

- **OLAP:**
 - Complex SQL queries and views.
 - Queries based on spreadsheet-style operations and “multidimensional” view of data.
 - Interactive and “online” queries.

- **Data Mining:**
 - Exploratory search for interesting trends and anomalies. (Another lecture!)
Motivation

Decision Support Systems (DSS)

SQL Query

Exact Answer

Long Response Times!

- Exact answers **NOT** always required
 - DSS applications usually *exploratory*: early feedback to help identify “interesting” regions
 - *Aggregate queries*: precision to “last decimal” not needed
 - e.g., “What percentage of the US sales are in NJ?” (display as bar graph)
 - *Preview* answers while waiting. *Trial* queries
 - Base data can be *remote* or *unavailable*: approximate processing using locally-cached *data synopses* is the only option
Approximate Query Processing using Data Synopses

- Decision Support Systems (DSS)
 - GB/TB
- Compact Data Synopses
 - KB/MB

SQL Query → Exact Answer → Long Response Times!

“Transformed” Query → Approximate Answer → FAST!!

- How to construct effective data synopses??
Relations as Frequency Distributions

One-dimensional distribution

Three-dimensional distribution

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>salary</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>34</td>
<td>100K</td>
<td>25K</td>
</tr>
<tr>
<td>JG</td>
<td>33</td>
<td>90K</td>
<td>30K</td>
</tr>
<tr>
<td>RR</td>
<td>40</td>
<td>190K</td>
<td>55K</td>
</tr>
<tr>
<td>JH</td>
<td>36</td>
<td>110K</td>
<td>45K</td>
</tr>
<tr>
<td>MF</td>
<td>39</td>
<td>150K</td>
<td>50K</td>
</tr>
<tr>
<td>DD</td>
<td>45</td>
<td>150K</td>
<td>50K</td>
</tr>
<tr>
<td>JN</td>
<td>43</td>
<td>140K</td>
<td>45K</td>
</tr>
<tr>
<td>AP</td>
<td>32</td>
<td>70K</td>
<td>20K</td>
</tr>
<tr>
<td>EM</td>
<td>24</td>
<td>50K</td>
<td>18K</td>
</tr>
<tr>
<td>DW</td>
<td>24</td>
<td>50K</td>
<td>28K</td>
</tr>
</tbody>
</table>

CS286, Spring'07 Minos Garofalakis #5
Outline

• Intro & Approximate Query Answering Overview
 - Synopses, System architectures, Commercial offerings
• One-Dimensional Synopses
 - Histograms: Equi-depth, Compressed, V-optimal, Incremental maintenance, Self-tuning
 - Samples: Basics, Sampling from DBs, Reservoir Sampling
 - Wavelets: 1-D Haar-wavelet histogram construction & maintenance
• Multi-Dimensional Synopses and Joins
• Set-Valued Queries
• Discussion & Comparisons
• Advanced Techniques & Future Directions
Outline

• Intro & Approximate Query Answering Overview
 - Synopses, System architecture, Commercial offerings
• One-Dimensional Synopses
 - Histograms, Samples, Wavelets
• Multi-Dimensional Synopses and Joins
 - Multi-D Histograms, Join synopses, Wavelets
• Set-Valued Queries
 - Using Histograms, Samples, Wavelets
• Discussion & Comparisons
• Advanced Techniques & Future Directions
 - Dependency-based, Workload-tuned, Streaming data
Sampling for Multi-D Synopses

- Taking a sample of the rows of a table captures the attribute correlations in those rows
 - Answers are unbiased & confidence intervals apply
 - Thus guaranteed accuracy for count, sum, and average queries on single tables, as long as the query is not too selective

- Problem with joins [AGP99, CMN99]:
 - Join of two uniform samples is not a uniform sample of the join
 - Join of two samples typically has very few tuples

Foreign Key Join
40% Samples in Red
Size of Actual Join = 30
Size of Join of samples = 3
\[\text{Join(Samples)} \neq \text{Sample(Join)} \]

- Join result = \{a1, a2, b1, b2\}
- Probability for a base tuple to be selected = \(1/r\)
- \(\text{Prob}[\text{select a1 and a2}] = 1/r^3\)
- \(\text{Prob}[\text{select a1 and b1}] = 1/r^4\)
Small Results for Join(samples)

• Foreign key join of R and S (R→S)
 - Join result size = |R|

• 1% sample from both R and S → 0.01% sample from the join result!!
 - Each tuple from sample(R) joins with a single tuple from S
 - Probability that tuple is kept is only 1%!
Join Synopses for Foreign-Key Joins [AGP99]

• Based on sampling from materialized foreign key joins
 - Typically < 10% added space required
 - Yet, can be used to get a uniform sample of ANY foreign key join
 - Plus, fast to incrementally maintain

• Significant improvement over using just table samples
 - E.g., for TPC-H query Q5 (4 way join)
 • 1%-6% relative error vs. 25%-75% relative error,
 for synopsis size = 1.5%, selectivity ranging from 2% to 10%
 • 10% vs. 100% (no answer!) error, for size = 0.5%, select. = 3%
Join Synopses

- **Schema-based sample summaries** from FK join results
Join Synopses: Key Observations

1. **One-to-one correspondence** between tuples in source relation and those in result of chain of FK-joins
2. **Sample(R1) joined with R2, ..., Rk = sample(FK-join chain)**
3. To get a sample of a subchain of FK-joins “rooted” at source, just project away irrelevant attributes!
4. **Join synopses** = set of such sample joins for every source and maximal FK-join-chain in the schema!
 - Can be used to answer **ANY FK-join query** over the given schema!
Join Synopses: Optimizations and Maintenance

R1 → R2 → … → Rk

“Source relation”

- Propose techniques for allocating space across join-synopses in order to minimize overall error metrics
- Incremental maintenance is easy, using “reservoir-sampling”-style techniques
Multi-dimensional Haar Wavelets

- Basic “pairwise averaging and differencing” ideas carry over to multiple data dimensions
- Two basic methodologies -- no clear winner [SDS96]
 - Standard Haar decomposition
 - Non-standard Haar decomposition

- Discussion here: focus on non-standard decomposition
 - See [SDS96, VW99] for more details on standard Haar decomposition
 - [MVW00] also discusses dynamic maintenance of standard multi-dimensional Haar wavelet synopses
Two-dimensional Haar Wavelets -- Non-standard decomposition

\[A_1 = \frac{(a_1 + b_1 + c_1 + d_1)}{4} \]

\[\text{Detail coeff} = \frac{(a_1 + b_1 - c_1 - d_1)}{4} \]

\[A = \frac{(A_1 + A_2 + A_3 + A_4)}{4} \]

\[\text{Detail coeff} = \frac{(A_1 + A_2 - A_3 - A_4)}{4} \]
Two-dimensional Haar Wavelets -- Non-standard decomposition

Wavelet Transform Array:

Averaging & Differencing

RECURSE

“Supports”

\[
\frac{(a+b-c-d)}{4}, \quad \frac{(a-b+c+d)}{4}
\]

\[
\frac{(a+b+c+d)}{4}, \quad \frac{(a-b+c-d)}{4}
\]
Two-dimensional Haar Wavelets -- Non-standard decomposition

Data Array

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

After averaging and differencing

<table>
<thead>
<tr>
<th>-1</th>
<th>0</th>
<th>-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>-0.5</td>
<td>2.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>-0.5</td>
<td>2.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

After distributing results

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Final wavelet transform array

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

RECURSE
Non-standard Two-dimensional Haar Basis -- Coefficient Supports
Multi-dimensional Haar Wavelets

- Haar decomposition in d dimensions = d-dimensional array of wavelet coefficients
 - Coefficient support region = d-dimensional rectangle of cells in the original data array
 - Sign of coefficient's contribution can vary along the quadrants of its support

Support regions & signs for the 16 nonstandard 2-dimensional Haar coefficients of a 4×4 data array A.
Multi-dimensional Haar Error Trees

- Conceptual tool for data reconstruction - more complex structure than in the 1-dimensional case
 - Internal node = Set of (up to) $2^d - 1$ coefficients (identical support regions, different quadrant signs)
 - Each internal node can have (up to) 2^d children (corresponding to the quadrants of the node’s support)
- Maintains linearity of reconstruction for data values/range sums

$l = 0$

$l = 1$

Error-tree structure for 2-dimensional 4X4 example (data values omitted)
Constructing the Wavelet Decomposition

Joint Data Distribution Array

<table>
<thead>
<tr>
<th>Attr2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attr1</th>
<th>Attr2</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Joint data distribution can be very sparse!
- Key to I/O-efficient decomposition algorithms: *Work off the ROLAP representation*
 - Standard decomposition [VW99]
 - Non-standard decomposition [CGR00]
- Typically require a small (logarithmic) number of passes over the data
Range-sum Estimation Using Wavelet Synopses

- **Coefficient thresholding**
 - As in 1-d case, normalizing by appropriate constants and retaining the largest coefficients minimizes the overall L2 error.

- **Range-sums**: selectivity estimation or OLAP-cube aggregates [VW99] ("measure attribute" as count)

- Only coefficients with support regions intersecting the query hyper-rectangle can contribute
 - Many contributions can cancel each other [CGR00, VW99]

![Decomposition Tree (1-d)](image)

- Contribution to range sum = 0

- Only nodes on the path to range endpoints can have nonzero contributions (Extends naturally to multi-dimensional range sums)
Outline

• Intro & Approximate Query Answering Overview
• One-Dimensional Synopses
• Multi-Dimensional Synopses and Joins
• Set-Valued Queries
 - Error Metrics
 - Using Histograms
 - Using Samples
 - Using Wavelets
• Discussion & Comparisons
• Advanced Techniques & Future Directions
• Conclusions
Approximating Set-Valued Queries

- **Problem:** Use synopses to produce “good” approximate answers to generic SQL queries -- selections, projections, joins, etc.
 - Remember: synopses try to capture the *joint data distribution*
 - Answer (in general) = *multiset of tuples*

- Unlike aggregate values, NO universally-accepted measures of “goodness” (quality of approximation) exist

Query Answer

Subset Approximation (e.g., from 20% sample)

“Better” Approximation
Error Metrics for Set-Valued Query Answers

- Need an error metric for (multi)sets that accounts for both
 - differences in element *frequencies*
 - differences in element *values*
- Traditional set-comparison metrics (e.g., symmetric set difference, Hausdorff distance) fail

- Proposed Solutions
 - MAC (Match-And-Compare) Error [IP99]: based on perfect bipartite graph matching
 - EMD (Earth Mover’s Distance) Error [CGR00, RTG98]: based on bipartite network flows
Using Histograms for Approximate Set-Valued Queries [IP99]

- Store histograms as relations in a SQL database and define a histogram algebra using simple SQL queries
- Implementation of the algebra operators (select, join, etc.) is fairly straightforward
 - Each multidimensional histogram bucket directly corresponds to a set of approximate data tuples
- Experimental results demonstrate histograms to give much lower MAC errors than random sampling

- Potential problems
 - For high-dimensional data, histogram effectiveness is unclear and construction costs are high [GKT00]
 - Join algorithm requires expanding into approximate relations
 - Can be as large (or larger!) than the original data set
Set-Valued Queries via Samples

- Applying the set-valued query to the sampled rows, we very often obtain a subset of the rows in the full answer
 - E.g., Select all employees with 25+ years of service
 - Exceptions include certain queries with nested subqueries (e.g., select all employees with above average salaries: but the average salary is known only approximately)

- Extrapolating from the sample:
 - Can treat each sample point as the center of a cluster of points (generate approximate points, e.g., using kernels [BKS99, GKT00])
 - Alternatively, Aqua [GMP97a, AGP99] returns an approximate count of the number of rows in the answer and a representative subset of the rows (i.e., the sampled points)
 - Keeps result size manageable and fast to display