A Quick Introduction to Approximate Query Processing Part-III

CS286, Spring’07
Minos Garofalakis

Motivation

Decision Support Systems (DSS)

SQL Query

Exact Answer

Long Response Times!

- Exact answers NOT always required
 - DSS applications usually exploratory: early feedback to help
 identify “interesting” regions
 - Aggregate queries: precision to “last decimal” not needed
 - e.g., “What percentage of the US sales are in NJ?” (display as bar graph)
 - Preview answers while waiting. Trial queries
 - Base data can be remote or unavailable: approximate processing
 using locally-cached data synopses is the only option

Approximate Query Processing using Data Synopses

Decision Support Systems (DSS)

Compact Data Synopses

KB/MB

“Transformed” Query

Approximate Answer

FAST!!

- How to construct effective data synopses??

Relations as Frequency Distributions

One-dimensional distribution

<table>
<thead>
<tr>
<th>tuple counts</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10K</td>
</tr>
<tr>
<td>10</td>
<td>20K</td>
</tr>
<tr>
<td>15</td>
<td>50K</td>
</tr>
</tbody>
</table>

Three-dimensional distribution

<table>
<thead>
<tr>
<th>age (attribute domain values)</th>
<th>tuple counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

Outline

- Intro & Approximate Query Answering Overview
 - Synopses, System architectures, Commercial offerings
- One-Dimensional Synopses
 - Histograms: Equi-depth, Compressed, V-optimal, Incremental
 maintenance, Self-tuning
 - Samples: Basics, Sampling from DBs, Reserve Sampling
 - Wavelets: 1-D Haar-wavelet histogram construction & maintenance
- Multi-Dimensional Synopses and Joins
- Set-Valued Queries
- Discussion & Comparisons
- Advanced Techniques & Future Directions
Outline

- Intro & Approximate Query Answering Overview
 - Synopses, System architecture, Commercial offerings
- One-Dimensional Synopses
 - Histograms, Samples, Wavelets
- Multi-Dimensional Synopses and Joins
 - Multi-D Histograms, Join synopses, Wavelets
- Set-Valued Queries
 - Using Histograms, Samples, Wavelets
- Discussion & Comparisons
- Advanced Techniques & Future Directions
 - Dependency-based, Workload-tuned, Streaming data

Sampling for Multi-D Synopses

- Taking a sample of the rows of a table captures the attribute correlations in those rows
 - Answers are unbiased & confidence intervals apply
 - Thus guaranteed accuracy for count, sum, and average queries on single tables, as long as the query is not too selective
- Problem with joins [AP99,CMN99]:
 - Join of two uniform samples is not a uniform sample of the join
 - Join of two samples typically has very few tuples

Join(Samples) ≠ Sample(Join)

- Join result = \{a1, a2, b1, b2\}
- Probability for a base tuple to be selected = 1/r
- Prob[select a1 and a2] = 1/r^3
- Prob[select a1 and b1] = 1/r^4

Small Results for Join(samples)

- Foreign key join of R and S (R → S)
 - Join result size = |R|
 - 1% sample from both R and S → 0.01% sample from the join result!
 - Each tuple from sample(R) joins with a single tuple from S
 - Probability that tuple is kept is only 1%

Join Synopses for Foreign-Key Joins (AP99)

- Based on sampling from materialized foreign key joins
 - Typically > 10% added space required
 - Yet, can be used to get a uniform sample of ANY foreign key join
 - Plus, fast to incrementally maintain
- Significant improvement over using just table samples
 - E.g., for TPC-H query QS (4 way join)
 - 1%-6% relative error vs. 25%-75% relative error,
 for synopsis size = 15%, selectivity ranging from 2% to 10%
 - 10% vs. 100% (no answer) error, for size = 0.5%, select. = 3%

Join Synopses

- Schema-based sample summaries from FK join results
Join Synopses: Key Observations

- One-to-one correspondence between tuples in source relation and those in result of chain of FK-joins
- Sample(R1) joined with R2, ..., Rk = sample(FK-join chain)
- To get a sample of a subchain of FK-joins "rooted" at source, just project away irrelevant attributes!
- Join synopses = set of such sample joins for every source and maximal FK-join-chain in the schema!
 - Can be used to answer ANY FK-join query over the given schema

Join Synopses: Optimizations and Maintenance

- Propose techniques for allocating space across join-synopses in order to minimize overall error metrics
- Incremental maintenance is easy, using "reservoir-sampling"-style techniques

Multi-dimensional Haar Wavelets

- Basic "pairwise averaging and differencing" ideas carry over to multiple data dimensions
- Two basic methodologies -- no clear winner [SDS96]
 - Standard Haar decomposition
 - Non-standard Haar decomposition
- Discussion here: focus on non-standard decomposition
 - See [SDS96, VW99] for more details on standard Haar decomposition
 - [MWW00] also discusses dynamic maintenance of standard multi-dimensional Haar wavelet synopses

Two-dimensional Haar Wavelets -- Non-standard decomposition

- A1 = (a+b+c+d)/4
- Detail coeff = (a+b-c-d)/4
- Detail coeff = (a-b+c-d)/4
- Detail coeff = (a-b-c+d)/4
-
- A2 = (a1+a2+a3+a4)/4
- Detail coeff = (a1+a2-a3-a4)/4
- Detail coeff = (a1-a2+a3-a4)/4
- Detail coeff = (a1-a2-a3+a4)/4

Two-dimensional Haar Wavelets -- Non-standard decomposition

- Averaging & differencing
- Wavelet Transform Array

- Supports

- Data Array

- After averaging and differencing
- Final wavelet transform array

- After distributing results
Non-standard Two-dimensional Haar Basis -- Coefficient Supports

Multi-dimensional Haar Wavelets

- Haar decomposition in d dimensions = d-dimensional array of wavelet coefficients
 - Coefficient support region = d-dimensional rectangle of cells in the original data array
 - Sign of coefficient's contribution can vary along the quadrants of its support

Support regions & signs for the 16 nonstandard 2-dimensional Haar coefficients of a 4x4 data array A

Multi-dimensional Haar Error Trees

- Conceptual tool for data reconstruction - more complex structure than in the 1-dimensional case
 - Internal node = Set of (up to) $2^d - 1$ coefficients (identical support regions, different quadrant signs)
 - Each internal node can have (up to) 2^d children (corresponding to the quadrants of the node's support)
 - Maintains linearity of reconstruction for data values/range sums

Error-tree structure for 2-dimensional 4x4 example (data values omitted)

Constructing the Wavelet Decomposition

- Joint data distribution can be very sparse
- Key to I/O-efficient decomposition algorithms: Work off the ROLAP representation
 - Standard decomposition (VW99)
 - Non-standard decomposition (CGRO0)
- Typically require a small (logarithmic) number of passes over the data

Relation (ROLAP) Representation

<table>
<thead>
<tr>
<th>Attr1</th>
<th>Attr2</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Range-sum Estimation Using Wavelet Synopses

- Coefficient thresholding
 - As in 1-d case, normalizing by appropriate constants and retaining the largest coefficients minimizes the overall L2 error
- Range-sums: selectivity estimation or OLAP-cube aggregates (VW99)
 - "measure attributes" as count
- Only coefficients with support regions intersecting the query hyper-rectangle can contribute
 - Many contributions can cancel each other (CGRO0, VW99)

Decomposition Tree (1-d)

Query Range

Contribution to range sum = 0

Only nodes on the path to range endpoints can have nonzero contributions

(Extends naturally to multi-dimensional range sums)

Outline

- Intro & Approximate Query Answering Overview
- One-Dimensional Synopses
- Multi-Dimensional Synopses and Joins
- Set-Valued Queries
 - Error Metrics
 - Using Histograms
 - Using Samples
 - Using Wavelets
- Discussion & Comparisons
- Advanced Techniques & Future Directions
- Conclusions
Approximating Set-Valued Queries

- Problem: Use synopses to produce "good" approximate answers to generic SQL queries -- selections, projections, joins, etc.
- Remember: synopses try to capture the joint data distribution
- Answer (in general): a multiset of tuples
- Unlike aggregate values, NO universally-accepted measures of "goodness" (quality of approximation) exist

Using Histograms for Approximate Set-Valued Queries [IP99]

- Store histograms as relations in a SQL database and define a histogram algebra using simple SQL queries
- Implementation of the algebra operators (select, join, etc.) is fairly straightforward
 - Each multidimensional histogram bucket directly corresponds to a set of approximate data tuples
- Experimental results demonstrate histograms to give much lower MAC errors than random sampling
- Potential problems
 - For high-dimensional data, histogram effectiveness is unclear and construction costs are high [SKT00]
 - Join algorithm requires expanding into approximate relations
 - Can be as large (or larger) than the original data set

Set-Valued Queries via Samples

- Applying the set-valued query to the sampled rows, we very often obtain a subset of the rows in the full answer
 - E.g., Select all employees with 25+ years of service
 - Exceptions include certain queries with nested subqueries (e.g., select all employees with above average salaries: but the average salary is known only approximately)
- Extrapolating from the sample:
 - Can treat each sample point as the center of a cluster of points
 (generate approximate points, e.g., using kernels [BK599, SKT00])
 - Alternatively, Aqua [GAF97a, AGF99] returns an approximate count of the number of rows in the answer and a representative subset of the rows (i.e., the sampled points)
 - Keeps result size manageable and fast to display

Error Metrics for Set-Valued Query Answers

- Need an error metric for (multi)sets that accounts for both
 - differences in element frequencies
 - differences in element values
- Traditional set-comparison metrics (e.g., symmetric set difference, Hausdorff distance) fail
- Proposed Solutions
 - MAC (Match-And-Compare) Error [IP99]: based on perfect bipartite graph matching
 - EMD (Earth Mover's Distance) Error [CSG00, RTG98]: based on bipartite network flows

Citation: Spring '07 - Minos Garofalakis, #Z