A Quick Introduction to Approximate Query Processing
Part II

CS286, Spring'2007
Minos Garofalakis
Decision Support Systems

• Data Warehousing: Consolidate data from many sources in one large repository.
 - Loading, periodic synchronization of replicas.
 - Semantic integration.

• OLAP:
 - Complex SQL queries and views.
 - Queries based on spreadsheet-style operations and “multidimensional” view of data.
 - Interactive and “online” queries.

• Data Mining:
 - Exploratory search for interesting trends and anomalies. (Another lecture!)
Approximate Query Processing using Data Synopses

- How to construct effective data synopses??
Relations as Frequency Distributions

One-dimensional distribution

Age (attribute domain values)

tuple counts

Three-dimensional distribution

tuple counts

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>salary</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>34</td>
<td>100K</td>
<td>25K</td>
</tr>
<tr>
<td>JG</td>
<td>33</td>
<td>90K</td>
<td>30K</td>
</tr>
<tr>
<td>RR</td>
<td>40</td>
<td>190K</td>
<td>55K</td>
</tr>
<tr>
<td>JH</td>
<td>36</td>
<td>110K</td>
<td>45K</td>
</tr>
<tr>
<td>MF</td>
<td>39</td>
<td>150K</td>
<td>50K</td>
</tr>
<tr>
<td>DD</td>
<td>45</td>
<td>150K</td>
<td>50K</td>
</tr>
<tr>
<td>JN</td>
<td>43</td>
<td>140K</td>
<td>45K</td>
</tr>
<tr>
<td>AP</td>
<td>32</td>
<td>70K</td>
<td>20K</td>
</tr>
<tr>
<td>EM</td>
<td>24</td>
<td>50K</td>
<td>18K</td>
</tr>
<tr>
<td>DW</td>
<td>24</td>
<td>50K</td>
<td>28K</td>
</tr>
</tbody>
</table>
Outline

• Intro & Approximate Query Answering Overview
 - Synopses, System architectures, Commercial offerings

• One-Dimensional Synopses
 - Histograms: Equi-depth, Compressed, V-optimal, Incremental maintenance, Self-tuning
 - Samples: Basics, Sampling from DBs, Reservoir Sampling
 - Wavelets: 1-D Haar-wavelet histogram construction & maintenance

• Multi-Dimensional Synopses and Joins

• Set-Valued Queries

• Discussion & Comparisons

• Advanced Techniques & Future Directions
One-Dimensional Haar Wavelets

- **Wavelets**: mathematical tool for hierarchical decomposition of functions/signals
- **Haar wavelets**: simplest wavelet basis, easy to understand and implement
 - Recursive pairwise averaging and differencing at different resolutions

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>----</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0, -1, -1, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>[-1.25]</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]
Haar Wavelet Coefficients

- Hierarchical decomposition structure (a.k.a. “error tree”)

Coefficient “Supports”

Original data
Wavelet-based Histograms [MVW98]

- **Problem**: range-query selectivity estimation
- **Key idea**: use a compact subset of Haar/linear wavelet coefficients for approximating the data distribution
- **Steps**
 - compute (cumulative) data distribution C
 - compute Haar (or linear) wavelet transform of C
 - coefficient *thresholding*: only $b \ll |C|$ coefficients can be kept
 - take largest coefficients in *absolute normalized value*
 - Haar basis: divide coefficients at resolution j by $\sqrt{2^j}$
 - *Optimal* in terms of the overall Mean Squared (L2) Error
 - **Greedy heuristic methods**
 - Retain coefficients leading to large error reduction
 - Throw away coefficients that give small increase in error
Using Wavelet-based Histograms

- **Selectivity estimation:** \(\text{sel}(a \leq X \leq b) = C'[b] - C'[a-1] \)
 - \(C' \) is the (approximate) “reconstructed” cumulative distribution
 - Time: \(O(\min\{b, \log N\}) \), where \(b \) = size of wavelet synopsis (no. of coefficients), \(N \) = size of domain

- At most \(\log N + 1 \) coefficients are needed to reconstruct any \(C \) value
Haar Wavelet Coefficients

- Reconstruct data values $d(i)$
 - $d(i) = \sum (\pm /-1) \times \text{(coefficient on path)}$

- Range sum calculation $d(l:h)$
 - $d(l:h) = \text{simple linear combination of coefficients on paths to } l, h$

- Only $O(\log N)$ terms

Original data

$6 = 4 \times 2.75 + 4 \times (-1.25)$

$3 = 2.75 - (-1.25) + 0 + (-1)$
Dynamic Maintenance of Wavelet-based Histograms [MVW00]

• Build Haar-wavelet synopses on the original data distribution

• Key issues with dynamic wavelet maintenance
 - Change in single distribution value can affect the values of many coefficients (path to the root of the decomposition tree)
 - As distribution changes, “most significant” (e.g., largest) coefficients can also change!
 • Important coefficients can become unimportant, and vice-versa

Change propagates up to the root coefficient
Effect of Distribution Updates

- Key observation: for each coefficient c in the Haar decomposition tree

 \[c = \frac{\text{AVG(leftChildSubtree}(c)) - \text{AVG(rightChildSubtree}(c))}{2} \]

\[c' = c + \frac{\Delta'}{2^h} \]
\[c = c - \frac{\Delta}{2^h} \]

Only coefficients on path(d) are affected and each can be updated in constant time
Maintenance Architecture

- “Shake up” when log reaches max size: for each insertion at d
 - for each coefficient c on path(d) and in H': update c
 - for each coefficient c on path(d) and not in H or H':
 - insert c into H' with probability proportional to $1/2^h$, where h is the “height” of c (Probabilistic Counting [FM85])
 - Adjust H and H' (move largest coefficients to H)
Problems with Conventional Wavelet Synopses

- An example data vector and wavelet synopsis ($|D|=16$, $B=8$ largest coefficients retained)

<table>
<thead>
<tr>
<th>Original Data Values</th>
<th>127 71 87 31 59 3 43 99</th>
<th>100 42 0 58 30 88 72 130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelet Answers</td>
<td>65 65 65 65 65 65 65 65</td>
<td>100 42 0 58 30 88 72 130</td>
</tr>
</tbody>
</table>

Over 2,000% relative error! Always accurate!

Estimate = 195, actual values: $d(0:2)=285$, $d(3:5)=93$

- Large variation in answer quality
 - Within the same data set, when synopsis is large, when data values are about the same, when actual answers are about the same
 - Heavily-biased approximate answers!

- Root causes
 - Thresholding for aggregate L2 error metric
 - Independent, greedy thresholding (\Rightarrow large regions without any coefficient!)
 - Heavy bias from dropping coefficients without compensating for loss
Approach: Optimize for Maximum-Error Metrics

- Key metric for effective approximate answers: \(\frac{|\hat{d}_i - d_i|}{\max\{|d_i|, s\}} \)
 - Sanity bound “s” to avoid domination by small data values

- To provide tight error guarantees for all reconstructed data values

 \[
 \text{Minimize } \max_i \left\{ \frac{|\hat{d}_i - d_i|}{\max\{|d_i|, s\}} \right\}
 \]
 - Minimize maximum relative error in the data reconstruction

- Another option: Minimize maximum absolute error \(\max_i \{|\hat{d}_i - d_i|\} \)

- Algorithms can be extended to general "distributive" metrics (e.g., average relative error)
Our Approach: Deterministic Wavelet Thresholding for Maximum Error

- **Key Idea:** Dynamic-Programming formulation that *conditions the optimal solution on the error that “enters” the subtree* (through the selection of ancestor nodes).

- **Our DP table:**
 \[M[j, b, S] = \text{optimal maximum relative (or, absolute) error in } T(j) \text{ with space budget of } b \text{ coefficients (chosen in } T(j)) \]
 assuming subset } S \text{ of } j\text{’s proper ancestors have already been selected for the synopsis}

 - Clearly, \(|S| \leq \min\{B-b, \log N+1\}\)
 - Want to compute \(M[0, B, \emptyset]\)

- **Basic Observation:** Depth of the error tree is only \(\log N+1\) \(\rightarrow\) we can explore and tabulate all \(S\)-subsets for a given node at a space/time cost of only \(O(N)\)!
Base Case for DP Recurrence: Leaf (Data) Nodes

- Base case in the bottom-up DP computation: Leaf (i.e., data) node d_j
 - Assume for simplicity that data values are numbered N, \ldots, $2N-1$
 - $M[j, b, S]$ is not defined for $b>0$
 - Never allocate space to leaves
 - For $b=0$
 $$M[j, 0, S] = \frac{|d_j - \sum_{c \in S} \text{sign}(c, d_j) \cdot c|}{\max\{|d_j|, s\}}$$
 for each coefficient subset $S \subseteq \text{path}(d_j)$ with $|S| \leq \min\{B, \log N + 1\}$
 - Similarly for absolute error
- Again, time/space complexity per leaf node is only $O(N)$
DP Recurrence: Internal (Coefficient) Nodes

- Two basic cases when examining node/coefficient j for inclusion in the synopsis: (1) Drop j; (2) Keep j

Case (1): Drop Coefficient j

- In this case, the minimum possible maximum relative error in $T(j)$ is

$$\min_{0 \leq b' \leq b} \max \{ M[2j, b', S], M[2j+1, b-b', S] \}$$

 - Optimally distribute space b between j’s two child subtrees

- Note that the RHS of the recurrence is well-defined

 - Ancestors of j are obviously ancestors of 2j and 2j+1
Case (2): Keep Coefficient j

- In this case, the minimum possible maximum relative error in $T(j)$ is

$$M_{\text{keep}}[j,b,S] = \min_{0 \leq b' \leq b-1} \max \{ M[2j,b',S \cup \{c_j\}], M[2j+1,b-b'-1,S \cup \{c_j\}] \}$$

- Take 1 unit of space for coefficient j, and optimally distribute remaining space
- Selected subsets in RHS change, since we choose to retain j

- Again, the recurrence RHS is well-defined

- Finally, define $M[j,b,S] = \min \{ M_{\text{drop}}[j,b,S], M_{\text{keep}}[j,b,S] \}$

- Overall complexity: $O(N^2)$ time, $O(N \min\{B, \log N\})$ space
Outline

• Intro & Approximate Query Answering Overview
• One-Dimensional Synopses
• Multi-Dimensional Synopses and Joins
 - Multi-dimensional Histograms
 - Join sampling
 - Multi-dimensional Haar Wavelets
• Set-Valued Queries
• Discussion & Comparisons
• Advanced Techniques & Future Directions
• Conclusions
Relations as Frequency Distributions

One-dimensional distribution

Age (attribute domain values)

Three-dimensional distribution

tuple counts

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>salary</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>34</td>
<td>100K</td>
<td>25K</td>
</tr>
<tr>
<td>JG</td>
<td>33</td>
<td>90K</td>
<td>30K</td>
</tr>
<tr>
<td>RR</td>
<td>40</td>
<td>190K</td>
<td>55K</td>
</tr>
<tr>
<td>JH</td>
<td>36</td>
<td>110K</td>
<td>45K</td>
</tr>
<tr>
<td>MF</td>
<td>39</td>
<td>150K</td>
<td>50K</td>
</tr>
<tr>
<td>DD</td>
<td>45</td>
<td>150K</td>
<td>50K</td>
</tr>
<tr>
<td>JN</td>
<td>43</td>
<td>140K</td>
<td>45K</td>
</tr>
<tr>
<td>AP</td>
<td>32</td>
<td>70K</td>
<td>20K</td>
</tr>
<tr>
<td>EM</td>
<td>24</td>
<td>50K</td>
<td>18K</td>
</tr>
<tr>
<td>DW</td>
<td>24</td>
<td>50K</td>
<td>28K</td>
</tr>
</tbody>
</table>
Multi-dimensional Data Synopses

- **Problem**: Approximate the *joint data distribution* of multiple attributes

 - **Motivation**

 - Selectivity estimation for queries with multiple predicates

 - Approximating OLAP data cubes and general relations

- **Conventional approach**: Attribute-Value Independence (AVI) assumption

 - \(\text{sel}(p(A1) \& p(A2) \& \ldots) = \text{sel}(p(A1)) \times \text{sel}(p(A2)) \times \ldots \)

 - Simple -- one-dimensional marginals suffice

 - **BUT**: almost always inaccurate, gross errors in practice (e.g., [Chr84, FK97, Poo97])

CS286, Spring’07 – Minos Garofalakis # 22
Multi-dimensional Histograms

- Use small number of multi-dimensional buckets to directly approximate the joint data distribution
- Uniform spread & frequency approximation within buckets
 - \(n(i) = \) no. of distinct values along \(A_i \), \(F = \) total bucket frequency
 - approximate data points on a \(n(1)^* n(2)^* \ldots \) uniform grid, each with frequency \(F / (n(1)^* n(2)^* \ldots) \)
Multi-dimensional Histogram Construction

- Construction problem is much harder even for two dimensions [MPS99]

- *Multi-dimensional equi-depth histograms* [MD88]
 - Fix an ordering of the dimensions A_1, A_2, \ldots, A_k, let $\alpha \approx k$th root of desired no. of buckets, initialize $B = \{ \text{data distribution} \}$
 - For $i=1, \ldots, k$: Split each bucket in B in α equi-depth partitions along A_i; return resulting buckets to B
 - **Problems:** limited set of bucketizations; fixed α and fixed dimension ordering can result in poor partitionings

- *MHIST-p histograms* [PI97]
 - At each step
 - Choose the bucket b in B containing the attribute A_i whose marginal *is the most in need of partitioning*
 - Split b along A_i into p (e.g., $p=2$) buckets
Equi-depth vs. MHIST Histograms

Equi-depth (a1=2, a2=3) [MD88]

MHIST-2 (MaxDiff) [PI97]

- MHIST: choose bucket/dimension to split based on its *criticality*; allows for much larger class of bucketizations (*hierarchical* space partitioning)
- Experimental results verify superiority over AVI and equi-depth
Other Multi-dimensional Histogram Techniques -- GENHIST [GKT00]

- **Key idea:** allow for overlapping histogram buckets
 - Allows for a much larger no. of distinct frequency regions for a given space budget (= #buckets)

```
  a  b
  c  d
```

```
  a + b
  a+c
  c+d
```

- **Greedy construction algorithm:** Consider increasingly-coarser grids
 - At each step select the cell(s) c of highest density and move enough randomly-selected points from c into a bucket to make c and its neighbors “close-to-uniform”
 - *Truly multi-dimensional* “split decisions” based on *tuple density*
 -- unlike MHIST

9 distinct frequencies
(13 if different-size buckets are used)
Other Multi-dimensional Histogram Techniques -- STHoles [BCG01]

- Multi-dimensional, workload-based histograms
 - Allow "bucket nesting" -- "bucket tree"
 - Intercept query result stream and count |q ∩ b| for each bucket b (< 10% overhead in MS SQL Server 2000)
 - Drill "holes" in b for regions of different tuple density and "pull" them out as children of b (first-class buckets)
 - Consolidate/merge buckets of similar densities (keep #buckets constant)
Sampling for Multi-D Synopses

- Taking a sample of the rows of a table captures the attribute correlations in those rows
 - Answers are unbiased & confidence intervals apply
 - Thus **guaranteed accuracy** for count, sum, and average queries on single tables, as long as the query is not too selective

- Problem with joins [AGP99,CMN99]:
 - Join of two uniform samples is not a uniform sample of the join
 - Join of two samples typically has very few tuples

Foreign Key Join
40% Samples in Red
Size of Actual Join = 30
Size of Join of samples = 3
Join Synopses for Foreign-Key Joins [AGP99]

- Based on sampling from materialized foreign key joins
 - Typically < 10% added space required
 - Yet, can be used to get a uniform sample of ANY foreign key join
 - Plus, fast to incrementally maintain

- Significant improvement over using just table samples
 - E.g., for TPC-H query Q5 (4 way join)
 - 1%-6% relative error vs. 25%-75% relative error,
 for synopsis size = 1.5%, selectivity ranging from 2% to 10%
 - 10% vs. 100% (no answer!) error, for size = 0.5%, select. = 3%