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Snapshot Isolation (SI) is a multiversion concurrency control algorithm, first described in Berenson
et al. [1995]. SI is attractive because it provides an isolation level that avoids many of the com-
mon concurrency anomalies, and has been implemented by Oracle and Microsoft SQL Server
(with certain minor variations). SI does not guarantee serializability in all cases, but the TPC-C
benchmark application [TPC-C], for example, executes under SI without serialization anoma-
lies. All major database system products are delivered with default nonserializable isolation
levels, often ones that encounter serialization anomalies more commonly than SI, and we sus-
pect that numerous isolation errors occur each day at many large sites because of this, lead-
ing to corrupt data sometimes noted in data warehouse applications. The classical justification
for lower isolation levels is that applications can be run under such levels to improve efficiency
when they can be shown not to result in serious errors, but little or no guidance has been of-
fered to application programmers and DBAs by vendors as to how to avoid such errors. This
article develops a theory that characterizes when nonserializable executions of applications can
occur under SI. Near the end of the article, we apply this theory to demonstrate that the TPC-C
benchmark application has no serialization anomalies under SI, and then discuss how this demon-
stration can be generalized to other applications. We also present a discussion on how to modify
the program logic of applications that are nonserializable under SI so that serializability will be
guaranteed.
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1. MOTIVATION AND PRELIMINARIES

Many database researchers think of concurrency control as a solved problem,
since there exists a proven set of sufficient conditions for serializability. The
problem is that those sufficient conditions can lead to concurrency control
bottlenecks, so most commercial systems offer lower isolation level concurrency
settings as defaults that do not guarantee serializability [Berenson et al. 1995].
This poses a new task for the theorist: to discover how to guarantee correctness
at the least cost for such lower isolation levels. In this article, we address the iso-
lation level known as Snapshot Isolation (SI). SI, defined below in Section 1.1,
is a multiversion concurrency control mechanism that prevents many classical
serialization anomalies, but allows nonserializable executions in certain cases.
It is widely used due to its good performance, especially the fact that it does
not block reads; some major vendors support only SI rather than traditional
serializability.

The contribution of this article is to lay a theoretical foundation for giving
a database administrator the tools to decide whether a particular database
application, consisting of several interacting programs acting under Snapshot
Isolation, will produce only serializable executions. When this is not the case,
we give guidance as to how to modify the application to guarantee serializable
execution. As a demonstration of the applicability of our theory, we show how
to analyze the TPC-C application, running on the Oracle DBMS under what is
designated as the SERIALIZABLE isolation level, a form of Snapshot Isolation.
We note that when two official auditors for the TPC-C benchmark were asked
to certify that the Oracle SERIALIZABLE isolation level acted in a serializ-
able fashion on the TPC-C application, they did so by “thinking hard about it”
(Francoi’s Raab and Tom Sawyer, personal communication, 1995). It is note-
worthy that there was no theoretical means to certify such a fact, a drawback
that we rectify in this article.

In what follows, we define a transactional application to comprise a set
of transaction programs that perform some integrated set of services for an
enterprise, for example, to execute all services that take place at teller win-
dows of a bank: deposits, withdrawals, transfers, etc. We assume that we are
provided with all the program logic for the transaction programs, each of which
contains numerous statements that access and update a database, bracketed
between operations that begin and end (commit or abort) each transaction exe-
cution. These transaction programs should not be thought of as executing in a
straight line on specific, named data items1 however, even though that situation
is typically assumed in textbooks where multi-transactional history notation is

1We leave the term data item ambiguous in the usual way; all definitions and proofs go through for
any granularity of data substituted for this term. We note, however, that in the analysis of TPC-C,
we refer explicitly to field granularity, a field being a specific column value on a specific row of a
table.
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defined, for example, by the history given in (1.1).

R1(X ) R2(X ) W2(X ) C2 W1(X ) A1 (1.1)

While this notation is useful to represent specific executions of transactional
programs, we cannot normally analyze programs at compile time to determine
which specific data items will be accessed. Such programs are implemented in
a programming language that executes SQL statements, called with appropri-
ate arguments (e.g., Customer ID in a banking application) to determine which
customer account is to be accessed. The programs retrieve and update data
items determined by these arguments, but no compile-time analysis can know
which specific data items will be accessed, since different data items will be
determined by different parameter values. Furthermore, conditional tests on
the arguments passed and other data the programs access in the database can
cause branching that might lead to many different executions, accessing quite
different parts of the database, so straight-line execution is likewise unrealistic.
Our model is quite general, but for practical application of our theory one would
usually avoid having functionally different transactional tasks arise from dif-
ferent branches of logic in a program. Instead, we will usually expect that each
program carries out the logic to perform a single transaction type, comparable
to the ones described in the TPC-C benchmark specification [TPC-C].

1.1 Versioned Histories and Snapshot Isolation

In order to reason about the execution of a collection of application programs on
a database under SI, we need a formal representation of histories rich enough
to describe multiple versions of data items and set-oriented data access. We
use the model of Adya et al. [2000]. (Much of our notation and some of our
definitions will vary from that of Adya et al. [2000], however.)

We assign version numbers to data items in Snapshot Isolation histories (and
various other multiversion histories) as subscripts equal to the ID of the trans-
action that last wrote them. All data items start with zero versions, X 0, Y0,
Z0, . . . (we imagine that X 0, Y0, Z0, . . . have all been installed by a “progenitor
transaction” T0), and when transaction Ti writes a data item X (for the last
time among possible multiple writes in that transaction), it creates a version
that inherits the data item name and the Transaction ID: X i. This operation
is denoted as Wi(X i). On commit, a transaction’s final versions are said to be
installed, or written, in the database state. Note particularly that the num-
bering of versions reflects their writers, and not their temporal version order.
However, the temporal version order of all updates of any single data item must
always be reflected in the history, even for histories of transactions executing on
parallel shared-nothing processors that provide only a partial order for many
operations. The notation Ri(X k) represents a read operation by transaction Ti
that returns the version of the data item X k written earlier in the history by
transaction Tk . To simplify the treatment of deletes and inserts, making them
special cases of writes, deletion of data item X by transaction Ti is modeled as
writing a special dead version, X w, Wi(X w), and insertion of data item X by
transaction Ti is treated as writing a new (initial) data item version X i, where
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the prior version had a special subscript representing unborn data, X a.2 (Note
that the creating Transaction ID is used only for version numbers as a conve-
nience for recognizing later in the history what transactional output is being
read; since unborn and dead versions are never read at a later time, there is
no contradiction in using special version subscripts in these cases.) Snapshot
Isolation, or SI, is a multiversion concurrency control algorithm introduced in
Berenson et al. [1995]. In what follows, we define time to be measured by a
counter that advances whenever any transaction starts, commits, or aborts,
and we designate the time when a transaction Ti starts as start(Ti) and the
time when Ti commits or aborts as complete(Ti); when Ti is successful, we also
write complete(Ti) as commit(Ti).

Definition 1.1 (Snapshot Isolation). A transaction Ti executing under
Snapshot Isolation reads data from the committed state of the database as
of time start(Ti) (the snapshot), and holds the results of its own writes in local
memory store, so if it reads data it has previously written, it will read its own
output. Predicates evaluated by Ti are also based on data item versions from the
committed state of the database as of time start(Ti), adjusted to take Ti ’s own
writes into account. The interval in time from the start to the completion of a
transaction, represented [start(Ti), complete(Ti)], is called its transactional life-
time. We say that two transactions are concurrent if their transactional lifetimes
overlap, that is, [start(T1), complete(T1)] ∩ [start(T2), complete(T2)] $= %. Writes
performed by transactions that were active after Ti started, that is, writes by
concurrent transactions, are not visible to Ti. When Ti is ready to commit, it
obeys the First Committer Wins rule, stated as follows: Ti will successfully com-
mit only if no other concurrent transaction Tk has already committed writes
(updates) to data items where Ti has written versions that it intends to commit.
(We can’t say if and only if in this definition because we want the algorithm
to be defined so that it applies to a wide range of different implementations,
and sometimes a transaction will abort in a particular DBMS’ implementation
because of nearby concurrent updates by other transactions, for example, up-
dates of data items on the same page.) Note that the check need only be done
against transactions that are concurrent with Ti and have committed when Ti
commits (no check is needed if Ti aborts); those that are still active when Ti
finishes need not be not checked, but instead, when they try to commit they
will check for modifications by Ti. See also the discussion of the variant First
Updater Wins rule below.

The First Committer Wins rule is reminiscent of certification in optimistic
concurrency control, but only items written by a committing Ti are checked for
concurrent modification, not items read.

In the Oracle implementation of Snapshot Isolation (referred to as the
SERIALIZABLE Isolation Level by Oracle in Jacobs et al. [1995]), an attempt

2When we speak of inserting or deleting a data item of field granularity, we assume that the insert
or delete deals simultaneously with all the fields (column values) contained in a given row that is
inserted or deleted.
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by Ti to read a row3 that has changed since start(Ti) will cause the system to
read an older version, current as of start(Ti), in the rollback segment. Indexes
are also accessed in the appropriate snapshot version, so that predicate evalu-
ation retrieves row versions current as of the snapshot. The First Committer
Wins rule is enforced, not by a commit-time validation, but instead by checks
done at the time of updating. If Ti and Tk are concurrent (their transactional
lifetimes overlap), and Ti updates the data item X , then it will take a Write
lock on X ; if Tk subsequently attempts to update X while Ti is still active, Tk
will be prevented by the lock on X from making further progress. If Ti then
commits, Tk will abort; Tk will be able to continue only if Ti drops its lock on
X by aborting. If, on the other hand, Ti and Tk are concurrent, and Ti updates
X but then commits before Tk attempts to update X , there will be no delay
due to locking, but Tk will abort immediately when it attempts to update X
(the abort does not wait until Tk attempts to commit). For Oracle, we rename
the First Committer Wins rule to First Updater Wins; the ultimate effect is the
same—one of the two concurrent transactions updating a data item will abort.
Aborts by Tk because of being beaten to an update of data item X are known
as serialization errors, ORA-08177 (Oracle Release 9.2).

Snapshot Isolation is an attractive isolation level. Reading from a snapshot
means that a transaction never sees the partial results of other transactions:
T sees all the changes made by transactions that commit before start(T ), and
it sees no changes made by transactions that commit after start(T ). Also, the
First Committer Wins rule allows Snapshot Isolation to avoid the most common
type of lost update error, as shown in Example 1.1.

Example 1.1 (No Lost Update). If transaction T1 tries to modify a data item
X while a concurrent transaction T2 also tries to modify X , then Snapshot
Isolation’s First Committer Wins rule will cause one of the transactions to abort,
so the first update will not be lost. For example (we include values read and
written for data items in this history):

H1: R1(X 0, 50) R2(X 0, 50) W2(X 2, 70) C2W1(X 1, 60) A1.

This history leaves X with the value 70 (version X 2), since only T2, attempt-
ing to add an increment of 20 to X , was able to complete. T1 can now retry
and hopefully add its increment of 10 to X without interference. Note that
many database system products with locking-based concurrency default to the
READ COMMITTED isolation level, which takes long-term write-locks but no
long-term read locks (it only tests reads to make sure they do not read write-
locked data); in that case, the history above without versioned data items would
succeed in both its writes, causing a Lost Update.

Despite its attractions, Snapshot Isolation does not ensure that all executed
histories are serializable, as defined in classical transactional theory (e.g., in
Bernstein et al. [1987], Papadimitriou [1986], and Gray and Reuter [1993]).
Indeed, it is quite possible for a set of transactions, each of which in isolation

3We refer specifically to rows having versions when discussing the Oracle implementation; however
we note that the concepts still apply to data items at field granularity: specific column values on
specific rows.
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respects an integrity constraint, to execute under Snapshot Isolation in such a
way as to leave the database in a corrupted state. One such problem was called
“Write Skew” in Berenson et al. [1995].

Example 1.2 (SI Write Skew). Suppose X and Y are two data items rep-
resenting checking account balances of a married couple at a bank, with the
constraint that X +Y > 0 (the bank permits either account to be overdrawn, as
long as the sum of the account balances remains positive). Assume that initially
X 0 = 70 and Y0 = 80. Under Snapshot Isolation, transaction T1 reads X 0 and
Y0, then subtracts 100 from X, assuming it is safe because the two data items
added up to 150. Transaction T2 concurrently reads X 0 and Y0, then subtracts
100 from Y, assuming it is safe for the same reason. Each update is acting
consistently, but Snapshot Isolation will result in the following history:

H2: R1(X 0, 70) R2(X 0, 70) R1(Y0, 80) R2(Y0, 80) W1(X 1, −30) C1 W2(Y2, −20) C2

Here the final committed state (X 1 and Y2) violates the constraint that X +Y >

0. This problem was not detected by First Committer Wins because two different
data items were updated, each under the assumption that the other remained
stable. Hence the name “Write Skew”.

While Example 1.2 displays one of a number of anomalous situations that
can arise in Snapshot Isolation execution, the prevalence of such situations
may be rare in real-world applications. As mentioned earlier, the TPC-C bench-
mark application, consisting of five transactional programs, displays no such
anomalies, and it is reasonably representative of a large class of applications.
We should also point out that it is quite easy to modify application or database
design to avoid the anomaly of Example 1.2. One way to do this is to require
in the transactional program that each Read of X and Y to update Y give the
impression of a Write of X (this is possible in Oracle using the Select For Up-
date statement). Then it will seem that both X and Y are updated and First
Updater Wins collision will occur in the history H2. Another approach requires
that each constraint on the sum of two accounts X and Y be materialized in
another data item Z, and insists that all updates of X and Y must keep Z up
to date. Then the anomaly of history H will not occur, since collision on updates
of Z will occur whenever X and Y are updated by two different transactions.

Another type of anomaly can occur resulting from read-only transaction par-
ticipation, as previously shown in Fekete et al. [2004]. Such problems have long
been known [Papadimitriou 1986] in executions with weak isolation levels like
Read Committed; however, starting with Berenson et al. [1995], it was assumed
that under SI read-only transactions always execute serializably, without ever
needing to wait or abort because of concurrent update transactions; this is be-
cause all reads in a transaction appear to take place at an instant of time,
when all committed transactions have completed their writes and no writes of
noncommitted transactions are visible. The implied guarantee is that read-only
transactions will not read anomalous results so long as the update transactions
with which they execute do not write such results. However, Example 1.3 shows
this is not true.
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Example 1.3 (SI Read-Only Transaction Anomaly). Suppose X and Y are
two data items representing a checking account balance and a savings account
balance. Assume that initially X 0 = 0 and Y0 = 0. In the following history,
transaction T1 deposits 20 to the savings account Y, T2 subtracts 10 from the
checking account X, considering the withdrawal covered as long as X + Y > 0,
but accepting an overdraft with a charge of 1 if X +Y goes negative, and T3 is a
read-only transaction that retrieves the values of X and Y and prints them out
for the customer. For one sequence of operations, these transactional operations
will result in the following history under SI:

H3: R2(X 0, 0) R2(Y0, 0) R1(Y0, 0) W1(Y1, 20)
C1 R3(X 0, 0) R3(Y1, 20) C3W2(X 2, −11) C2.

The anomaly that arises in this transaction is that read-only transaction T3
prints out X = 0 and Y = 20. This can’t happen in any serializable execution
which ends in the same final state as H3, with X = −11 and Y = 20, because if
20 were added to Y before 10 were subtracted from X in any serial execution,
no charge of 1 would ever occur, and thus the final balance should be −10, not
−11. A customer, knowing a deposit of 20 was due and worried that his check
for 10 might have caused an overdraft charge, would conclude that he was safe,
based on this balance result. Indeed, such a print-out by transaction T3 would
be very embarrassing for a bank should bank regulators ask how the charge
occurred. We also note that any execution of T1 and T2 (with arbitrary parameter
values) without T3 present will always act serializably. As we will show later
in the article, the anomalies of Example 1.2 and 1.3 are allied, in the sense
that properties of a graph we will define can be used to predict both problems
(and both problems are preventable). We note that if T1 and T2 used two phase
locking instead of SI, this anomaly would not occur, and every execution would
be serializable.

We have observed the histories of Examples 1.2 and 1.3, and other viola-
tions of nonserializable behavior, to take place on an Oracle DBMS after “set
transaction isolation level serializable”. Similarly, while Snapshot Isolation pre-
vents most classical examples of phantoms (because the snapshots read by the
transactions include index data, and therefore predicate evaluations will be
repeatable in spite of modifications by other transactions), certain phantom
problems analogous to Write Skew can also occur under SI. We will discuss this
in the next section.

1.2 Predicate Reads and Phantom Anomalies

It’s common for simple textbook presentations of transaction theory to repre-
sent the execution as a sequence of operations each being a read or write on a
named data item. This model is not a good reflection of the reality of application
programs written with set-oriented query languages like SQL. Furthermore a
theory which treats all operations as being on named items can seem to justify
incorrect concurrency control mechanisms (such as two-phase locking applied
to the records which are selected, updated, inserted or deleted). A particular
issue is the possibility of phantoms, where a program performs two subsequent
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queries, each retrieving the records satisfying some condition; with data item
locking, it is possible for one query to miss a row satisfying this condition which
is about to be inserted by a concurrent transaction, while the later query sees
this row after the inserting transaction commits. This is a nonrepeatable read,
and such a history is obviously not serializable. The classic paper [Eswaran
et al. 1976] identified this issue, although the solution proposed there has been
found to be unrealistic in practice, and instead most locking-based systems
use algorithms which lock index records (or associated information such as the
index key) as well as data records (see Section 7.8 of Gray and Reuter [1993]).
To allow us to reason properly about programs with set-oriented operations,
in this article, we use a formalism in which there are three types of operation
a transaction can perform: item read, item write, and “predicate read.” This
section explains our model and how it can represent SQL statements.

We define a predicate read as an operation which identifies a set of items in
the database, based on the state of the database. Formally, a predicate read is
represented in a history by the operation PRi(P ), or, when we need to also show
the return value, by PRi (P , list of data items), where P is some function which
takes a state (a mapping from item names to values) and returns a set of item
names. It is expected that the transaction will follow this by later performing
item read or item write operations on (some of) the items which were returned
in the predicate read.

Let us see how this applies to a SQL SELECT statement

SELECT T.col1 FROM T WHERE T.col2 = :x;

in a database where each field is regarded as an item. We represent the SELECT
statement with, first, a predicate read, which reflects the evaluation of the
WHERE clause. This predicate read determines which fields occur in those
rows of T that have the given value for their col2 field. The return value of the
predicate read will be a list of field names (i.e., a sequence of (rowid, columnid)
pairs). The actual retrieval of the target list (T.col1) takes place in successive
item reads, each of which reads the col1 value in one of the rows found by the
predicate read. Note that with Snapshot Isolation, the state of the database
against which Ti ’s predicate read is evaluated consists of the version of each
item which was most recently committed before the start of Ti, or the most
recent version produced by Ti if Ti has itself produced a version of that item.

It is important to avoid a common misconception with set-oriented opera-
tions: in our model there is no such thing as a Predicate Write operation to
conflict with a Predicate Read. A SQL operation

UPDATE T SET T.col1 = :y WHERE T.col2 = :x;

will be modeled as a Predicate Read which returns the relevant fields, followed
by a succession of item write operations which modify each returned col1 field
to the new value y . The concept of a Predicate Write has not been used since the
prototype System R demonstrated that estimating intersections of set-oriented
update data item collections with set-oriented read data item collections led to
unnecessary conflicts (as explained in Chamberlin et al. [1981], near the end
of Section 3). Instead, in our model, a predicate read can conflict only with an
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item write which changes the state of the database in such a way as to change
the list of items returned by the predicate read. For example, the WHERE clause
conflicts with any write that produces a new version of some col2 field, if the
new version has value x and the old version did not, or if the new version has
a different value while the previous version was equal to x.

In Snapshot Isolation, the traditional phantom examples of Eswaran et al.
[1976] mentioned above (the nonrepeatable read anomaly) cannot arise, be-
cause repeated evaluation of a WHERE clause within an SI transaction
always returns the same set of items (as the evaluation is always based on
the state at the start of the transaction). However, a somewhat more com-
plex anomaly can occur involving predicate reads, as shown in the following
example.

Example 1.4 (Predicate-Based Write Skew). Consider a database with the
following tables: an employees table with primary key eid, a projects table
with primary key projid, and an assignments table with columns (eid, projid,
workdate, hours). We assume employees are assigned a certain number of hours
of work on a given project during a given workdate by placing a data item in the
assignments table, and the program to do this maintains a constraint that no
employee can be assigned more than eight hours of work during any given day.
Consider the following SI history where two different transactions concurrently
assign an employee a new assignment for the same day. (The predicate P below
specifies: eid = ‘e1234’ and workdate = ‘09/22/03’; all operations of the history
are on the assignments table.)

H4 : PR1(P, empty) W1(Y1, eid = ‘e1234’, projid = 2,
workdate = ‘09/22/02’, hours = 5)

PR2(P, empty) W2(Z2, eid = ‘e1234’, projid = 3,
workdate = ‘09/22/02’, hours = 5) C1 C2.

Transaction T1 evaluates the predicate P and finds no data item in the
assignments table to retrieve for the given eid and workdate, and then in-
serts a 5-hour assignments data item Y1. T2 does exactly the same thing as
T1, seeing the same snapshot (since T1 has not committed when T2 started),
and inserting another 5-hour assignments data item Z2. The result is that
10 hours of work have been assigned to the employee with two assignments
data items, breaking the constraint of no more than eight hours assigned al-
though both transactions acted appropriately in isolation. This is clearly a form
of Write Skew, but it is different in kind from that of Example 1.2, since it is
the two inserts that cause conflicts with the other transaction’s Predicate Read
that are responsible for the anomaly. It is clearly different since it is not possi-
ble to avoid this anomaly by performing Select For Update on any set of data
items involved. However, we can avoid the anomaly by creating a table to-
tal work hours, with a data item for each employee-day pair, and keeping a
total work hours column up to date as each new assignments data item is in-
serted. With this design, T1 and T2 would collide on a common total work hours
data item under First Committer Wins.
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We remark that even though we call the set-oriented operation a “predicate”
read, we do not limit ourselves by assuming that it evaluates a traditional logic
predicate (that is, we do not insist that it returns exactly those items for which
a function, from item values to Booleans, is true). We allow the predicate read to
evaluate an arbitrary function from database states to item sets. For example,
a predicate read can model the determination of all the fields in those records
where the salary is greatest, corresponding to the SQL WHERE clause

WHERE T.salary = (select max(T1.salary) from T as T1);

1.3 Outline of the Article and Related Work

Outline of the Article. In Section 2, we define a number of transactional
dependencies (conflict types) that apply in versioned histories, and define the
Dependency Serialization Graph of a history H, DSG(H), to investigate how
serialization anomalies can arise in SI histories. In Section 3, we define re-
lationships between application transaction programs A, and define a Static
Dependency Graph, SDG(A), to show how cycles in a DSG(H) can arise out of
an application. Our main theorem gives a condition on SDG(A) that implies
all executions of the application are serializable under Snapshot Isolation. In
Section 4, we apply our results to analyze the TPC-C application and show that
it is serializable under SI. In Section 5, we consider how to modify general appli-
cation programs to avoid possible violations of serializability. Finally, Section 6
summarizes our results.

Related Work. A large number of concurrency control algorithms have been
published, but little attention has been paid to the issue of designing applica-
tions so as to preserve data integrity even when run under isolation levels that
sometimes permit non-serializable executions. All major database systems are
delivered with lower levels of isolation as a default, implicitly requiring DBA’s
and programmers to “be careful” that their application programs don’t lead
to isolation errors, but little or no guidance is provided in most database sys-
tem documentation as to how such applications should be designed. This is
exactly the situation we are attempting to remedy in the case of Snapshot
Isolation.

One area that has received attention in this regard concerns data replication,
where lazy propagation of updates to replicas can violate correctness. Several
papers [Gray et al. 1996; Anderson et al. 1998; Breitbart et al. 1999] have shown
that serializability can be guaranteed, provided appropriate conditions hold on
the pattern of access to items from different sites.

Another aspect of the problem of correct use of not necessarily correct iso-
lation concerns “chopping” transaction programs into smaller transactions
(i.e., placing intermediate commit points in the logic). In general, chopping a
program into smaller transactional pieces can allow additional concurrent
interleaving. This can compromise serializability, but Shasha et al. [1995] de-
rives a condition on a special type of conflict graph, called the SC-graph, which
ensures that the chopped application executes as serializably as the original
without sacrificing improved concurrency. Some elaborations and corrections
are described in Shasha and Bonnet [2002].
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As for work on Snapshot Isolation, Fekete [1999] presented some prelim-
inary results to the current article, deriving a rather restrictive condition
on applications, which ensured correct execution when run under Snapshot
Isolation. The condition in Fekete [1999] is generalized by the current article.
Also new here is guidance on how to alter an application to prevent nonserial-
izable executions, which could otherwise occur.

Bernstein et al. [2000] provided a theory that can be used to show that
certain applications preserve data integrity constraints when executing under
weak isolation levels, including Snapshot Isolation. Bernstein et al. [2000] uses
explicit knowledge of the data integrity conditions required by each transac-
tion, and it concludes that those specific integrity conditions are preserved. In
contrast our work does not require knowledge of the integrity constraints and
we show serializability which preserves all integrity conditions. Thus, the re-
sults of Bernstein et al. [2000] are complementary with ours; our result applies
in fewer circumstances than theirs, but offers a stronger conclusion when it
does apply.

Schenkel and Weikum [2000] show how to ensure the serializability of trans-
actions executed against a federation of independent databases some of which
provide Snapshot Isolation rather than two-phase locking.

Elnikety et al. [2004] generalize the concept of Snapshot Isolation to include
stale caches updated through lazy replication. They show the serializability of
applications against this style of system, under conditions on the applications
conflicts similar to those in Fekete [1999].

2. TRANSACTIONAL HISTORY THEORY

Throughout this section, we will develop the theory in terms of a model of
execution where reads and writes are performed on data items, and where
predicate reads return a set of data item identities. In the abstract theory, we
do not need to specify any particular granularity of data items. However, in
Section 4, when we come to apply the theory to TPC-C, we will take a data
item to be a single field within a row, and those readers who like more concrete
concepts should feel free to use field granularity for other sections as well.

2.1 Transactional Dependencies in SI

Transactional dependencies can be defined as ordered conflicts that can arise
in multiversion histories, cataloged by type; for example, one type relates two
different transactions which produce successive versions of the same data item,
and a write which produces an item version seen by a later item read is an-
other type. The dependency definitions, which apply to arbitrary multiversion
histories, were introduced in Adya et al. [2000], and can also be applied to the
various locking isolation levels. Indeed, it was proposed in Adya et al. [2000] that
dependencies defined there be used in an ANSI definition of Isolation Levels
that would be neutral with respect to the specific concurrency control method.

The dependency definitions from Adya et al. [2000] depend on an ordering
on the versions of each data item, i.e., knowing for each version which previous
version it replaces. Recall from Section 1.1 that a new version X m of a data item
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X is said to be installed in the database only when transaction Tm, which writes
the data item version X m, commits. In the case of SI, which is the only versioned
isolation level we consider in this article, the version order is defined by the
temporal sequence of the commit times of the transactions that produced the
versions. Thus, when we use the phrase “data item version X n is an immediate
successor of data item version X m” in the definitions that follow, we mean that
Tm writes X m and Tn writes X n and Cm precedes Cn in the history, and also
that no transaction that commits between Cm and Cn installs a version of X .

Definition 2.1 (Transactional Dependencies). Following the concepts of
Adya et al. [2000], but with new terminology, we characterize several types
of transactional dependency in an interleaved SI history.

—We say that there is a Tm
i−wr−→ Tn dependency (an item-write-read dependency)

if Tm installs a data item version X m (of item X ) and Tn later reads this
version of X .

—We say that there is a Tm
i−ww−→ Tn dependency (an item-write-write depen-

dency) if Tm installs a data item version X m and the immediate successor
version X n is installed by Tn.

—We say that there is a Tm
i−rw−→ Tn dependency (an item-read-write dependency

or an item-anti-dependency) if Tm reads a version X k of some data item X ,
and Tn installs the immediate successor version X n of X .

—We say that there is a Tm
pr−wr−→ Tn dependency (a predicate-write-read depen-

dency) if Tm installs a data item version X m so as to alter the set of items
retrieved for a predicate read by Tn, and also the commit of Tm precedes the
start of Tn, so that the result of the predicate read by Tn takes into account
a version of data item X equal to or later than the one installed by Tm.

—We say that there is a Tm
pr−rw−→ Tn dependency (a predicate-read-write depen-

dency or predicate-anti-dependency) if Tn changes a data item X to version
X n so as to alter the set of items retrieved for a predicate read by Tm, and
also the commit of Tn follows the start of Tm, so that the result of the predi-
cate read by Tm takes into account a version of data item X prior to the one
installed by Tn.

Please note that in all definitions above with form Tm
x−yz−→ Tn, the operations

‘yz’ include a y operation in Tm ( y is r or w) and a conflicting z operation in Tn
(z is w or r). If the letter ‘x’ in ‘x-yz’ is an ‘i’, this means that both operations,
y and z are on data items, but if x is ‘pr’, this means that there is an ‘r’ in ‘yz’,
representing a predicate read and the other operation in ‘yz’ is ‘w’ for a data
item write that conflicts with it; no other operations are possible for x = ‘pr’.

We define a few more generic dependencies based on these basic ones.

—We say there is a Tm
wr−→ Tn dependency (a wr dependency) if Tm

i−wr−→ Tn or
Tm

pr−wr−→ Tn.
—We say there is a Tm

ww−→ Tn dependency (a ww dependency) if Tm
i−ww−→ Tn;

that is, a write-write dependency must be an item-write-write-dependency
(there are no predicate writes), so the two terms are synonymous.
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Fig. 1. DSG(H1).

—We say there is a Tm
rw−→ Tn dependency (a rw dependency or an anti-

dependency) if Tm
i−rw−→ Tn or Tm

pr−rw−→ Tn.
—We say there is a Tm → Tn dependency (an arbitrary dependency) if any of

the dependencies above hold: Tm
wr−→ Tn, Tm

ww−→ Tn, or Tm
rw−→ Tn.

We now define DSG(H ), the Dependency Serialization Graph for a history H, a
counterpart to the Serialization Graph definition of Bernstein et al. [1987], but
where the edges of the DSG are labeled to indicate which dependencies occur.

Definition 2.2 (DSG(H )). A directed graph DSG(H) is defined on a multi-
version history H, with vertices (often called nodes) representing transactions
that commit, and each distinctly labeled edge from Tm to Tn corresponding to a
Tm

wr−→ Tn, Tm
ww−→ Tn, or Tm

rw−→ Tn dependency.

Example 2.1. Consider the SI history H1:W1(X 1) W1(Y1) W1(Z1) C1 W3(X 3)
R2(X 1) W2(Y2) C2 R3(Y1) C3

In the SI history H1, the versions X 1, Y1, and Z1 are installed at time
commit(T1) and version Y2 is the immediate successor of Y1 and is installed
at time commit(T2) (thus we have T1

ww−→ T2). Similarly, X 3 is the immediate
successor of X 1 and is installed at time commit(T3), so T1

ww−→ T3. The opera-
tion R2(X 1) means T1

wr−→ T2 (note that although R2(X ) occurs after W3(X 3)
in H1, there is no T3

wr−→ T2 because X 3 has not been installed when R2(X )
takes place, so we have instead R2(X 1) and T1

wr−→ T2; a more intuitive way of
putting this is that T2 and T3 are concurrent, so T2 cannot read writes by T3.
The operation R3(Y1) means T1

wr−→ T3. Finally, there is a T2
rw−→ T3 depen-

dency because the version X 3 succeeds X 1, and there is an operation R2(X 1);
note that this is so even though W3(X 3) occurs prior to R2(X 1) in the temporal
order. Figure 1 shows DSG(H1). The H1 transactions are serializable in order:
T1 T2 T3.

Note that the rw edge from T2 to T3 in Figure 1 is drawn as a “double line”
edge. This is a convention we will use to indicate that a rw dependency (an
anti-dependency) connects two concurrent transactions (clear because W3(X 3)
and R3(Y1) are separated by operations of T2). An anti-dependency connecting
concurrent transactions will turn out to have special significance in the anal-
ysis that follows. When the transactions connected by a dependency are not
concurrent, the edge (including a rw edge) in the DSG would be drawn as a
“single line” edge.
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2.2 Theory of Snapshot Isolation Anomalies

In what follows, we wish to characterize SI histories that contain transactional
anomalies. We will see below that serializability of any SI history H is implied
by the acyclicity of its DSG(H). Of course, a cycle in a directed graph must
be directed in the order of the directed edges. We will demonstrate that for
an SI history H, if H is nonserializable, we can conclude that DSG(H) con-
tains a cycle of a very particular form. We start with a number of remarks and
lemmas.

Remark 2.1. Since the result of any read by Tn is taken from the snapshot
as of start(Tn), and that snapshot contains only the versions produced by trans-
actions that commit before this time, it is clear that if there is a Tm

wr−→ Tn
dependency then Tm must completely precede Tn, that is, Tm must commit be-
fore Tn starts so the transactions cannot be concurrent. Similarly, if there is
a Tm

ww−→ Tn, then because of the First Committer Wins rule, Tm and Tn can-
not be concurrent, and again Tm must commit before Tn starts. If there is an
anti-dependency Tm

rw−→ Tn then it is possible for Tm and Tn to be concurrent,
or for Tm to completely precede Tn, but we now argue that it is not possible for
Tn to completely precede Tm. The existence of the anti-dependency Tm

rw−→ Tn
means that Tm reads a version X k of an item X which precedes the version X n
installed by Tn; but the algorithm for SI requires Tm the most recent version
whose commit precedes the start of Tm (or in rereads to reread its own version);
thus if the commit of Tn preceded the start of Tm, then the version read by
Tm would necessarily be equal to or later than X n in the version order, so the
anti-dependency Tm

rw−→ Tn could not exist.

LEMMA 2.2. In a history executed under SI, if there is a Tm → Tn dependency,
then Tm starts before Tn commits.

PROOF. By Remark 2.1, for wr and ww dependencies, Tm commits before Tn
starts, which is certainly implies that Tm starts before Tn commits, while for an
rw-dependency, either Tm precedes Tn or else Tm is concurrent with Tn, but in
either situation Tm starts before Tn commits.

LEMMA 2.3. In a history executed under SI, if we know that there is some
Tm → Tn dependency, and that Tm and Tn are concurrent, we can conclude that
Tm

rw−→ Tn. Recall that this is called an anti-dependency.

PROOF. By Remark 2.1, none of the other dependency types can occur
between concurrent transactions.

In Adya et al. [2000], a multiversion history H was shown to exhibit Isolation
Level PL-3 (serializability) if the following two conditions held: (1) no transac-
tion Tn reads transactional updates of Tm that were later aborted or modified
again by Tm, and (2) DSG(H) did not contain any cycles of dependencies of any
of the types described above: wr, ww, and rw, with at least one anti-dependency
edge, rw. We note condition (1) can never occur in Snapshot Isolation, and we
will show below in Theorem 2.1 that any cycle in a DSG must contain a structure
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having at least two anti-dependency edges each of which is between concurrent
transactions.

THEOREM 2.1. Suppose H is a multiversion history produced under Snap-
shot Isolation that is not serializable. Then there is at least one cycle in the
serialization graph DSG(H), and we claim that in every cycle there are three
consecutive transactions Ti.1, Ti..2, Ti.3 (where it is possible that Ti.1 and Ti.3
are the same transaction) such that Ti.1 and Ti.2 are concurrent, with an edge
Ti.1 → Ti.2, and Ti.2 and Ti.3 are concurrent with an edge Ti.2 → Ti.3.

Before we proceed with the proof, we make a few remarks. By Lemma 2.3,
both concurrent edges whose existence is asserted must be anti-dependencies:
Ti.1

rw−→ Ti.2 and Ti.2
rw−→ Ti.3. Example 2.2 in the next subsection shows that

Ti.1 and Ti.3 can be the same transaction; Example 2.3 shows that Ti.1 might be
a read-only transaction as long as Ti.2 and Ti.3 are update transactions.

PROOF. By Adya et al. [2000], a cycle exists in DSG(H). Take an arbitrary
cycle in DSG(H), and let Ti.3 be the transaction in the cycle with the earliest
commit time; let Ti.2 be the predecessor of Ti.3 in the cycle, and let Ti.1 be the
predecessor of Ti.2 in the cycle. Suppose for the sake of contradiction that Ti.2 and
Ti.3 are not concurrent: then either Ti.2 finishes before Ti.3 starts (but then this
is before Ti.3 commits, contradicting the choice of Ti.3 as the earliest committed
transaction in the cycle), or Ti.3 finishes before Ti.2 starts (but this contradicts
the presence of an edge Ti.2 → Ti.3 in DSG(H) by Lemma 2.2.). Thus we have
shown that Ti.2 must be concurrent with Ti.3, and therefore the edge from Ti.2
to Ti.3 is an anti-dependency, Ti.2

rw−→ Ti.3. Because Ti.2 and Ti.3 are concurrent,
the start of Ti.2 precedes the commit of Ti.3 and the start of Ti.3 precedes the
commit of Ti.2.

Now suppose for the sake of contradiction that Ti.1 was not concurrent with
Ti.2. Then either the commit of Ti.1 precedes the start of Ti.2 (which by the last
sentence of the prior paragraph precedes the commit of Ti.3, so the commit
of Ti.1 precedes the commit of Ti.3 contradicting the choice of Ti.3 as earliest
committed transaction in the cycle), or the commit of Ti.2 precedes the start of
Ti.1 (contradicting the presence of an edge Ti.1 → Ti.2 in DSG(H)). Thus we have
shown that Ti.1 is concurrent with Ti.2, and so the edge from Ti.1 to Ti.2 must be
an anti-dependency, Ti.1

rw−→ Ti.2.

2.3 SI-RW Diagrams

Theorem 2.1 is a fundamental result we use to characterize how SI serializa-
tion anomalies can arise. However, many readers have not had much experi-
ence with multiversion histories, so in this section, we offer an alternative way
to think about Snapshot Isolation within the framework of traditional single-
version histories. We note that the multiversion histories we have been looking
at up to now give the temporal order in which operations such as Ri, W j , Ck ,
etc. are requested by users and passed through by the scheduler to return
values read and accept new versions to be written, inserted, etc. Thus, in this
section, we will refer to these as user-oriented histories.
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In contrast, a scheduler-oriented history is formally defined as one where each
transaction’s operations occur in two blocks: all the reads take place in one un-
interrupted block, and all the writes take place in a later uninterrupted block;
furthermore, each read sees the version produced in the nearest preceding write
to the same item (and so the history is essentially a single-version history).
Given any user-oriented history allowed by the SI algorithm, we can produce a
scheduler-oriented history by treating all data item reads of a transaction as if
they take place at the single instant of time when the transaction starts, and
placing all writes at the single instant when (and if) the transaction commits.
This model is appropriate only so long as no transaction rereads data that it had
previously written, but such reads are redundant in any event (we can assume
the transaction simply remembers what it wrote last) so we ignore them.

For example, recall the SI history presented in Example 2.1 (a user-oriented
history):

H1: W1(X 1) W1(Y1) W1(Z1) C1W3(X 3) R2(X 1) W2(Y2) C2 R3(Y1) C3.

We note W3(X 3) precedes R2(X 1), implying this is a multiversion history. But
here is the scheduler-oriented equivalent:

H ′
1: W1(X 1) W1(Y1) W1(Z1) C1 R3(Y1) R2(X 1) W2(Y2) C2 W3(X 3) C3.

In the history H ′
1, W3(X 3) takes place after R2(X 1), and indeed the entire SI

history requires only a single value of any data item at any time. Note that the
reads of T3 take place prior to the reads of T2 in H ′

1 and the writes of T3 take
place after the writes of T2; thus, the two transactions are concurrent, but there
is no conflict so this is fine.

Now we wish to illustrate how cycles can occur in a scheduler-oriented
representation of a SI history; this will provide intuition for the meaning of
Theorem 2.1.

In a general non-SI single-version scheduler without any concurrency control
that delays user R and W requests, reads and writes of various transactions can
take place at arbitrary times between transactional starts and commits; in this
case, the user-oriented history matches the scheduler-oriented history (since
there is no concurrency control), and reads of one transaction T2 can access data
item values written by another transaction T1 before T1 has committed. This
makes it extremely easy for cycles to occur in a Serialization graph for a history
arising in such a scheduler. Consider the user-oriented (but not SI) history HSV1,
an inconsistent analysis caused by a read by T1 prior to a money transfer by T2
and another read by T1 after the money transfer has been accomplished.

HSV1: R1(A0, 50) R2(A0, 50) W2(A2, 70) R2(B0, 50) W2(B2, 30) R1(B2, 30) C1C2.

Such a cycle as this clearly cannot happen in a scheduler-oriented SI history,
since all reads of T1 would occur at one instant of time. In this case, the history
would become:

HSI : R1(A0, 50) R1(B0, 50) R2(A0, 50) R2(B0, 50) W2(A2, 70) W2(B2, 30) C1C2.

There’s no reason that C1 couldn’t occur right after the second read, since T1
has no writes, but this fact makes it clear that T1 can’t conflict with T2. Clearly,
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Fig. 2. An SI-RW diagram with a rw dependency going back in time.

the reads of T1 cannot occur after one write by T2 and before another, because
both writes take place at an instant of time.

For a picture of how to devise cycles in a scheduler-oriented SI history, a
much more difficult undertaking, we start by defining what we call an SI-RW
diagram for a scheduler-based history; in an SI-RW diagram, we represent all
reads of transaction Ti to occur at an instant of time at a vertex Ri (a pseudonym
for start(Ti)), and all writes at an instant of time at a vertex Wi (a pseudonym
for Ci); vertex Ri appears to the left of vertex Wi (time increases from left to
right), with the two connected by a horizontal dotted line segment. See Figure 2
for an example. The SI-RW diagram is based on a structure known as an SC-
Graph defined in Transaction Chopping [Shasha et al. 1995; Shasha and Bonnet
2002], with two types of edges: Sibling edges and Conflict edges; in our SI-RW
diagrams, the only sibling edges are the dotted line segment connecting the Ri
and Wi vertices for any transaction Ti that has both Reads and Writes. The
time at which an SI transaction occurs can be arbitrarily defined at any point
between Ri and Wi, but for purposes of this analysis we will say the transaction
Ti occurs at time Wi (i.e., at commit time Ci).

Now when we consider the three types of dependency, Tm
wr−→ Tn, Tm

ww−→ Tn

and Tm
rw−→ Tn, we note that the wr and ww dependencies always point in the

direction such that Tn occurs after Tm: if Tm
ww−→ Tn, Wm must be executed

before Wn, while if Tm
wr−→ Tn, Wm must be executed before Rn, and therefore

before Wn. But any cycle among transactions must somehow “go back in time”
at some point, which cannot occur in a history with only wr and ww depen-
dencies. A rw dependency Tm

rw−→ Tn allows Wn to occur before Wm when the
two transactions are concurrent. See Figure 2, where Ti.1 is Tm and T1.2 is Tn;
clearly Ti.1

rw−→ Ti.2, but Ti.2 occurs before Ti.1. Of course Figure 2 does not il-
lustrate a cycle, since Ti.1 and Ti.2 are concurrent. However, a sequence of two
successive Tm

rw−→ Tn dependencies can complete such a cycle, as we see in
Figure 3.

The cycle we see in Figure 3 is along the double-line rw dependency from
Ri.1 to Wi.2, back in time along the sibling edge from Wi.2 to Ri.2, then along the
double-line rw dependency from Ri.2 to Wi.3, and finally along the wr dependency
from Wi.3 to Ri.1. This exemplifies the cycle that was described in the proof of
Theorem 2.1. All dependency edges are directed, and any cycle must follow
the direction of the directed edges. The Sibling edges on the other hand are
undirected, and a cycle representing an anomaly can traverse a sibling edge
in either direction. We note that the sibling edge separation of the Ri and Wi
vertices provides an intuitive feel for how a cycle “goes back in time”, but doesn’t
add any power to the DSG(H) diagrams of Figure 1. After providing illustrative
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Fig. 3. An SI-RW diagram with two successive rw dependencies and a cycle.

Fig. 4. An SI-RW diagram for H2 in Example 2.2.

SI-RW diagrams for a number of anomaly examples, we will return to using
DSG(H) diagrams.

Example 2.2. Recall Example 1.2 that gives the SI Write Skew anomaly,
with the history:

H2: R1(X 0, 70) R2(X 0, 70) R1(Y0, 80) R2(Y0, 80) W1(X 1, −30) C1W2(Y2, −20) C2.

H2 is clearly not serializable since the constraint that X + Y > 0 is broken
by two transactions that act correctly in isolation; thus we should be able to
exhibit successive transactions Ti.1, Ti.2, Ti.3 in a cycle of DSG(H2) with the
properties specified in Theorem 2.1. We note there are only two transactions
in H2, but Theorem 2.1 allows that Ti.1 and Ti.3 can be the same transaction,
and we demonstrate this here: thus we need a cycle T1

rw−→ T2
rw−→ T1 to satisfy

Theorem 2.1. Now Transactions T1 and T2 are clearly concurrent. Furthermore,
DSG(H2) has an anti-dependency edge T1

rw−→ T2 because of the two operations
R1(Y0, 80) and W2(Y2, −20), and also an anti-dependency edge T2

rw−→ T1 be-
cause of the two operations R2(X 0,70) and W1(X 1, −30). Thus, this cycle, shown
in Figure 4, satisfies the Theorem 2.1 conditions.

Example 2.3. Recall Example 1.3 that gives an SI Read-Only serialization
anomaly, with the history:

H3: R2(X 0, 0) R2(Y0, 0) R1(Y0, 0) W1(Y1, 20)
C1 R3(X 0, 0) R3(Y1, 20) C3W2(X 2, −11) C2.

T3 is a read-only transaction that reads and prints out the values X = 0 and
Y = 20, which could not happen in any serializable execution where X ends
with a value −11, meaning that a withdrawal of 10 was made from X prior to
the deposit of 20 being registered in Y so that a charge was levied. Therefore
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Fig. 5. An SI-RW diagram for H3 in Example 2.3.

H3 is not serializable, and there must be three successive transactions Ti.1,
Ti.2, Ti.3 in a cycle of DSG(H3) with the properties specified in Theorem 2.1.
Examining H3, we derive the following DSG(H3) edges: (1) T2

rw−→ T1, because
of operations R2(Y0, 0) and W1(Y1, 20); (2) T3

rw−→ T2 because of operations
R3(X 0, 0) and W2(X 2, −11); (3) T1

wr−→ T3 because of operations W1(Y1, 20) and
R3(Y1, 20). Thus, the cycle in H is: T1

wr−→ T3
rw−→ T2

rw−→ T1. By the proof of
Theorem 2.1, we recognize T1 as the first committed transaction in the cycle, so
T1 is Ti.3; the predecessor of T1 in the cycle is T2, so T2 is Ti.2; the predecessor
of T2 is T3, so T3 is Ti.1. (Recall we noted after the statement of Theorem 2.1
that T might be a read-only transaction, and this Example demonstrates this.)
Examining the cycle we see, as required by Theorem 2.1: Ti.1

rw−→ Ti.3 (i.1 is 3,
i.2 is 2), and Ti.2

rw−→ Ti.3 (i.2 is 2, i.3 is 1). The SI-RW diagram for H3 is given in
Figure 5. Note that R3 has no sibling node W3 in Figure 5 since T3 is read-only.

Examples 2.2 and 2.3 demonstrate that SI Write Skew and the SI Read-
Only serialization anomaly are both characterized in the same way, by
Theorem 2.1. We leave it to the reader to verify that predicate-based write-
skew in Example 1.5 is also characterized by Theorem 2.1. It is also easy to
find examples where multiple transactions are found in the cycle, and only
three successive transactions Ti.1, Ti.2, Ti.3 in the cycle have the properties of
Theorem 2.1.

The following result shows how the transactions must be placed in time,
when they lie in a cycle in the dependency graph.

COROLLARY 2.4. Consider a cycle starting with Ti.1
rw−→ Ti.2

rw−→ Ti.3 as de-
fined in Theorem 2.1, and a sequence of n transactions Tm.1 to Tm.n completing
the cycle with dependencies wr or ww, represented below as wx:

Ti.1
rw−→ Ti.2

rw−→ Ti.3
wx−→ Tm.1

wx−→ Tm.2
wx−→ · · · Tm.n

wx−→ Ti.1.

Then each Tm.i runs fully within the lifetime of Ti.2.

PROOF. Tm.1 must start after Ti.3 commits and Tm.n must commit before Ti.1
starts because of the sequence of wx dependencies (by Remark 2.1.) Similarly,
the Tm.i ’s are all disjoint from each other. Thus, Ti.3’s write precedes Tm.1’s read
and Ti.1’s read follows Tm.n’s write. Ti.2’s read must precede Ti.3’s write since
Ti.2

rw−→ Ti.3, so Ti.2’s read precedes Tm.1’s read. Similarly, Ti.1’s read precedes
Ti.2’s write, so Tm.n’s write precedes Ti.2’s write.

Since each Tm.i runs within Ti.2’s lifetime, they cannot write any data in com-
mon with Ti.2. Figure 6 provides an SI-RW diagram that illustrates Lemma 2.4
with only two intervening transactions Tm.1 and Tm.2, that is with n = 2.
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Fig. 6. An SI-RW diagram representing Theorem 2.1 with n = 2.

Of course, there is no implicit limitation in an SI history that there be only
one sequence of three successive transactions with rw dependencies that goes
back in time. There might be multiple such rw dependencies in sequence or
several separated sequences of two or more rw dependencies.

3. PROGRAM CONFLICTS AND STATIC DEPENDENCIES

In this section, we explore how to use a static analysis of a set of transac-
tional programs P1, P2, . . . , Pk in an application A, to allow a DBA to run the
application under a DBMS using Snapshot Isolation with confidence that no
serialization anomaly will arise. In other words, we wish to know whether or
not it is the case that every possible interleaved execution of the transaction
programs under SI is in fact serializable. By Theorem 2.1, we can determine
this if we can decide whether or not some execution of these programs can
result in a history H that has a cycle in DSG(H). Of course for a given applica-
tion, there might be some executions with cycles and other executions without
cycles; however, it is the potential for such a cycle in some history arising out of
the application A that will require us to perform modification of program logic
to avoid serialization anomalies during execution.

Definition 3.1 (A Serializable Application). We say that an application A
is serializable if every history H arising out of executions of the programs of A
is a serializable history.

In this section of the article, we will simply take it as given that the DBA
can determine the possibility of dependencies between every pair of transaction
programs, by looking at the program logic and using his/her understanding of
their operations. In general, the program logic could be arbitrarily complicated,
and it is not known how to identify dependencies automatically; however, in
Section 4, we will show by example how such a static analysis can be arrived at
for the TPC-C programs; we will also suggest ways to perform similar analysis
with other applications.

Definition 3.2 (Static Dependencies). For each of the transactional depen-
dencies Tm

x− yz−→ Tn in Definition 2.1, there is a corresponding definition for a
static dependency. We say that there is a static dependency Pm

x− yz−→ Pn between
a transactional program Pn and a transactional program Pm when Snapshot
Isolation allows for the existence of an interleaved multiversion history h con-
taining a transaction Tm, which arises from running Pm, and a transaction Tn

which arises from running program Pn, such that Tm
x− yz−→ Tn. We say that the

static dependency is vulnerable if there exists a history which has the properties

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.



512 • A. Fekete et al.

above and in which Tm and Tn are concurrent. We represent a vulnerable static
dependency from Pm to Pn by Pm ⇒ Pn.

We make some observations about these concepts. Firstly, diagrams of
Section 2 show vulnerable rw dependencies with double-line edges. Lemma 2.3
implies that the only vulnerable static dependencies are rw-dependencies; how-
ever there can exist non-vulnerable static rw-dependencies (e.g., in Section 4.2
we will see some nonvulnerable rw-dependencies when transactions write a
common item in every execution where a rw-dependency occurs). Also, it is
important to be aware that there can be a static dependency from a transac-
tional program to itself, even though no transaction can directly depend on
itself. This happens because a history can contain several transactions, which
all arise from the same application program, and two of these transactions can
have a rw-dependency.

It is usually found that wherever there is a static dependency Pm
i−rw−→ Pn

there will also be another static dependency Pn
i−wr−→ Pm. However, this is not

always the case, since the program Pm can contain logic that leads it to abort
whenever it sees the data produced by Pn.

Definition 3.3 (SDG(A)). The graph SDG(A), a Static Dependency Graph
defined on an application A, has vertices representing programs P1, . . . , Pk

of A, and distinctly labeled edges Pm
wr−→ Pn, Pm

ww−→ Pn, and Pm
rw−→ Pn

(non-vulnerable) or Pm ⇒ Pn (vulnerable) representing static dependencies.
Note that usually a ww edge from Pm to Pn is accompanied by a reverse ww
edge from Pn to Pm, and when that happens we draw an undirected edge to
represent the pair of directed ones.

In the rest of this section, we investigate how conditions on the static
dependency graph SDG(A) can be used to guarantee that the application A
is serializable.

3.1 Lifting Paths from SDG(A) to DSG(H)

Definition 3.4 (Graph Theory Definitions). Consider the following graph
theory definitions found in [Berge 1976]. A path on a graph G (with edges either
directed or undirected) is an alternating sequence of vertices vi and edges e j :

v0, e1, v1, e2, . . . , en, vn,

beginning and ending with a vertex, such that each edge is immediately
preceded and followed by the two vertices that lie on it; directed edges must
be incident from the vertex that precedes it and incident to the vertex that
follows it. We refer to the number of edges in the sequence, n, as the length
of the path. A simple path is a path whose edges are all distinct. A circuit
is a path where v0 = vn, and where the edges are all distinct. An edge with
identical initial and terminal vertices is called a loop. Note that a loop forms
a circuit of length 1. An elementary circuit is a circuit whose vertices are dis-
tinct except for the beginning vertex and the ending vertex. (Other mathe-
matics references give essentially the same definitions with slightly different
names.)
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Fig. 7. (a) SDG(A) and (b) DSG(H) for Example 3.1.

When we speak of a cycle in a digraph, we follow traditional database use
which differs from the convention in mathematics and in Berge [1976]; for us,
a cycle has neither vertices nor edges that are repeated (except for v0 = vn), so
the term cycle as we use it is what is defined above as an elementary circuit. We
say that a digraph is acyclic if it has no cycles.

Consider a history H that occurs as a result of some execution of an appli-
cation A. Now looking at the succession of transactional vertices and directed
edge dependencies that make up a path in DSG(H), it is clear that each trans-
actional vertex can be mapped uniquely to the corresponding program that
executes the transaction, and each transactional dependency can be mapped
to the corresponding static dependency in SDG(A). Picturing the application
A and SDG(A) to exist at a higher level schematically than DSG(H), we refer
to this mapping as a lifting from DSG(H) to SDG(A). For example, we say we
can lift a path in DSG(H) to a path in SDG(A). Now a cycle in DSG(H) does not
necessarily lift to a cycle in SDG(A), but it can always be shown to lift to a circuit
(not necessarily elementary—so there might be duplicate vertices other than
the beginning and ending vertex); the reason is that multiple transactions in
DSG(H) might arise as executions of the same program. We give an illustration
of how this can happen in Example 3.1.

Example 3.1 (SI Write Skew). Recall the Write Skew anomaly given in
Example 1.2 with history H2:

H2: R1(X 0, 70) R2(X 0, 70) R1(Y0, 80) R2(Y0, 80) W1(X 1, −30) C1W2(Y2, −20) C2

We can picture these transactions arising because of a Withdrawal program that
is passed two arguments, an Account identifier A, and a Withdrawal quantity
Delta, and then reads Account row A to see if a co-account with identifier B
exists with the required constraint that A.bal + B.bal > 0. If so, and the sum
of the two balances (which become X and Y in execution) is greater than zero
after subtracting Delta, then Transaction T1, withdrawing Delta = 100 from
A = X will act as in H2, and a concurrent transaction T2 will also act as in H2,
withdrawing Delta = 100 from B = Y . Under these assumptions, these two
transactions are concurrent executions of the same program.

If the Withdrawal program W is the only one in the simple application A,
then SDG(A) will be as pictured in Figure 7(a), and DSG(H2) will be as pictured
in Figure 7(b).

Note that SDG(A) has three different loop edge static dependencies from the
vertex W to itself, the vulnerable W ⇒ W edge (which is traversed twice in the
path on SDG(A) corresponding to the T1

rw−→ T2
rw−→ T1 cycle in Figure 7(b)),
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Fig. 8. One cycle in SDG(A) that doesn’t translate to a cycle in DSG(H).

the W wr−→ W edge (which might arise, for example, if one execution of W com-
mitted before a second execution started), and the W ww−→ W edge (which might
arise if two successive executions of W performed a withdrawal from the same
account).

The inverse of lifting (which might be called a sinking) is not always well
defined. For example, there is no way we can sink the cycle in SDG(A) of the rw
and wr edges Figure 8 to a cycle in DSG(H). This is clear because Tn

wr−→ Tm

implies that start(Tm) comes after commit(Tn) and the edge Tm
rw−→ Tn implies

that start(Tm) comes before commit(Tn) (concurrently or not). More generally,
Theorem 2.1 states that no cycle in DSG(H) under SI can fail to have two succes-
sive concurrent rw anti-dependencies, but the transactional cycle we attempted
to sink from Figure 8 does not have two vulnerable anti-dependencies. It turns
out that even cycles in an SDG(A) with two successive vulnerable static anti-
dependencies will sometimes not successfully sink to a cycle in DSG(H), and
the problem becomes complex, so from now, we shall concentrate on what we
can learn from studying lifting from DSG(H) to SDG(A).

3.2 Dangerous Structures in SDG(A)

We define a dangerous structure that can appear in SDG(A), then demonstrate
that if this structure does not appear, then no cycle can occur in DSG(H), for
any history H that is an execution of programs in A.

Definition 3.5 (Dangerous Structures). We say that the static dependency
graph SDG(A) has a dangerous structure if it contains nodes P , Q and R (some
of which may not be distinct) such that:

(a) There is a vulnerable anti-dependency edge from R to P
(b) There is a vulnerable anti-dependency edge from P to Q
(c) Either Q = R or else there is a path in the graph from Q to R; that is,

(Q , R) is in the reflexive transitive closure of the edge relationship.

We can easily see how to detect dangerous structure algorithmically, once the
graph is known. For each node P in turn, one can simply scan the incoming
edges; whenever one is found to be vulnerable, in a nested loop one scans the
outgoing edges; when an outgoing edge is also found to be vulnerable, a simple
test of reachability in a digraph can be performed, from the target of the vul-
nerable outgoing edge to the source of the vulnerable incoming one. If that test
shows reachability, then the graph has a dangerous structure.

THEOREM 3.1. If an application A has a static dependency graph SDG(A)
with no dangerous structure, then A is serializable under SI; that is, every history
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resulting from execution of the programs of A running on a database using SI
is serializable.

We stress that the absence of dangerous structures in SDG(A) is only a suf-
ficient condition for A to be serializable; the presence of a dangerous structure
in SDG(A) does not necessarily imply there is a cycle in any history that is an
execution of programs in A, so it is not necessary that dangerous structure be
absent for A to be serializable!)

PROOF. Our proof is given for the contrapositive. We take an arbitrary
collection of transaction programs in A which is nonserializable, that is, there
is a nonserializable history H resulting from an execution of A under Snapshot
Isolation. We show that SDG(A) has a dangerous structure.

Since H is nonserializable, Theorem 2.1 implies there is some cycle in DSG(H)
having three consecutive transactions Ti.1, Ti..2, Ti.3 (Ti.1 and Ti.3 might be iden-
tical) such that Ti.1 and Ti.2 are concurrent, with an edge Ti.1

rw−→ Ti.2, and Ti.2

and Ti.3 are concurrent with an edge Ti.2
rw−→ Ti.3. Our plan is to follow the cycle

of transactions starting at Ti.1, and “lift” it to a circuit in SDG(A) which will
contain a dangerous structure. When we lift each edge in turn, we get a circuit
having three consecutive nodes Pi.1, Pi.2, Pi.3, where Pi.1 is the program whose
execution gives rise to Ti.1 etc. We remark that several of the transactions in
the cycle in DSG(H) may lift to the same program in SDG(A), and thus the
lifting of the cycle may have repeated edges or vertices. That is, the lifting may
not be a cycle; however it is certainly a circuit. Now because the execution H
contains Ti.1 and Ti.2 which are concurrent, with an edge Ti.1

rw−→ Ti.2, the defi-
nition of SDG shows that the edge Pi.1 ⇒ Pi.2 is vulnerable. Similarly, because
H contains Ti.2 and Ti.3 which are concurrent with an edge Ti.2

rw−→ Ti.3, the
edge Pi.2 ⇒ Pi.3 is vulnerable. Finally, we note that either the cycle in DSG(H)
has length 2, in which case either Ti.1 equals Ti.3, so Pi.1 = Pi.3, or else the
remainder of the cycle gives a path from Ti.3 to Ti.1, in which case the lifting of
this is a path from Pi.3 to Pi.1. Thus, the nodes Pi.2, Pi.3, and Pi.1 (in that order)
can take the roles of P , Q and R in the definition of dangerous structure. That
is, SDG(A) contains a dangerous structure.

The following obvious sufficient condition is particularly easy to check in
practice, as no cycle-detection is needed.

COROLLARY 3.2. Suppose an application A has a static dependency graph
SDG(A) where, for every vertex v, either there is no vulnerable anti-dependency
edge leaving v, or else there is no vulnerable anti-dependency edge entering v.
Then A is serializable under SI; that is, every history resulting from execution
of the programs of A running on a database using SI is serializable.

4. ANALYZING AN APPLICATION

In this section, we show how to determine the static dependencies that de-
fine the graph SDG(A) for the TPC-C application. At the end of this section,
we consider the issues that might arise with other applications. We need the
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following information to construct an appropriate static dependency graph
about an application A.

(1) Relational Table Descriptions. Descriptions of the tables accessed by the
application: we assume we have access to all table schema information
typically stored in System Catalogs (i.e., System Views, or Data Dictionar-
ies), specifically table names, column names, and primary keys, as well as
descriptions of how the columns are used.

(2) Program Descriptions. We assume that the various programs of the
application A are described in some form of pseudo-code as in TPC-C; pro-
grams with if-then-else structures that have branches with different static
dependencies to other program vertices must be split into two or more
programs with preconditions, as part of the analysis.

In this section, we analyze the programs of the application manually, looking
at pseudo-code descriptions of the programs and their effects on the columns
of the accessed data to construct the SDG. One might automate such an anal-
ysis, using custom software to read application programs and parse the SQL.
However it might be impossible without human understanding of the data to
determine whether Where conditions of conflicting SQL statements actually
retrieve common row/column data items, so there must be some way for ex-
perts to input information to this software process. For example, an expert
might be needed to point out that a banking program to insert a new account
cannot have a conflict with a scan to find all overdrawn accounts, because a
newly inserted account cannot be overdrawn.

The idea of splitting programs is that two different branches from an
if-then-else construct in a program can be represented as distinct programs,
with preconditions that determine which branch is valid. We assume that any
accesses that lead up to the branch decision is repeated in each split program, as
well as any common actions that take place after the two branches. The precon-
ditions for the split programs can be thought of as oracles that determine which
distinct static dependencies in the SDG are incident with the distinct program
nodes. The motivation for splitting is to avoid dependencies that would appear
to impinge on a single program and imply a dangerous structure in the SDG,
when in fact some of the dependencies come from two different branches of the
logic and cannot appear together in any transactional execution. Once appro-
priate splits have been made, we redefine the application A to contain the new
split programs.

4.1 The TPC-C Benchmark

The TPC-C benchmark was introduced in 1992 to measure the perfor-
mance of transaction processing systems, superseding the earlier TPC-A and
TPC-B benchmarks, which had a very simple debit-credit scenario. The TPC-C
benchmark has a rather complex structure, with nine different tables and five
different transactional profiles, dealing with most of the aspects of ordering,
paying for, and delivering goods from warehouses. The standard specification
of the TPC-C benchmark is found at the URL cited at [TPC-C]. Figure 9 lists
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Fig. 9. Abbreviations and names of tables and transactions in the TPC-C benchmark.

Fig. 10. TPC-C table layout with relationships.

the tables and transactions, both the actual names and abbreviations (listed as
Tbl Abbrev and Tx Abbrev) that we use in our analysis.

Note that we list table abbreviations with concluding dots (.), something that
is not done in the TPC-C benchmark specification [TPC-C]. In what follows, we
also list tablename/columname pairs in the form T.CN; for example, to specify
what Warehouse a Customer row is affiliated with (see definition below), we
would use C.WID, whereas in [TPC-C] it is represented as C W ID. We find
that the complexity of names in the TPC-C specification is distracting; the
abbreviations we use should be easily understood by readers wishing to tie our
discussion to the original.

Figure 10 provides a schema for how the tables of Figure 9 relate to one
another. If we assume that a database on which the TPC-C benchmark is run
has W Warehouse rows, then some of the other tables have cardinality that is
a multiple of W. There are 10 rows in the District table associated with each
Warehouse row, and the primary key for District is D.DID D.WID, specifying
each district row’s parent Warehouse; there are 3000 Customer rows for each
District, and the primary key for Customer is C.CID C.DID C.WID, specifying
each Customer row’s parent District and grandparent Warehouse.

We now describe tables and programs, while discussing the program logic.
The reader may wish to refer back to Figure 9 to follow this short (and incom-
plete) discussion. Full Transaction Profiles for programs are given in [TPC-C].
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NEWO Program. An order, represented by a row in the Order table (O),
is placed for a customer (a row in the Customers table, C), by a call to the
New-Order program (NEWO); in addition to creating (inserting) a row in the
Order table O, the NEWO program inserts a row in the New-Order table (NO,
which basically points to the Order row) and a series of rows in the Order-Line
table (OL) that make up the individual stock orders that constitute a full order.
(The NO row inserted by NEWO is later deleted when a Delivery program
(DLVY) delivers this particular order; the O row is retained.) To accomplish
its task, the NEWO program reads and/or updates a number of fields from
the Warehouse table (W), District table (D), Customer table (C), Item table
(I), and Stock table (S), but it turns out that only two of these accesses have
potential conflicts, the one in S to S.QTY, the quantity of a stock item on hand,
which NEWO decrements, and the one in D to the column D.NEXT, the next
order number for the district, which NEWO uses and increments. We only know
about potential conflicts after annotating table accesses by all programs, but
we use this future knowledge here to simplify our discussion

PAY Program. The Payment program (PAY) accepts a payment for a
specific customer, increments the customer balance (C.BAL) and also re-
flects this incremental information in the warehouse (W.YTD—payments Year-
To-Date) and District (D.YTD), then inserts a record of this payment to the
History table H. PAY is the only program to access H. The payment is not asso-
ciated with a particular order, so the O table is not accessed. We note that PAY
looks up the appropriate C. row by primary key (C.CID, C.DID, C.WID) some
fraction of the time, but sometimes looks up the row by lastname and firstname
(C.WHERE: PY lookup by C.LAST, sort by C.FIRST, select the median row, in
position ROOF(n/2), where there are n rows with the given C.LAST). Once the
target row of C is located by either means, PAY increments C.BAL.

DLVY Delivery. The DLVY program is executed in deferred mode to deliver
one outstanding order per transaction (or more—up to 10 orders for each of the
ten distinct districts within a warehouse, but for now we consider only one order
per transaction). An outstanding order is one that remains in the NO table, and
the logic of DLVY starts by searching for a row in NO with a specific NO.WID, a
specific NO.DID, and the minimum (oldest undelivered) NO.OID. If no such NO
row is found, then delivery for this warehouse/district is skipped. Else, if a NO
row is found, it is deleted, and DLVY retrieves the O row with identical WID,
DID, and OID, reads the O.CID (Customer ID) and updates O.CAR (to reflect
the “Carrier” performing delivery); then DLVY retrieves all the OL. row with
matching WID, DID, and OID and for each one sets OL.DD (Delivery Date) to
the current system time, and aggregates a sum of all OL.AMT (dollar charge).
Finally, the C. row with matching WID, DID, and CID (found in O) is retrieved
and C.BAL is incremented by the aggregated OL.AMT charge for delivering the
order line items.

OSTAT Order-Status. The OSTAT program executes a RO program to
query the status of a customer’s last order, returning information from all OL
rows for this order: OL.IID (Item ID), OL.DD (delivery date), and others. To
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access the appropriate OL rows, OS starts by retrieving a row of C using a
WHERE clause with primary key (C.CID C.DID C.WID) 40% of the time and
C.LAST, sorted by C.FIRST 60% of the time, selecting the median row–in po-
sition ROOF(n/2). Then the row in the O table with matching O.CID, O.DID,
O.WID and largest existing O.OID (latest order) is retrieved, a few columns
read, and the OL rows with matching O.OID retrieved, as explained above.

SLEV Stock-Level. The SLEV program executes as a Read-Only (RO) trans-
action to determine which of the items ordered by the last twenty orders in a
given warehouse and district have fallen below a specified threshold value. The
SLEV program reads D.NEXT to find the next order number to be assigned for
this district, then accesses all OL rows with OL.OID in the range D.NEXT-20
to D.NEXT to learn OL.IID (all item IDs of the last twenty orders), then checks
the quantity on hand in the STOCK table, S.QTY, for this S.WID and S.IID to
test it against the given threshold.

4.2 Finding Dependencies in the TPC-C Application

Here is a list of steps we take to find dependencies in the TPC-C application.

Step 1. Splitting. Recall the idea of splitting programs from the introduction
to this section. Programs with if-then-else branches in TPC-C are the following.
First, both PAY and OSTAT access a customer row by primary key 40% of the
time and by C.LAST and C.FIRST 60% of the time; neither C.LAST nor C.FIRST
nor the primary key for C. is ever updated by any programs however, so there is
no difference in dependencies between the two branches. Thus we do not split
these programs in our analysis. Second, the program DLVY has an if-then-else
branch following the search for the minimum (oldest undelivered) NO row. If
the row is not found, then there is a DLVY ⇒ NEWO dependency, since a later
insert of such a NO row by NO modifies the set of rows found by the search
WHERE clause, but if such a row is found there is no such dependency. Thus,
we need to split DLVY into two programs, DLVY1 (where no row is found) and
DLVY2 (where a row is found). The TPC-C Application is redefined to have these
two different programs (see Figure 12 below). It will turn out that this splitting
is needed to show serializability.

Step 2. Tabulating Program Read/Write Accesses by Table/Column. We
start from table schemas, that is, a list of column names for each table, thus
providing a list of table.column names that partially specify individual data
items. For each table.column instance, we set up two entries for annotations,
called the Reads Entry (for predicate reads (PR) and data-item reads (R)) and
Writes Entry (W), and fill them in as follows. For each program P, we consider all
Select and Update statements affecting data items, and annotate the associated
table.column instance with the program name P in its appropriate entry, the
Reads Entry for a Select, or Reads and Writes Entries (or just Writes) for an
Update. If a program P is shown by annotation to Write a data item of some
table.column and also shown to Read (R) the data item, the implication will be
that it always Writes the same data item it originally Reads. This is true of all
Read-Writes of data items in TPC-C, but may not hold in general.
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Step 3. Annotating Program “Where Restrictions” by Table. The columns
accessed in WHERE clauses are involved in predicate read operations, a kind
of read, and are tabulated in the PR (predicate read) part of the Reads entry.
Clearly, in some cases, this listing is too crude, but it will cover all potential
conflicts. After conflicts are located, they can be further investigated, that is,
the actual predicate can be studied to see if the apparently conflicting write
provides a real conflict.

If a WHERE clause of program P retrieves a unique row through a primary
key, the only predicate conflict with an Update statement of a different program
R that can occur will be with an Update that changes primary key values, a very
rare occurrence in online transactional applications, and not present anywhere
in TPC-C. In fact, there are no updates to any columns involved in predicates,
primary key or not. Conflicts involving predicate-read operations vs. inserts
and deletes do show up in TPC-C.

Step 4. Annotating Deletes and Inserts by Table. We also need to take note
of Delete and Insert statements on a table T that can be performed by any
program P. We treat Inserts and Deletes as a Write of all columns by P, with
additional annotation of (I) or (D).

Figure 11 gives the result of these steps for all tables that have any potential
conflicts; table columns not accessed are left out. Note that each of the tables T
have their primary key (PK) defined immediately following their table name,
listed at the top. In the tables, PK is used as an abbreviation for that table’s
primary key columns. We do not include table columns that have no accesses.
The STOCK table is not listed here, but is similarly handled. Three of the tables
have no potential conflicts at all, and are also not listed: Warehouse (W), History
(H), Item (I).

We will not discuss any further table annotations of Figure 11. Most of them
arise directly from the Program Profiles we detailed in Section 4.2. Any accesses
in Figure 11 that weren’t mentioned in the Program Profiles are relatively
unimportant and can be found in the more complete profiles of [TPC-C].

Step 5. Determining Potential Conflicts and Real Conflicts. Potential con-
flicts arise from data item accesses in the annotated table when two program
names P1 and P2 both occur for the same table.column in Figure 11, and one or
both of them is in the Writes (W) column. P1 and P2 can be the same program.
In some cases, it is necessary to go back to the transaction programs for more
details on a particular conflict, but all conflicts show up in this tabulation.

Since writes figure in all conflicts, the most straightforward way to process
the annotated schema is by studying each filled-in Writes entry in turn. If P
shows up alone in the Writes entry of an instance, and Q in its Reads en-
try, then there are conflicts in both directions Q rw−→P and P wr−→Q, and the
rw conflict is vulnerable. However, if P and Q are in the Writes entry, and
Q in the Reads, both conflicts exist but neither is vulnerable, because the
writes to the data item read by Q prevent concurrency in any rw conflict.
Note that this conclusion requires that the read and write are to the same
data item (same column, same row), as occurs in TPC-C as noted in Step 2 of
Section 4.2.
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Fig. 11. Annotated TPC-C tables.

Starting with the District table in Figure 11, we see that the only con-
flicts involve D.YTD and D.NEXT, since the other columns of D are only
read, not written. We note a potential data item conflict between SLEV and
NEWO on D.NEXT. This leads to an SLEV ⇒ NEWO static dependency and
an NEWO wr−→SLEV dependency in our SDG(TPC-C) graph, see Figure 13. In
addition, we have ww conflicts of NEWO with itself and PAY with itself, indi-
cated by back arcs on Figure 13.

In the New-Order table of Figure 11, we see four programs listed as accessing
NO.PK, that is, NO.WID, NO.DID, and NO.OID. We need to consider them by
pairs, where each pair has a writing program member.

(1) DLVY1 and NEWO. DLVY1 has a predicate read for the smallest OID for
given WID and DID, and finds none. There is a DLVY1 ⇒ NEWO conflict
arising from a predicate conflict, because NEWO could insert a new row,
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Fig. 12. Potentially conflicting TPC-C accesses grouped by program.

concurrently, that would change the result of DLVY1s predicate read. There
is no NEWO wr−→DLVY1 conflict, however, because if DLVY successfully
reads a row output by NEWO, it is counted as DLVY2.

(2) DLVY2 and NEWO. DLVY2 has the same predicate read, but finds such
a row. It can Read what NEWO inserts, so we have NEWO wr−→DLVY2.
However, NEWO cannot make a difference to the predicate read of DLVY2,
because additional rows beyond the one retrieved will have higher OIDs, so
we have no rw conflict here.

(3) NEWO and NEWO. There is only a ww conflict.
(4) DLVY2 and DLVY2. There are ww, rw and wr conflicts here, but none

vulnerable. Concurrent transactions of this program would access the same
smallest OID, and have a ww conflict.

Note that although table OL shows reads by SLEV and a write by DLVY2, it
generates no field-level conflicts between SLEV and DLVY2, since these accesses
are to different columns.

We leave the rest of the details of finding conflicts in the annotated table of
Figure 11 as an exercise for the reader. The result, after regrouping by program
name is given in Figure 12. Cases where all columns in a table are involved in
conflicts are indicated by wild-card notation. For example, the NEWO trans-
action is shown as writing O.*, that is, it writes all columns in the O. table.
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Fig. 13. Static dependency graph for TPC-C.

Figure 12 includes some data-item conflicts involving the STOCK table that
were not shown in Figure 11. Note that although all programs use predicate
reads to access tables, some are not shown because they cannot provide conflicts:
they are accessing tables that never get inserted or deleted in this transaction
mix, and the columns involved in the predicate are never updated.

4.3 Creating the Static Dependency Graph for TPC-C

The static dependency graph for TPC-C, SDG(TPC-C), is displayed in Figure 13.
It is derived from examination of Figures 11 and 12, and the argument about
the conflicts involving DLVY1 and DLVY2 above.

It is easy to see by inspection that SDG(TPC-C) has no program vertex with
a vulnerable rw dependency edge both entering and leaving. Therefore, there
are no dangerous structures, and TPC-C must be serializable when executed
under SI. Note, however, that if we hadn’t split D into DLVY1 and DLVY2,
then there would have been a static dependency OSTAT ⇒ DLVY (the DLVY
here is the current DLVY2) and another one, DLVY ⇒ NEWO (the DLVY in
this case is currently DLVY1). Therefore, the act of splitting is crucial to our
demonstration.

Many of the conflicts of Figure 13 require special conditions to occur, but since
they don’t show a dangerous structure, we don’t need to consider the conditions.
One case merits further discussion, that is, the conflicts between DLVY2 and
PAY, since the ww conflict is needed to make the rw conflicts nonvulnerable. In
this case, all the conflicts arise from the same field, C.BAL, so if the rw conflict
exists (same customer), so does the ww conflict that keeps them non-concurrent.

4.4 TPC-C vs. Other Applications

Although TPC-C is a nontrivial example of an OLTP system, it is simpler
than many real applications, so we were able to perform a simplified analysis.
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Possible complications that might arise in more complex applications include:

(1) Programs that update more than one row of a certain table.column. Our use
of table.column to track a single field depended on the property of TPC-C
that it updates at most one row from each table in a program execution.

(2) Programs that read a field from a row and then write the same column in
another row. This is a skew read-write situation, one that can cause the
simplest form of dangerous structure involving a single program.

(3) Updates to columns involved in predicates. This can generate a skew
read-write as well, if the predicate read-set is a superset of the update-set.

(4) Fields that are conditionally updated. We often used an unconditional write
to claim non-concurrency.

(5) Loops in program logic.

To handle cases (1), (2), and (3), we need more bookkeeping in the annotated
tables like Figure 11. For case (1), in the W column, we mark (N) for multiple
rows after the program name. For example, since DLVY2 writes multiple rows
of OL.DD in ORDER-LINE, it should be notated DLVY2 (N) in the W column
of the entry for OL.DD, but in this case all N rows are read or not by OSTAT,
so there is no new behavior. Again, the default is that if a field shows up in
the R or PR and W column, all rows read or predicate-read (in this field) are
also written (in this field.) If this is not true (case (2) or (3) above), so there is
a row with a certain field read or predicate-read but not written, and another
row with this field written, the R or PR should be marked (SKEW).

We still look for potential conflicts by using the same rule in Step 5. Special
attention needs to be paid to fields with (N) and/or (SKEW) markings. If P
shows up alone in the Writes entry of an instance (with or without (N)), and
Q in its Reads entry (with or without SKEW), then there are conflicts in both
directions Q rw−→ P and P wr−→ Q, and the rw conflict is vulnerable. If P (with or
without (N)) and Q (unmarked) are in the Writes entry, and Q (unmarked) in
the Reads, both conflicts exist but neither is vulnerable, because the writes to
data item read by Q prevent concurrency in any rw conflict. All other cases with
P and Q in W, Q in R result in vulnerable conflicts. Additionally, P (SKEW) for a
field causes vulnerable conflicts for P with itself, unless they can be eliminated
by further arguments. The resulting static dependency graph can be analyzed
in light of Theorem 3.1.

Cases (4) and (5) involve program flow. Conditional writes could be handled
by splitting. In some cases, a conditional write of a field brings no new behavior.
There is an example of this in TPC-C, where the C.DATA field is conditionally
updated by PAY. The R and W are marked (maybe). Since PAY always updates
C.BAL, this conditional write cannot cause a vulnerable dependency.

For the more complicated program flow patterns like loops, we need to lump
together all the accesses, and use (N) for the markings as appropriate.

5. AVOIDING ISOLATION ERRORS IN THE APPLICATION

Theorem 3.1 will often allow the DBA to determine that the mix of programs
in an application is serializable, that is, that every execution, interleaving the
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programs from the application and running under Snapshot Isolation, will be
serializable. This is the case when the static dependency graph has no dan-
gerous structures. However, when the DBA produces the graph, he/she may
find in it some dangerous structures. In some situations such as happened with
TPC-C, a more precise analysis using application splitting could resolve mat-
ters and allow us to be sure that all executions are serializable. However, some
applications may allow nonserializable executions when SI is the concurrency
control mechanism. This means that some integrity constraints, which are not
declared explicitly in the schema and so are not enforced by the DBMS, could
be violated during execution. We think that the DBA would be very unwise
to carry the risk of this happening. In such cases, the solution we suggest is
to modify the application programs so as to avoid dangerous structures with-
out changing the functionality of the programs. This will normally require a
rather small set of changes. The DBA should identify every place in the static
dependency graph where a dangerous structure exists. Every such structure is
defined by one or two distinct vulnerable edges. Then, the DBA can then choose
one of these vulnerable edges in each dangerous structure, and modify one or
both application programs corresponding to the vertices of the edge so that the
edge ceases to be vulnerable.4

5.1 Materialize the Conflict

Note that all forms of dangerous structures have two vulnerable anti-
dependencies. One of the simplest ways to remove vulnerability is to invent
a new data item that materializes the conflict, and add to each program in-
volved a statement that updates this item. For example, we can create a special
table, Conflict(Id, val), with Id the primary key. Then for each anti-dependency
we wish to materialize, we can add a row (X, 0), X a unique value corresponding
to the specific edge. Finally, we can add the following statement to both of the
programs that have the vulnerable anti-dependency.

UPDATE Conflict SET val = val+1 WHERE Id = X;

The First Committer Wins rule will now operate to prevent these programs
from generating concurrent committed transactions. Note that this method of
materializing conflicts works particularly well for predicate conflicts, where the
promotion method described below may not be available as the two programs
in conflict might otherwise have no data items in common.

We need not use a single data item for each vulnerable edge where we want
to remove the vulnerability. Often, the semantics of the programs involved will
show that conflict does not occur in all transactions of the programs, but rather,
conflict depends on parameter values. If so, we can similarly use the parameter
values in new items to materialize the conflicts. Consider the Predicate-Based
Write Skew Example 1.4. In that case, two concurrent executions of a program
to insert new tasks to the WorkAssignments table for the same employee on

4The Oracle White Paper [Jacobs et al. 1995] provided a number of program modification sugges-
tions that follow. What is new in our development is an effective procedure to guarantee that all
serializability problems are addressed.
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the same day can result in a non-serializable execution that breaks a constraint
requiring the total number of hours worked by any employee on any day to be
no more than eight. If we were to use a single value X in a Conflict table
to materialize any conflict of this sort, it would become impossible to assign
two tasks to two different employees concurrently, a problematic situation for
a large company. But a minor variation of the Conflict table approach would
factor the problem along natural parameters of the program. Simply create a
table TotalHours(eid, day, total), with eid and day a primary key. The program
to add new tasks for employees should then keep the row for each eid-day up to
date with the total number of hours assigned: whenever the WorkAssignments
table has a row added, the program making the assignment will also update
the TotalHours row, guaranteeing that no vulnerable conflict can arise. It is
even acceptable for the program that inserts new tasks to also insert the Total-
Hours row when none is found; the system-enforced primary key constraint will
then guarantee that there are no cases of write skew on the TotalHours table
itself!

5.2 Promotion

To remove vulnerability from a data-item anti-dependency, we can use a simpler
approach. The data item on which the conflict arises already exists in both
programs, so all we need to do is guarantee that when we read a data item we
are going to depend on, another transaction cannot simultaneously modify the
same data item. We have a way of ensuring this that we call Promotion, which
has the advantage that only one of the programs needs to be modified.

A data-item anti-dependency implies that one can find one data item
identified by a program that is both read by the transaction generated by P1
and written by the transaction generated by P2 in every case where there is a
conflict. Therefore, we can alter P1 so that in addition to reading this item, it
performs an identity write. That is, if the data item is column c of table X , P1
updates X to set X.c = X.c under the same conditions (WHERE clause) as used
in the read. We describe this as a Promotion of the read of X to a write. Again,
the First Committer Wins rule will prevent both transactions committing in
any concurrent execution of P1 and P2. In fact, with the Oracle implementation
of Snapshot Isolation, it is enough to modify P1 so that the read of X is done
in a SELECT FOR UPDATE statement; Oracle treats SELECT FOR UPDATE
just like a write in all aspects of concurrency control, but has smaller overhead
because no logging has to take place to recover an update.

5.3 Performance Impact of Modifications

When Theorem 3.1 applies, a DBA can be sure that serializability is indeed
guaranteed when running on a DBMS such as Oracle, which offers a variant of
SI as its SERIALIZABLE isolation level. Thus, in such cases, serializability is
obtained without additional cost. However, when the conditions of Theorem 3.1
are not met, the DBA needs to modify the application by introducing extra
conflicts, as explained above. This will certainly reduce the performance of
the application by causing aborts whenever the crucial conflicts arise between
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concurrently executing programs, but this impact is essential to avoid non-
serializable executions. We now report on some observations about the extent
of these costs. We carried out some simple experiments on an Oracle DBMS,
involving a single program with a vulnerable loop in its static dependency
graph. The measurements were performed using Histex, a tool for executing
transactional histories described in Liarokapis [2001]. Comparing the origi-
nal application to one modified by promotion through SELECT FOR UPDATE,
we found that the CPU usage for the modified (serializable) application ex-
ceeded the (not necessarily serializable) original by no more than 20% so long
as the rate of conflict was low, for example, when each transaction had a
rw-dependency on only 1 in 80 others, in a system with up to 20 concurrent
transactions. However, if the contention was great, such as with each transac-
tion having a rw-dependency on 1 in 20 others among 10 concurrent threads,
then obtaining serializability caused the CPU usage to increase by about 35%.
We found that the increase in the number of aborts was a good signal of the
performance impact of the modification, and this can be easily estimated with a
back-of-the-envelope calculation. We also found that promotion using an iden-
tity write of the promoted item had a cost similar to that when promotion was
done with SELECT FOR UPDATE.

6. CONCLUSIONS

Snapshot Isolation is now an important concurrency mechanism offering good
performance in many commonly needed circumstances, but it can produce er-
rors in common situations. This may corrupt the database, leading to financial
loss or even injury.

This work provides a mechanism to avoid serializability violations through
analysis of the transaction programs, without requiring any modification of
the DBMS engine. In some cases, our results show that an application will
run serializably under Snapshot Isolation as it stands. When this is not the
case, we have shown how to identify specific pairs of programs where small
modifications of the text will lead to a semantically equivalent application
that executes serializably. Given the ability to detect static dependencies be-
tween the application programs, and an understanding of the static dependency
graph construction, programmers will have a practical way to ensure that their
applications execute correctly even when the underlying database management
doesn’t. A utility providing the user an intuitive interface to perform this kind
of analysis is the next step in our research.
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