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ABSTRACT 
Reliable systems have always been built out of unreliable 

components [1].  Early on, the reliable components were small 

such as mirrored disks or ECC (Error Correcting Codes) in core 

memory. These systems were designed such that failures of these 

small components were transparent to the application. Later, the 

size of the unreliable components grew larger and semantic 

challenges crept into the application when failures occurred. 

Fault tolerant algorithms comprise a set of idempotent sub-

algorithms.  Between these idempotent sub-algorithms, state is 

sent across the failure boundaries of the unreliable components.  

The failure of an unreliable component can then be tolerated as a 

takeover by a backup, which uses the last known state and drives 

forward with a retry of the idempotent sub-algorithm.  Classically, 

this has been done in a linear fashion (i.e. one step at a time). 

As the granularity of the unreliable component grows (from a 

mirrored disk to a system to a data  center), the latency to 

communicate with a backup becomes unpalatable.  This leads to a 

more relaxed model for fault tolerance.  The primary system will 

acknowledge the work request and its actions without waiting to 

ensure that the backup is notified of the work.  This improves the 

responsiveness of the system because the user is not delayed 

behind a slow interaction with the backup. 

There are two implications of asynchronous state capture: 

1) Everything promised by the primary is probabilistic.  There is 

always a chance that an untimely failure shortly after the 

promise results in a backup proceeding without knowledge of 

the commitment.  Hence, nothing is guaranteed! 

2) Applications must ensure eventual consistency [20].  Since 

work may be stuck in the primary after a failure and reappear 

later, the processing order for work cannot be guaranteed. 

Platform designers are struggling to make this easier for their 

applications.  Emerging patterns of eventual consistency and 

probabilistic execution may soon yield a way for applications to 

express requirements for a “looser” form of consistency while 

providing availability in the face of ever larger failures. As we 

will also point out in this paper, the patterns of probabilistic 

execution and eventual consistency are applicable to 

intermittently connected application patterns.  

This paper recounts portions of the evolution of these trends, 

attempts to show the patterns that span these changes, and talks 

about future directions as we continue to “build on quicksand”. 
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1. Introduction 
There is an interesting connection between fault tolerance, 

offlineable systems, and the need for application-based eventual 

consistency.  As we attempt to run our large scale applications 

spread across many systems, we cannot afford the latency to wait 

for a backup system to remain in synch with the system actually 

performing the work.  This causes the server systems to look 

increasingly like offlineable client applications in that they do not 

know the authoritative truth.  In turn, these server-based 

applications are designed to record their intentions and allow the 

work to interleave and flow across the replicas.  In a properly 

designed application, this results in system behavior that is 

acceptable to the business while being resilient to an increasing 

number of system failures.   

This paper starts by examining the concepts of fault tolerance and 

posits an abstraction for thinking about fault tolerant systems.  

Next, section 3 examines how fault tolerant systems have 

historically provided the ability to transparently survive failures 

without special application consideration by using synchronous 

checkpointing to send the application state to a backup.  In section 

4, we begin to examine what happens when we cannot afford the 

latency associated with the synchronous checkpointing of state to 

the backup and, instead, allow the checkpointing of state to be 

asynchronous.  Section 5 examines in much more depth the ways 

in which an application must be modified to be true to its 

semantics while allowing asynchronous checkpointing of the 

application state to its backup.  Section 6 looks at a couple of 

example applications which offer correct behavior while allowing 

delays (i.e. asynchrony) in checkpointing state to the backup.  In 

section 7, we consider the management of resources when the 

operations may be reordered due to asynchrony.  Section 8 

examines the relationship between this class of eventual 

consistency and the CAP (Consistency, Availability, and 

Partition-tolerance) Theory.  Finally, in section 9, we consider 

some areas for future work. 

2. An Abstraction for Fault Tolerance 
In section 2, we discuss the broad ideas required to build a fault 

tolerant system.  First, we start by describing the external behavior 

of the systems we are considering.  Next, we describe what it can 

mean for these systems to offer transparent fault tolerance and not 

require special application consideration to cope with failures.  

Then, we quickly consider the issues associated with scalability of 

these systems.  Finally, we briefly discuss the role of transactions 

in the composition of these fault tolerant systems. 
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2.1 Modeling “The System” 
In considering interactions with a fault tolerant “system”, we want 

to look at its behavior as a black-box.  From the outside, requests 

are sent into the system for processing.  In years past, these 

requests looked like block mode screen input.  Nowadays, they 

typically take the form of XML, SOAP, and/or other web-style 

requests. 

To be robust, these incoming requests are retried by their source.  

In classic fashion, a request is issued and if a timer expires, it is 

reissued.  The fault tolerant server system had better make this 

work idempotent or the retries would occasionally result in 

duplicative work.  In practice, systems evolve to be idempotent as 

designers either anticipate the problem or make changes to fix it. 

To support this need for idempotence, either each request is 

submitted with a “uniquifier” that ensures the request is unique 

(and ensures retries will be associated with the original request), 

OR the service applies some trick to accomplish the same thing.  

An example trick is the creation of an MD5 hash of the entire 

incoming request.  With extremely high probability, the MD5 

hash is one-to-one correlated with a unique incoming request.  

So, the fault tolerant system processes a sequence of requests 

from an external partner.   The requests (and their responses) 

perform some business task or tasks. 

2.2 Transparent Fault Tolerance 
Fault tolerant systems comprise many components and their 

design goal is to continue functioning when one (or sometimes 

more than one) component fails.  In this discussion, we will not 

consider Byzantine Failures [6] in which a component may 

behave erroneously (and in the Byzantine analysis, potentially 

maliciously).  Instead, we assume fail fast [8] in which a 

component is either functioning correctly or simply stops 

functioning.  Fail fast does not address the possibility of 

components deliberately misbehaving.  Also, it leaves vague the 

question of what happens when a component performs so slowly 

that it wreaks havoc on the system.  For this discussion, we will 

address some issues present even with the simplifying 

assumptions of fail fast. 

 

 

We have observed the pattern in which a fault tolerant algorithm 

is broken into idempotent sub-algorithms.  By capturing sufficient 

information between the idempotent steps and sending it across 

the failure boundary, the overarching algorithm can tolerate faults. 

From this perspective, you can imagine stepping across a river 

from rock to rock, always keeping one foot on solid ground.  It is 

important to realize this provides a linear sequence of steps 

marching forward through the work. 

It turns out that many existing fault tolerant systems use this 

technique to make failures transparent to the application and to the 

user.  We will explore some examples of these systems. 

2.3 Scaling and Idempotent Sub-Algorithms 
In [15] one of the authors (Helland) argues that scalable and 

distributed applications need special attention when built without 

distributed transactions.  Distributed transactions (especially using 

the Two Phase Commit protocol [3]) result in fragile systems and 

reduced availability.  For this reason, they are rarely used in 

production systems, particularly when the resource managers span 

trust and authority boundaries.  In the paper cited above, it is 

proposed that a scalable application must apply a discipline of 

partitioning its data into chunks which can remain on a single 

node even when repartitioned.  Each chunk has a unique key. 

In the design of fault tolerance systems, we frequently see these 

idempotent sub-algorithms spread in a distributed fashion around 

the network.  One pattern that has been emerging is that these 

idempotent sub-algorithms follow the same co-location as 

described above.  All of their data and behavior reside on a single 

node even in the presence of repartitioning.  The collective data 

will be identified with some unique identifier (called a “key” in 

[15]) that ensures it remains on exactly one node at a time1. 

2.4 Transactions and Idempotence 
Transactions can make it EASIER to build idempotent sub-

algorithms.  Atomic transactions are, well, atomic and do not 

expose partial results.  By using transactions, many (but not all) of 

the challenges of creating idempotent behavior are eliminated.  

All that remains is to ensure the work is either not started more 

than once or that a second attempt will detect a successful first 

attempt and be innocuous.  Some examples of this will be shown. 

3. Preserving Transparency While Growing 
In this section, we examine how the Tandem NonStop system 

implemented transparent fault tolerance by leveraging 

synchronous checkpointing across the failure boundaries.  We 

first consider the Tandem system in approximately 1984 when the 

checkpointing strategy involved sending state to the backup as a 

part of every individual database WRITE operation.  This was 

correct but had some performance challenges.  In roughly 1985, 

the software was modified to a new strategy which had 

performance advantages.  So, we next examine the behavior of the 

Tandem systems in approximately 1986 when the checkpointing 

of state was less aggressive but still sufficient to provide the 

transparent guarantees.  We conclude section 3 with a discussion 

of why the change from the 1984 to 1986 versions was an erosion 

of the semantics of failures but was an acceptable erosion of the 

semantics experienced in a failure. 

                                                                 

1 More precisely, the data resides on exactly one node when we 

ignore the need to do replication underneath the partition… 

more on that later. 
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3.1 Example 1: Tandem NonStop circa 1984 
The Tandem NonStop System is a shared-nothing multi-processor 

with a message-based interconnect [5].  Each processor has its 

own CPU, memory, access to the messaging busses, and access to 

IO-Controllers.  Each IO-controllers is dual ported and can be 

accessed by either of two processors in the system.  Pairs of IO-

Controllers accessed mirrored disks.  This hardware architecture, 

combined with the Guardian operating system, Transaction 

Monitoring Facility (TMF), and Disk Process (DP) offered 

industry leading availability [8] for OLTP systems through the 

1980s and continuing today. 

 

To perform transactional application work, an app runs in one of 

the processes and uses messages to do READS and WRITES to 

the Disk Processes which manage the data and generate log 

records for the transactional log.  Work is actively checkpointed2 

for each WRITE to ensure the backup is able to continue in the 

event of a failure of the primary disk processor.  At transaction 

commit, all dirtied DPs are asked to flush their log to a centralized 

ADP (Audit Disk Process). 

                                                                 

2 A checkpoint is a technique used to manage state in a Process 

Pair as described in [12].  Two identical processes run on 

different processors, one the primary and one the backup.  A 

checkpoint is a message from the primary to the backup 

describing needed state to ensure fault tolerant service. 

 

It is interesting to note the granularity of the pieces in the 

approach to fault tolerance.  Each WRTE operation is idempotent 

and, circa 1984, was actively checkpointed to the backup DP [4].  

The granularity of the failure is a single process or processor.  The 

granularity of the “idempotent sub-algorithm” is a single WRITE 

to the DP which gets checkpointed.  Failures of a primary DP do 

not necessarily cause a failure of the transaction. 

 

3.2 Example 2: Tandem NonStop circa 1986 
In 1985, a new software release of the Tandem NonStop Guardian 

operating system included a new Disk Process called DP2.  This 

release offered a number of changes including a dramatic 

optimization in the strategy for fault tolerance [7]. 

DP2, a completely redesigned disk process, had a whole new 

approach to checkpointing.  The transaction log, describing the 

changes to the state on disk, was also used to describe the changes 

that should be known to the backup disk process.  In other words, 

checkpointing and transaction logging were combined into one 

mechanism.  The log would first go to the backup, then to the 

ADP which would write it on disk. 
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A design goal was to allow the changes for a transactional 

WRITE to lollygag within the transactional log in memory of the 

primary DP2 Disk Process.  The WRITE to the primary DP2 

could be answered back to the application.  Of course, this left 

open the challenge of correctness if a failure wipes out the 

primary DP2 with buffered changes done by uncommitted 

WRITEs.  How can this be correct? 

The key to the new approach to correctness in this example was to 

ensure that any in-flight transactions that used a failed primary DP 

would have their transactions aborted.  Since all committed 

transactions will have pushed their changes to disk, any loss of the 

memory state when a primary DP fails will only impact an in-

flight transaction.  Since the system automatically aborts any 

relevant in-flight transactions when the primary DP fails, 

correctness is preserved. 

 

This scheme meant that a processor failure would result in more 

transactions aborting.  This was a very rare event and was 

completely within the system rules which allowed transactions to 

abort without cause.  Arguably, this change was almost 

transparent to application developers and to users. 

 

The new scheme offered a huge performance improvement.  A 

WRITE to DP2 could be performed without checkpointing to the 

backup.  This was a dramatic savings in CPU cost and an even 

more dramatic savings in latency since the application did not 

need to wait for the checkpoint to see the response to the WRITE.  

The buffer containing the log entries shifted to being pushed to 

the backup (and, indeed, to the ADP) on a periodic basis.  This is 

much like group commit [11].  It is easy to understand the 

efficiency when you think of the difference between a car per 

driver racing across town versus a city bus sweeping up all the 

passengers every five minutes or so.  As described in [11], waiting 

to participate in shared buffer writes can, under the right 

circumstances, result in a reduction of latency since the overall 

system work is reduced.  This reduction in work may reduce 

system utilization and may more than compensate for the delay. 

Looking back at our abstraction for fault tolerance, we see that the 

idempotent sub-algorithm has grown from a WRITE to a 

transaction.  The granule of failure is still a processor and the 

application and user barely perceive the change in algorithm. 

3.3 An Acceptable Erosion of Behavior 
Tandem’s system in 1986 offered significantly better performance 

than its predecessor in 1984.  Still, there were failures of 

processors that would yield different behavior than the previous 

release.   When a processor failed in the middle of a transaction, 

the earlier release would continue forward.  Circa 1986, a 

processor failure may result in the loss of the ongoing transaction. 

While this was technically a change in behavior, there were 

reasons why this was acceptable.  All along, the system rules for 

transactions allowed the transaction to be aborted without 

(apparent) cause.  Deadlocks, operator decisions, timeouts, and 

other reasons could cause transactions to fail.  Because of this, the 

change was an acceptable erosion of behavior. 

The 1984 version of the Tandem system implemented 

synchronous WRITES to the backup.   The WRITE from the 

user’s application was not acknowledged until checkpointed.  

Circa 1984, the WRITES were asynchronous but the transaction 

commit was guaranteed to be synchronously checkpointed across 

the failure boundaries. 
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4. The Creeping Arrival of Asynchrony 
In this section, we see the first example of acknowledging the 

incoming request BEFORE ensuring the work is sent to the 

backup.  This is asynchronous checkpointing to the backup. 

We start with a very simple discussion of “log-shipping” wherein 

the transaction log is sent to a backup system sometime after the 

user request is acknowledged.  This is a fundamental change 

which deeply impacts the guarantees made to the user. 

After introducing log-shipping, we discuss the takeover semantics 

of this approach.  Following this, we look at how this asynchrony 

means we have to revisit our abstraction for fault tolerance. 

4.1 Example 3: Log Shipping 
This example is well known to most readers.  A classic database 

system has a process that reads the log and ships it to a backup 

data-center.  The normal implementation of this mechanism 

commits transactions at the primary system (acknowledging the 

user’s commit request) and asynchronously ships the log.  The 

backup database replays the log, constantly playing catch-up. 

Typically, applications and users are oblivious to log-shipping.  

Unless a fault occurs, the application and the user are fat, dumb, 

and happy.  When a fault DOES occur, some recent transactions 

are lost as the backup takes-over and provides service. 

This means that the abstraction described above in section 2 

works here except the state is not immediately captured by the 

backup.  Fault tolerance is NOT transparent.  It is OK (with low 

probability) to completely discard recent work. 

To allow a datacenter failure to be transparent, the log shipping 

algorithm would need to stall the response to the commit request 

at the primary until the primary knows the backup has received 

the log.  This delay is unacceptable in most installations and they 

deal with the low probability chance of losing recent work. The 

change from a synchronous transfer of state to an asynchronous 

transfer is an interesting erosion of the basic abstraction and is 

another example of where the cost for “consistency at a distance” 

is too high just as it was when tried to stretch 2PC beyond 

resource managers in the same room. 

Log-shipping: Our first example where giving a little bit in 

consistency yields a lot of resilience and scale!  

4.2 Log Shipping and Takeover Semantics 
Log shipping is asynchronous to the response to the client.  This 

inherently opens up a window in which the work is acknowledged 

to the client but it has not yet been shipped to the backup.  A 

failure of the primary during this window will lock the work 

inside the primary for an unknown period of time.  The backup 

will move ahead without knowledge of the locked up work. 

In most deployments of log-shipping, this is not considered in the 

application design.  It is assumed that this window is rare and that 

it is unnecessary to plan for it.  Bad stuff just happens if you get 

unlucky.  Unfortunately, in most of these systems, a takeover 

either requires manual cleanup of the work not transferred from 

the primary to the backup or the work is simply lost. 

4.3 Revisiting the Abstraction 
So, we’ve seen a basic model for fault tolerance and how it can be 

applied in a few different systems.  In the first two examples, the 

fallible component was a processor running in the same box as its 

partner.  The close proximity of the components allowed for 

practical use of synchronous state copying.  In the log shipping 

example, the delay is considered impractical and the transfer of 

the state is asynchronous.  This results in “faults” in the fault 

tolerance provided for data center failures. 

5. Loosening the Abstraction 
OK… So, maybe there’s a broader abstraction at play!   

The old model assumed the work would be processed in exactly 

one order of execution.  There was a default “single system of 

record” form of isolation provided by the classic database system 

running at the primary.  This single history allows for a low-level 

READ and WRITE semantic that depends on “replaying history”. 

In this new world, history cannot be exactly replayed and we must 

count on the ability to reorder the work.  This means that we 

cannot completely know the accurate state of the system.  It also 

means we must move the correctness and reordering semantics up 

from being based on system properties (i.e. READ and WRITE) 

to application based business operations. 

Section 5 examines a number of different aspects of asynchronous 

checkpointing and how it impacts application design.  We will 

first discuss the impact of asynchrony on our ability to know the 

actual true state of the application.  Then, we look at probabilistic 

business rules and how asynchronous checkpointing means we 

cannot have definitive enforcement of business rules.   We discuss 

the impact of commutativity on the business rules.  Next, we 

consider partitioning of the work and idempotent operations 

across the partitioned state.  After this, we examine the possibility 

of having a choice of sometimes performing synchronous 

checkpointing of state if the risk for the specific operation is too 

great.  Next, we consider how the system may handle 

unanticipated problems and when human intervention may be 

required.  After that, there is a discussion of how asynchronous 

enforcement of business rules sometimes results in apologies.  

Finally, we summarize the abstraction by observing that either 

you have synchronous checkpoints to your backup or you must 

sometimes apologize for your behavior… 

5.1 Asynchrony and the Truth 
Let’s consider those orphaned transactions dawdling in the belly 

of the failed system in the log-shipping example.  They are most 

certainly out of the picture while the dethroned system (or data 

center) is unavailable.  When it does return, the goal of any recov-

ery policy would be to examine the work in the tail of the log and 

determine what the heck to do!  The backup system has continued 

and there may be challenges when resurrecting the languishing 

work.  The only way this work can be kept is to ensure that the 

out-of-order retrying of the work does not break things.  In some 

cases, the pending work is simply discarded due to lack of 

designed mechanisms to reclaim it!  This is part of the implicit 

consistency model for log-shipping without recovery of lost work. 

In the log-shipping example, we see rare cases of work reordering 

as it is temporarily lost and then resurrected.  In the more general 

case, we see independent work performed at disconnected (or 

slowly connected) sites which may get reordered as it becomes 

visible to other systems partnering in the work. 

The deeper observation is that two things are coupled: 

1) The change from synchronous checkpointing to 

asynchronous to save latency, and 

2) The loss of a notion of an authoritative truth. 

Back when we had a centralized machine with synchronous 

checkpointing, we knew the one and only one answer at any given 
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point in time.  Allowing for work being locked up in an 

unavailable backup (née primary) means we don’t know the truth. 

5.2 Probabilistic Business Rules 
When we have asynchronous checkpointing, we have windows of 

failure that mean work may be lost or delayed.  When a primary 

fails, there may be work stuck inside the primary that has not yet 

been sent to the backup.  That work is either lost or delayed. 

If a primary uses asynchronous checkpointing and applies a 

business rule on the incoming work, it is necessarily a 

probabilistic rule.  The primary, despite its best intentions cannot 

know it will be alive to enforce the business rules. 

When the backup system that participates in the enforcement of 

these business rules is asynchronously tied to the primary, the 

enforcement of these rules inevitably becomes probabilistic! 

It is the cost/benefit analysis that values lower latency from 

asynchronous checkpointing higher than the risk of slippage in the 

business rule that generalizes the fault tolerant algorithm. 

Distribution + Asynchrony  Probabilities of Enforcement 

We are seeing the emergence of applications which take this even 

farther by increasing disconnection to achieve the economic 

benefits of loose-coupled parallelism and offline.  They are lower 

latency, more parallel, and more available.  They just screw up 

more often and sort the mess out later.  Sometimes, that’s good! 

5.3 Commutativity and Business Rules 
In many applications, it is possible to express the business rules of 

the application and allow different operations to be reordered in 

their execution.  When the operations occur on separate systems 

and wind their way to each other, it is essential to preserve these 

business rules.   

Example business rules may be: “Don’t overbook the airplane by 

more than 15%” or “Don’t overdraw the checking account”.   

Escrow Locking in Serializable Databases 

Escrow locking is a scheme to increase concurrency while 
preserving classic transactional ACID behavior.   

If you assume a set of commutative operations (such as 
addition and subtraction), you ensure changes are logged 
via “operation logging”.  Operation logging does not capture 
the before and after images of the value but rather logs 
“Transaction T1 subtracted $10”.  If transaction T1 needs to 
be aborted, the system would add $10 rather than restore 
the value that existed in the field before T1.  In this fashion, 
the work of multiple transactions can interleave as long as 
they are doing the commutative operations.  If any 
transaction dares to READ the value, that does not 
commute, is annoying, and stops other concurrent work. 

Escrow locking can be implemented in conjunction with 
constraints enforcing business rules.  Consider addition and 
subtraction operations with a worst-case minimum and 
maximum for the value.  The system simply needs to track 
the worst case for all the transactions pending commitment.  
A new operation will be delayed if it MIGHT cause the value 
to fall out of bounds with the pending work. 

Escrow locking offers crisp semantics because it is 
functioning on a centralized location and can enforce the 
worst case outcome of the business rules. 

This approach is similar to escrow locking as described in [9].  In 

escrow locking, commutative operations are allowed as long as 

they do not violate the constraints of the system.  Escrow locking 

was envisaged as a pessimistic locking scheme which crisply 

preserved serializable behavior.  Escrow locking was 

implemented in Tandem’s NonStop SQL in the late 1980s to 

support high-throughput addition and subtraction. 

WRITES to a database are not commutative! 

The layering of an arbitrary application atop a storage 
subsystem inhibits reordering.  Only when commutative 
operations are used can we achieve the desired loose 
coupling.  Application operations can be commutative.  
WRITE is not commutative.  Storage (i.e. READ and 
WRITE) is an annoying abstraction… 

5.4 Idempotence and Partitioned Workflow 
It is essential to ensure that the work of a single operation is 

idempotent.  This is an important design consideration in the 

creation of an application that can handle asynchrony as it 

tolerates faults and as it allows loose-coupling for latency, scale, 

and offline.  

Each operation must occur once (i.e. have the business impact of a 

single execution) even as it is processed (or simply logged) at 

multiple replicas.  One room reservations must (with high 

probability) result in exactly one room set aside for the guest.  

One book ordered online should not (very often) result in two 

books delivered to the customer. 

To ensure this, applications typically assign a unique number or 

ID to the work.  This is assigned3 at the ingress to the system (i.e. 

whichever replica first handles the work).  As the work request 

rattles around the network, it is easy for a replica to detect that it 

has already seen that operation and, hence, not do the work twice. 

Sometimes, incoming work stimulates other work.  For example, 

processing a purchase order may result in scheduling a shipment.  

Two replicas may get overly enthusiastic about the incoming 

purchase order and each schedule a shipment.  By uniquely 

identifying the purchase order at its ingress to the system, the 

irrational exuberance on the part of the replicas can be identified 

as the knowledge sloshes through the network.  We will see below 

in the discussions of eventual consistency how this can 

(probabilistically) be rectified. 

 

 

                                                                 

3 The experienced reader will realize that this leaves the concern 

for idempotence in the incoming message from the client as 

captured at the point of ingress.  Retries could cause two or 

more different replicas to charge ahead to help the user.  If the 

work has no side effects (such as simply reading something), it 

is OK to do the work multiple times.  If the work has side-

effects, coordination around a cookie or user-id is usually 

performed to eliminate duplicates.   

To avoid duplicate processing, the uniquifier for the request 

should be functionally dependent only on the request as seen by 

the server system.  This is possible if the unique id is generated 

outside the server (e.g. a check number as discussed in Section 

6.2) and it is also possible if the server calculates it in a 

predictable way as discussed in Section 2.1). 
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The unique identifier of the work (the “uniquifier”) has two very 

important roles: 

1) The uniquifier provides the key for partitioning the work in a 

scalable system. 

2) The uniquifier allows the system to recognize multiple 

executions of the same request.  In  this fashion, they can be 

collapsed and the work becomes idempotent. 

5.5 What’s Your Stomach for Risk? 
In all these cases, we started with the assumption that the cost to 

know the truth is prohibitive for the application in question.  

Hence, we are designing the system and, especially, the 

application running on the system to probably deliver excellent 

service and, occasionally, to violate the business rules of the 

application. 

Note that that it is possible to have multiple business rules with 

different guarantees.  Some operations can choose classic 

consistency over availability (i.e. they will slow down, eat the 

latency, and make darn sure before promising).  Other operations 

can be more cavalier.  Some examples: 

 Locally clear a check if the face value is less than $10,000.  

If it exceeds $10,000, double check with all the replicas to 

make sure it clears. 

 Schedule the shipment of a “Harry Potter” book based on a 

local opinion of the inventory.  In contrast, the one and only 

one Gutenberg bible requires strict coordination! 

The major point is that availability (and its cousins offline 
and latency-reduction) may be traded off with classic 
notions of consistency.  This tradeoff may frequently be 
applied across many different aspects at many levels of 

granularity within a single application. 

5.6 Fussing and Whining (but Not Too Often) 
So, what the heck does the application DO when its business rules 

are violated?  The application will usually be managing the proba-

bilities so that this is unlikely (since there is frequently a business 

cost associated with screwing up).  Still, this will happen! 

The best model for coping with violations of the business rule is: 

1. Send the problem to a human (via email or something else), 

2. If that’s too expensive, write some business specific software 

to reduce the probability that a human needs to be involved. 

While this may sound too simplistic, it is what applications 

typically do when dealing with these complex issues.  It also 

points out that, in the absence of generalizations of the business 

rules, the patterns used by the business operations for 

commutativity, and the business complications of 

overzealousness, it is not possible to speak to the business 

consequences or actions to compensate when your luck is bad. 

5.7 Memories, Guesses, and Apologies 
Arguably, all computing really falls into three categories: 

memories, guesses, and apologies[16, 19].  The idea is that 

everything is done locally with a subset of the global knowledge.  

You know what you know when an action is performed.  Since 

you have only a subset of the knowledge, your actions are really 

only guesses.  When your knowledge as a replica increases, you 

may have an “Oh, crap!” moment.  Reconciling your actions (as a 

replica) with the actions of an evil-twin of yours may result in 

recognition that there’s a mess to clean up.  That may involve 

apologizing for your behavior (or the behavior of a replica). 

So, consider these three aspects: 

 Memories: Your local replica has seen what it has seen and 

(hopefully) remembers it.  The cost of spreading that 

knowledge includes bandwidth, computation, and latency (in 

the case where you are waiting for the backup to 

acknowledge your memory of an operation). 

 Guesses: Any time an application takes an action based upon 

local information, it may be wrong.   This occurs in log-

shipping systems where the action is logged locally and has 

only a very high probability of getting to the backup system 

before a crash and take-over.  That makes it a good guess but 

it doesn’t make it a sure bet.  In any system which allows a 

degradation of the absolute truth, any action is, at best, a 

guess.  It is simply a matter of business choice as to the 

quality of the guess. 

 Apologies:  When a mistake is made (either due to 

replication anomalies or because the FAA grounds your jets 

and you cannot honor your flight reservations), you 

apologize.  Every business includes apologies.  As mentioned 

above, these may be manual with the software enqueuing the 

problem for human work. Alternatively, application code 

may issue some apologies for which it has specially designed 

apology code while asking for human help for those 

apologies beyond its designed cases. 

In a loosely coupled world choosing some level of availability 

over consistency, it is best to think of all computing as memories, 

guesses, and apologies. 

5.8 Synchronous Checkpoints OR Apologies! 
So, section 5 is pointing out that there are design options: 

1) You can synchronously checkpoint and incur the latency, or 

2) You can asynchronously checkpoint, save the latency, and 

experience modified application semantics. 

These modified semantics mean that you don’t always know the 

precise truth because work can be trapped in a partner.  They 

mean you may have to understand that the business rules are 

enforced probabilistically and may experience reordering.  Still, 

you have the option of sometimes applying business criterion (e.g. 

the check being for more than $10,000) which cause synchronous 

checkpointing.  Also, it is completely viable to allow human 

intervention in the resolution of some problems if the chance of 

this occurring is low enough for this to be cost effective. 

In summary, all of these choices depend on their business value! 

6. Zen and the Art of Eventual Consistency4 
This section looks in more depth at eventual consistency and how 

loosely-coupled applications are built to support this.  We start 

with a couple of examples: Amazon’s Dynamo storage with a 

Shopping Cart application on top of it and a classic bank check 

clearing application.  We then talk about applications 

implementing eventual consistency and contrast this with the 

difficulties of building eventual consistency in a storage layer.  

Finally, we discuss the importance of an “operation-centric” 

approach to eventual consistency in which the operations desired 

by the user of the application are recorded and become the 

foundation for the implementation of eventual consistency. 

                                                                 

4 We recommend the classic book “Zen and the Art of Motorcycle 

Maintenance” [2].  A looser, more Zen-like, perspective can be 

helpful in computing and in one’s personal life… 
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6.1 Example 4: Shopping Cart and Dynamo 
The Dynamo Storage system [18] is used to support the shopping 

cart store as well as other systems within Amazon.  Dynamo is a 

replicated blob store implemented with a Dynamic Hash Table 

(DHT).  Dynamo is interesting in many ways including its 

conscious choice to support availability over consistency.  

Dynamo always accepts a PUT to the store even if this may result 

in an inconsistent GET later on. 

In [18], the interaction from the application to Dynamo is 

described as a PUT and GET interface.  Due to replication 

anomalies, a GET may return old information.  Performing a PUT 

based on the old information results in parallel versions.  A later 

GET of this blob may return two sibling (or cousin) versions 

which the shopping cart application must reconcile.  Dynamo, 

acting as a storage substrate, may present two or more old 

versions in response to a GET.  A subsequent PUT must include a 

blob that integrates and reconciles all the presented versions. 

To do the application level integration, the shopping cart 

application must record its operations much like a ledger entry.  A 

deletion of an item from the shopping cart is recorded as an 

operation appended to the cart.  These “ADD-TO-CART”, 

“CHANGE-NUMBER”, and “DELETE-FROM-CART” 

operations can usually be reconciled when a union of the 

operations is finally joined together.  Very rare anomalies in the 

shopping cart are acceptable since the shopper’s order is verified 

as a part of order submission.  Unavailability of the shopping cart 

service is very expensive for Amazon since it results in a drop in 

business and an unsatisfying user experience.  

Dynamo is a storage substrate independent of the shopping cart 

application layered on top of it.  Dynamo returns a blob (and 

sometimes two or more blobs) to a GET.  When more than one is 

returned, the shopping cart application has to reconcile the 

confusion AND fold in the new operation it was planning for the 

cart.  The shopping cart application can do this by understanding 

the contents of the cart as a set of operations.  Uniquely 

referenced operations on the items can be unioned together into a 

list with a predictable outcome.  This is key to the commutativity 

of operations on the shopping cart.  This, in turn, is used to 

provide exceptionally high availability. 

6.2 Example 5: Bank Accounts and Ledgers 
There is a reason for check-numbers on checks.  The check 

numbers (combined with the bank-id and account-number) 

provide a unique identifier.  Excepting big mistakes (and/or 

fraud), the payee and amount for a specific check are immutable.  

The check enters the banking system with a unique identifier and 

the participants in the loosely-coupled process share information 

in what may be considered an ongoing workflow.5 

You deposit your brother-in-law’s check for $100 into your bank 

account and, since you’ve been a good customer, there is no hold 

on the money.  Your account’s balance bumps up from $1000 to 

$1100.  Your bank account information is associated with the 

                                                                 

5 This mechanism has been used for many years and pre-dates 

computerized systems.  It was used by our grandparents for the 

same reason that we advocate the use of a unique-id that is 

functionally dependent on the incoming request (either by being 

part of the request or by being derived from the request).  The 

check-number (along with bank and account number) is a 

wonderful unique-id. 

check.  The check is forwarded to you brother-in-law’s bank.  

Later, when the check bounces, your account is debited $130 (the 

original $100 plus $30 bounce fee).  Interestingly, the decision to 

be optimistic is based on YOUR good standing with the bank.  A 

less desirable customer (like your brother-in-law) would have a 

hold placed on the money (reserving for a potential bounce)6. 

Debits and credits to bank accounts are commutative.  There is an 

expressed business rule that the account balance will not drop 

below zero.  If you had spent the $1100 before your brother-in-

law’s check was returned, your account would have violated the 

business rule when your brother-in-law’s check bounced.  

Banking policies make this less likely but not impossible.  It is a 

business decision on the part of the bank to allow this risk. 

Consider, too, the ledger associated with a bank account.  At the 

end of the month, a statement is issued.  It is not critical that it be 

perfect.  Some check floating on midnight of the 31st of the month 

may land in this month’s statement or in next month’s statement. 

The monthly statement starts out with a balance.   Debits and 

credits are applied.  Once it is issued, it is permanent and 

immutable.  Errors in March’s statement may be adjusted in 

April’s statement but March’s statement is never modified. 

The bank has two jobs to do with the account.  First, it needs to 

decide if a check should clear based upon the best knowledge of 

the account’s balance.  Second, it needs to meticulously remember 

all the operations (debits and credits) performed on the account. 

 

Imagine a replicated bank system which has two (or more) copies 

of my bank account, both of which are clearing checks. There is a 

small (but present) possibility that multiple checks presented to 

different replicas will cause an overdraft that is not detected in 

time to bounce one of the checks.  Each replica that clears a check 

will remember the check with its check number.  Assuming no 

replica is permanently destroyed, the information about the check 

will be added to the bank statement and funding allocated for it.  

A very untimely outage could result in the check landing in next 

month’s statement rather than this month but that’s no big deal. 

                                                                 

6 It does make sense to base the decision on YOUR standing… 

It’s the only information available locally to the bank and YOU 

are more likely to eat the cost than the bank. 
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In this banking system, the information about the checks can be 

coalesced as the replicas communicate.  The usage of check 

numbers makes the processing of the check idempotent.  The 

nature of the operations (i.e. addition and subtraction) ensures the 

work is both commutative AND associative. 

It is VERY likely that a banking system layered on flakey 

computers without raised floors, operators, or backup power 

would be more cost effective than a high-priced centralized one.  

As demonstrated above, the dissection of the work into memories, 

guesses, and apologies is exactly how banks function today. 

6.3 Eventual Consistency and Applications 
In both the Dynamo/ShoppingCart example and in the banking 

example, uniquely identified work arrives into the system and is 

processed by a single replica.  The work is propagated to other 

replicas as connectivity allows. 

Because the requests are commutative (i.e. reorderable), it is OK 

for them to be processed at different replicas in different orders.  

The chances are very high that the result will be the same.  Also, 

the design of each system includes business policies for resolving 

what will happen if the different orders of execution result in 

different answers. 

6.4 Eventual Consistency and Storage  
It is interesting that much of the literature on eventual consistency 

focuses on READ and WRITE semantics. For example, a recent 

paper [20] by Werner Vogels explains many great concepts in the 

area of eventual consistency but still couches the discussion in the 

context of clients, storage systems, and updates.   

The Amazon Dynamo paper [18] covers many fascinating topics 

and shows how Dynamo is a key-value blob store.  Still, section 

4.4 on Data Versioning discusses the use of “add to cart” and 

“delete item from cart” and how these operations are captured 

within the blobs being stored by Dynamo.  Even if the version 

histories are reordered, items added to the cart will not be lost 

once their stored blob version is collapsed together with the other 

versions.  Occasionally deleted items will reappear. 

Storage systems alone cannot provide the commutativity we need 

to create robust systems that function with asynchronous 

checkpointing.  We need the business operations to reorder.   

Amazon’s Dynamo does not do this by itself.  The shopping cart 

application on top of the Dynamo storage system is responsible for 

the semantics of eventual consistency and commutativity. 

The authors think it is time for us to move past the examination of 

eventual consistency in terms of updates and storage systems.  

The real action comes when examining application based 

operation semantics. 

6.5 The “Operation-Centric” Pattern 
Both the Dynamo/Shopping-Cart example and the Banking 

example show the capture of the application’s desires. 

The Shopping-Cart example uses “add-to-cart” and “delete-item-

from-cart” operations to capture the intention of the user as they 

add and delete items from the cart.  In the Dynamo blob store, the 

usage of this operation-centric approach offers resiliency to the 

occasional interleaving of versions that results from replication 

combined with choosing availability over consistency.  It is 

interesting to note that operation-centric work can be made 

commutative (with the right operations and the right semantics) 

where a simple READ/WRITE semantic does not lend itself to 

commutativity. 

In the Banking example, “debit” and “credit” operations are 

processed at separate replicas and then shared as soon as possible.  

Again, this is an operation-centric approach which results in 

commutativity of the operations.  Allowing the loose-coupled 

processing of the “debit” and “credit” operations will occasionally 

(but rarely) result in a cleared check that we hope would have 

bounced.  Still, for many environments, this is an acceptable 

business expense and may be codified in a business rule for 

loosely coupled systems.  

7. Managing Resources with Asynchrony  
This section looks at how resources are managed in the face of 

asynchronous checkpointing and the possibility of independent 

work and potentially redundant work. 

First, we consider how resources get allocated across loosely-

coupled systems and whether they are over-booked or over-

provisioned.  After this, we observe that the computers’ opinions 

do not necessarily map to the real world in the face of accidents 

and other mistakes.  Next, we look at one example pattern of 

conservative (over-provisioned) resource management in the 

“seat-reservation” pattern.  Then, we consider the advantage of 

making resources similar (or “fungible”) whenever possible.  

Following this, we look at the use of unique identifiers in the 

management of asynchronous requests.  Moving along, we 

consider eventual consistence and asynchronous management of 

resources.  Finally, we consider the patterns that existed in 

business before the rise of computers and their use as inspiration 

in our design of loosely-coupled systems. 

7.1 Over-Booking versus Over-Provisioning 
As we consider a system with asynchronous checkpointing, we 

are considering a system with a probability that two or more 

replicas will be allocating resources to their users.  Since these 

replicas will sometimes be incommunicado, we must consider the 

policy used for allocating resources while not in communication.  

There are two approaches: 

1) Over-Provisioning.  In this approach, each replica has a fixed 

subset of the resources that it may allocate.  If there are 1000 

books in inventory, each of the two replicas may have 500 to 

sell.  When over-provisioning, a replica cannot make the 

mistake of allocating a resource that is not truly available to 

be allocated.  On the other hand, over-provisioning means 

that there will be excess resources kept within the replicas. 

2) Over-Booking.  Unlike over-provisioning, over-booking 

allows for the possibility that the disconnected replicas will 

occasionally promise something they cannot deliver.  By 

allowing independent allocation without ensuring strict 

partitioning of the resources, sometimes commitments are 

made that cannot be kept.  On the other hand, sometimes 

business will be scheduled that would be declined under the 

strict partitioning of over-provisioning. 

It is possible to be conservative and ensure you NEVER have to 

apologize to your customers.  This will, however, sometimes 

result in you deciding to decline business you would rather have.  

You may accept the business on a disconnected replica without 

the confidence that you will be able to keep your commitments.  

You can dynamically slide between these positions (while you are 

connected) and adjust the probabilities and possibilities. 

In the face of disconnection, you cannot know the perfect answer 

and must adopt a business policy that allows for the tradeoffs that 

are right for your business! 
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7.2 Computing versus Reality 
In the previous section, we described how over-provisioning of 

resources means you cannot make the mistake of allocating a 

resource that is not truly available.  This is true in that the 

computational resource will not show an allocation for which 

there are no resources.  Unfortunately, the real world is not always 

accurately modeled in the computers (and cannot always be). 

Consider a case where the only book in inventory is scheduled for 

delivery.  Due to an over-provisioning  scheme, there is no 

confusion about the inventory and the book is promised to a 

customer.  In preparing the book for shipment, it is run over by 

the forklift in the warehouse.  So, over-provisioning 

notwithstanding, you need to apologize! 

Even if the computer systems are perfect, business includes 

apologizing because stuff will go wrong! 

7.3 The “Seat Reservation” Pattern 
In certain real world transactions, the resources involved are not 

considered fungible.  One good example is reserving a seat at a 

concert where the actual seat(s) are considered critical to the 

buying decision. This sets up a condition where prime seats are 

crucial both from the perspective of the supplier and consumer. 

One way to implement a correct application which maintains the 

business rule that any seat must either be “available” or “occupied 

and associated with a valid purchase” is to use a database 

transaction to scope and protect the business rule.  This scheme 

works if you have a trusted agent handling the purchase. Ticketing 

agents would control the transaction and reserve potentially 

available seats. If a purchaser reneges, the transaction is rolled 

back making the seats available for purchase again. 

Online buying situations, where the consumer is in control, 

changes the transaction in both space and time in ways that break 

our ticketing system in several ways. First off, in the space 

dimension, the consumer is not a trusted agent. Our transaction 

now extends beyond the trust boundary originally established for 

the system business rule. Secondly, in the time dimension, we 

have no way to constrain the time in which untrusted agents can 

hold our system in an inconsistent state. In this particular 

example, untrusted agents could exploit these aspects of the 

system to quickly start a set of transactions against prime seats, 

making them unavailable to others, and then reselling them at a 

profit. Seats that are not sold by our unscrupulous agent could be 

released by simply rolling back transactions at no cost.  

Anyone who has purchased tickets online will recognize the “Seat 

Reservation” pattern where you can identify potential seats and 

then you have a bounded period of time, (typically minutes), to 

complete the transaction. If the transaction is not successfully 

concluded within the time period, the seats are once again marked 

as “available”. This is done by using three states for seats: 

1. {“available”} 

2. {“purchase pending”, session-identity} 

3. {“purchased”, purchaser-identity} 

Individual database transactions are used to transition from one 

state to another and to durably enqueue requests to clean up seats 

abandoned in the “purchase pending” state. 

This is an example of sliding the allocation spectrum towards the 

“over-provisioning” side.  The seats are considered unique and 

coordination is mandated between the primary and backup 

ensuring a conservative (i.e. “over-provisioned”) management of 

the resources.   To avoid this challenge, we need to make a pool of 

resources. 

7.4 The Quest for Fungibility 
As you look at functions in the computing world, you see an ever 

increasing categorization of things into fungible buckets.  You 

can’t reserve room 301 at the Hilton but you can get a king sized 

non-smoking room. 

Consider a pork-belly.  What the heck is a pork-belly?  It is a term 

to describe a bunch of pork7.  By standardizing a collection of 

pork, it is possible to sell a pig before it is grown.   The existence 

of a pork-belly as a unit of trade has offered powerful financial 

mechanisms in support of the raising and distribution of pigs.  

Farmers can sell their pigs in advance of their maturation and 

moderate their risk. 

The real world is rife with algorithms for idempotence, 

commutativity, and associativity.  They are part of the lubrication 

of real world business and of the applications we must support on 

our fault tolerant platforms.  A major trick is to look for 

mechanisms to create equivalence of the operation or resource. 

7.5 The Importance of Uniquifiers 
One important pattern in the management of asynchrony is the 

usage of the unique identifier in tracking the request through the 

distributed system.  Sometimes the over-zealous replicas will both 

do the work for a single request and only later detect that this 

work has been duplicated.   If the work has allocated a fungible 

resource, the system needs to detect this and return the 

redundantly allocated resource.  The detection of the redundant 

work is made possible by the uniquifier on the request. 

So, even as we look at the topic of managing resources under 

asynchrony, we see the importance of having uniquely identified 

requests so we can create idempotent behavior.  

7.6 Eventually We’ll Talk and Be Consistent  
As disconnected replicas work independently, they accumulate 

operations.  This is identical to a replica of the bank account 

clearing some checks but not others.  It is also identical to a blob 

in the Dynamo store having some of the operations to the 

shopping cart (e.g. “ADD-TO-CART” and “DELETE-FROM-

CART”) but missing out on other operations due to the timing of 

management of the replication. 

When the work flows together, a new, more accurate answer is 

created.  When an application is built to support eventual 

consistency, the design should ensure that the order of the work’s 

arrival at the node is not the determining factor in the outcome.  

Replicas that have seen the same work should see the same result, 

independent of the order in which the work has arrived. 

As mentioned above, sometimes the operations accumulated by 

different replicas result in a violation of the application’s business 

rules.  The bank account with independent replicas clearing 

checks may find an overdraft on the account that, in a centralized 

system, would have resulted in a bounced check rather than 

clearing too many checks for the available funds.  This level of 

violation of the business rules becomes a probabilistic analysis 

with the application designers choosing their stomach for risk. 

                                                                 

7 Wikipedia describes a pork belly as the underside of a pig from 

which bacon is made.  A unit of trade is 20 tons of frozen, 

trimmed bellies.  See [21]. 
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7.7 Back to the Future 
Whenever the authors struggle with explaining how to implement 

loosely-coupled solutions, we look to how things were done 

before computers.  In almost every case, we can find inspiration in 

paper forms, pneumatic tubes, and forms filed in triplicate. 

Consider the lost request and its idempotent execution.  In the 

past, a form would have multiple carbon copies with a printed 

serial number on top of them.  When a purchase-order request was 

submitted, a copy was kept in the file of the submitter and placed 

in a folder with the expected date of the response.  If the form and 

its work were not completed by the expected date, the submitter 

would initiate an inquiry and ask to locate the purchase-order 

form in question.  Even if the work was lost, the purchase-order 

would be resubmitted without modification to ensure a lack of 

confusion in the processing of the work.  You wouldn’t change 

the number of items being ordered as that may cause confusion.  

The unique serial number on the top would act as a mechanism to 

ensure the work was not performed twice. 

8. CAP and ACID2.0 
As mentioned above, the CAP Theorem [13, 14] states that with 

Consistency, Availability, and Partition tolerance you can have 

any two at once but not three.  We do not argue with this. 

What is interesting is that the consistency for this is based upon 

the classic ACID.  That is: Atomic, Consistent, Isolated, and 

Durable.  The classic ACID has the goal to make the application 

perceive that there is exactly one computer and it is doing nothing 

else while this transaction is being processed. 

Consider the new ACID (or ACID2.0).  The letters stand for: 

Associative, Commutative, Idempotent, and Distributed [17].  The 

goal for ACID2.0 is to succeed if the pieces of the work happen: 

 At least once, 

 Anywhere in the system, 

 In any order. 

This defines a new KIND of consistency.  The individual steps 

happen at one or more system.  The application is explicitly 

tolerant of work happening out of order.  It is tolerant of the work 

happening more than once per machine, too. 

Notice that examples 4 (the shopping cart) and 5 (banking) meet 

this style of consistency. 

8.1 Fault Tolerance on ACID 
To maintain serializability, classic algorithms do one thing at a 

time.  All the concurrency mechanisms we know and love work 

hard to provide an appearance that one thing happens at a time.   

When considering the fault tolerant abstraction described in 

section 2, we see the focus on synchronous checkpointing and a 

linear history.  When correctness is defined by the classic ACID, 

it is essential to provide an ordering amongst the transactions.  

This is, of course, serializability [3, 10, 12]. 

It is interesting to contrast example #1 (Tandem circa 1984) and 

example #2 (Tandem circa 1986).  In example #1, the 

synchronous checkpointing of state to the backup occurs on a 

WRITE by WRITE basis.  This is correct but not necessarily 

highly performant.  In example #2, the synchronous capture of 

state is at the completion of the transaction.  Intra-transaction 

concurrency is managed by classic database management 

techniques.  Only when completing a transaction is it necessary 

ensure the work survives a fault.  

8.2 Fault Tolerance on ACID2.0 
OK, now let’s consider what happens to the concept of fault 

tolerance when you are NOT shooting for serializability (classic 

ACID) but rather for the new ACID of Associativity, 

Commutativity, Idempotence, and Distribution. 

If you break the algorithm for the desired work into pieces, each 

piece must be idempotent (just like in the basic approach to fault 

tolerance).  Furthermore, we are considering having the work 

distributed around the network rather than concentrated within a 

centralized system.  The only way to do this while preserving the 

old guarantees of classic ACID is with the well documented 

pessimistic or optimistic concurrency control mechanisms.  These 

tend to be fragile. 

When the application is constrained to the additional requirements 

of commutativity and associativity, the world gets a LOT easier.  

No longer must the state be checkpointed across failure units in a 

synchronous fashion.  Instead, it is possible to be very lazy about 

the sharing of information.  This opens up offline, slow links, low 

quality datacenters, and more. 

Surprisingly, we find that many common business practices 

comply with these constraints.  Looking at the business operations 

from the standpoint of how work has traditionally been performed 

shows many examples supportive of this approach.  It appears we 

in database-land have gotten so attached to our abstractions of 

READ and WRITE that we forgot to look at what normal people 

do for inspiration. 

9. Future Work 
It seems that it would be of great value to dissect different 

applications in business environments to see the recurring 

patterns.  What are the operations in play for various applications?  

When are they commutative?  What practices make the operations 

idempotent?  Are there different solutions that are recast 

syntactically in different environments?  Is there a taxonomy of 

patterns into which the various solutions can be cast? 

Our forefathers were VERY smart and were dealing with loosely 

coupled systems to implement their businesses.  They knit the 

loosely-coupled systems together with messages, telegrams, 

letters, and the postal system.  To cope, they needed reorderable 

operations.  Sometimes, the work was requested twice and this 

required protocols to implement idempotence.  How were these 

schemes used to run a railroad and build a Model-T?  Are these 

patterns still there waiting for us to use in our distributed systems?  

10. Conclusion 
We have reviewed some of the evolution in highly available and 

fault tolerant systems.  As far as we can see, all reliable systems 

are built out of a collection of unreliable components which are 

stitched together in a fashion that provides service in the face of 

the failure of some of these unreliable components.  Over time, 

the size of the failure unit has gotten larger and larger. 

For years, the state of the art in fault tolerant systems provided 

crisp transactional behavior by synchronously checkpointing state 

across the failure boundaries.  As the size of the failure unit has 

increased, the latency involved in synchronous checkpointing has 

grown to be punitive. 

In response to the increased latency, applications have embraced 

the asynchronous transmission of state across failure boundaries.  

That has required new models and patterns of application design. 
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We have attempted to describe the patterns in use by many 

applications today as they cope with failures in widely distributed 

systems.  It is the reorderability of work and repeatability of work 

that is essential to allowing successful application execution on 

top of the chaos of a distributed world in which systems come and 

go when they feel like it.  Application designers instinctively 

gravitate to a world of eventual consistency (usually without the 

formalisms to help them get there). 

Finally, we have examined this with respect to the CAP theory 

and described how, in this new world, many solutions are 

designed to take a relaxation of classic consistency to preserve 

both availability and partition tolerance.  This relaxed notion of 

consistency is very valuable and deserves more academic work. 
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