

CIDR Perspectives 2009

Building on Quicksand
Pat Helland

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052 USA

PHelland@Microsoft.com

 Dave Campbell
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052 USA

DavidC@Microsoft.com

ABSTRACT
Reliable systems have always been built out of unreliable

components [1]. Early on, the reliable components were small

such as mirrored disks or ECC (Error Correcting Codes) in core

memory. These systems were designed such that failures of these

small components were transparent to the application. Later, the

size of the unreliable components grew larger and semantic

challenges crept into the application when failures occurred.

Fault tolerant algorithms comprise a set of idempotent sub-

algorithms. Between these idempotent sub-algorithms, state is

sent across the failure boundaries of the unreliable components.

The failure of an unreliable component can then be tolerated as a

takeover by a backup, which uses the last known state and drives

forward with a retry of the idempotent sub-algorithm. Classically,

this has been done in a linear fashion (i.e. one step at a time).

As the granularity of the unreliable component grows (from a

mirrored disk to a system to a data center), the latency to

communicate with a backup becomes unpalatable. This leads to a

more relaxed model for fault tolerance. The primary system will

acknowledge the work request and its actions without waiting to

ensure that the backup is notified of the work. This improves the

responsiveness of the system because the user is not delayed

behind a slow interaction with the backup.

There are two implications of asynchronous state capture:

1) Everything promised by the primary is probabilistic. There is

always a chance that an untimely failure shortly after the

promise results in a backup proceeding without knowledge of

the commitment. Hence, nothing is guaranteed!

2) Applications must ensure eventual consistency [20]. Since

work may be stuck in the primary after a failure and reappear

later, the processing order for work cannot be guaranteed.

Platform designers are struggling to make this easier for their

applications. Emerging patterns of eventual consistency and

probabilistic execution may soon yield a way for applications to

express requirements for a “looser” form of consistency while

providing availability in the face of ever larger failures. As we

will also point out in this paper, the patterns of probabilistic

execution and eventual consistency are applicable to

intermittently connected application patterns.

This paper recounts portions of the evolution of these trends,

attempts to show the patterns that span these changes, and talks

about future directions as we continue to “build on quicksand”.

Keywords

Fault Tolerance, Eventual Consistency, Reconciliation,

Loose Coupling, Transactions

1. Introduction
There is an interesting connection between fault tolerance,

offlineable systems, and the need for application-based eventual

consistency. As we attempt to run our large scale applications

spread across many systems, we cannot afford the latency to wait

for a backup system to remain in synch with the system actually

performing the work. This causes the server systems to look

increasingly like offlineable client applications in that they do not

know the authoritative truth. In turn, these server-based

applications are designed to record their intentions and allow the

work to interleave and flow across the replicas. In a properly

designed application, this results in system behavior that is

acceptable to the business while being resilient to an increasing

number of system failures.

This paper starts by examining the concepts of fault tolerance and

posits an abstraction for thinking about fault tolerant systems.

Next, section 3 examines how fault tolerant systems have

historically provided the ability to transparently survive failures

without special application consideration by using synchronous

checkpointing to send the application state to a backup. In section

4, we begin to examine what happens when we cannot afford the

latency associated with the synchronous checkpointing of state to

the backup and, instead, allow the checkpointing of state to be

asynchronous. Section 5 examines in much more depth the ways

in which an application must be modified to be true to its

semantics while allowing asynchronous checkpointing of the

application state to its backup. Section 6 looks at a couple of

example applications which offer correct behavior while allowing

delays (i.e. asynchrony) in checkpointing state to the backup. In

section 7, we consider the management of resources when the

operations may be reordered due to asynchrony. Section 8

examines the relationship between this class of eventual

consistency and the CAP (Consistency, Availability, and

Partition-tolerance) Theory. Finally, in section 9, we consider

some areas for future work.

2. An Abstraction for Fault Tolerance
In section 2, we discuss the broad ideas required to build a fault

tolerant system. First, we start by describing the external behavior

of the systems we are considering. Next, we describe what it can

mean for these systems to offer transparent fault tolerance and not

require special application consideration to cope with failures.

Then, we quickly consider the issues associated with scalability of

these systems. Finally, we briefly discuss the role of transactions

in the composition of these fault tolerant systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CIDR ‘09, Jn 7-10, 2009, Asilomar, Pacific Grove, CA USA

Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

CIDR Perspectives 2009

2.1 Modeling “The System”
In considering interactions with a fault tolerant “system”, we want

to look at its behavior as a black-box. From the outside, requests

are sent into the system for processing. In years past, these

requests looked like block mode screen input. Nowadays, they

typically take the form of XML, SOAP, and/or other web-style

requests.

To be robust, these incoming requests are retried by their source.

In classic fashion, a request is issued and if a timer expires, it is

reissued. The fault tolerant server system had better make this

work idempotent or the retries would occasionally result in

duplicative work. In practice, systems evolve to be idempotent as

designers either anticipate the problem or make changes to fix it.

To support this need for idempotence, either each request is

submitted with a “uniquifier” that ensures the request is unique

(and ensures retries will be associated with the original request),

OR the service applies some trick to accomplish the same thing.

An example trick is the creation of an MD5 hash of the entire

incoming request. With extremely high probability, the MD5

hash is one-to-one correlated with a unique incoming request.

So, the fault tolerant system processes a sequence of requests

from an external partner. The requests (and their responses)

perform some business task or tasks.

2.2 Transparent Fault Tolerance
Fault tolerant systems comprise many components and their

design goal is to continue functioning when one (or sometimes

more than one) component fails. In this discussion, we will not

consider Byzantine Failures [6] in which a component may

behave erroneously (and in the Byzantine analysis, potentially

maliciously). Instead, we assume fail fast [8] in which a

component is either functioning correctly or simply stops

functioning. Fail fast does not address the possibility of

components deliberately misbehaving. Also, it leaves vague the

question of what happens when a component performs so slowly

that it wreaks havoc on the system. For this discussion, we will

address some issues present even with the simplifying

assumptions of fail fast.

We have observed the pattern in which a fault tolerant algorithm

is broken into idempotent sub-algorithms. By capturing sufficient

information between the idempotent steps and sending it across

the failure boundary, the overarching algorithm can tolerate faults.

From this perspective, you can imagine stepping across a river

from rock to rock, always keeping one foot on solid ground. It is

important to realize this provides a linear sequence of steps

marching forward through the work.

It turns out that many existing fault tolerant systems use this

technique to make failures transparent to the application and to the

user. We will explore some examples of these systems.

2.3 Scaling and Idempotent Sub-Algorithms
In [15] one of the authors (Helland) argues that scalable and

distributed applications need special attention when built without

distributed transactions. Distributed transactions (especially using

the Two Phase Commit protocol [3]) result in fragile systems and

reduced availability. For this reason, they are rarely used in

production systems, particularly when the resource managers span

trust and authority boundaries. In the paper cited above, it is

proposed that a scalable application must apply a discipline of

partitioning its data into chunks which can remain on a single

node even when repartitioned. Each chunk has a unique key.

In the design of fault tolerance systems, we frequently see these

idempotent sub-algorithms spread in a distributed fashion around

the network. One pattern that has been emerging is that these

idempotent sub-algorithms follow the same co-location as

described above. All of their data and behavior reside on a single

node even in the presence of repartitioning. The collective data

will be identified with some unique identifier (called a “key” in

[15]) that ensures it remains on exactly one node at a time1.

2.4 Transactions and Idempotence
Transactions can make it EASIER to build idempotent sub-

algorithms. Atomic transactions are, well, atomic and do not

expose partial results. By using transactions, many (but not all) of

the challenges of creating idempotent behavior are eliminated.

All that remains is to ensure the work is either not started more

than once or that a second attempt will detect a successful first

attempt and be innocuous. Some examples of this will be shown.

3. Preserving Transparency While Growing
In this section, we examine how the Tandem NonStop system

implemented transparent fault tolerance by leveraging

synchronous checkpointing across the failure boundaries. We

first consider the Tandem system in approximately 1984 when the

checkpointing strategy involved sending state to the backup as a

part of every individual database WRITE operation. This was

correct but had some performance challenges. In roughly 1985,

the software was modified to a new strategy which had

performance advantages. So, we next examine the behavior of the

Tandem systems in approximately 1986 when the checkpointing

of state was less aggressive but still sufficient to provide the

transparent guarantees. We conclude section 3 with a discussion

of why the change from the 1984 to 1986 versions was an erosion

of the semantics of failures but was an acceptable erosion of the

semantics experienced in a failure.

1 More precisely, the data resides on exactly one node when we

ignore the need to do replication underneath the partition…

more on that later.

CIDR Perspectives 2009

3.1 Example 1: Tandem NonStop circa 1984
The Tandem NonStop System is a shared-nothing multi-processor

with a message-based interconnect [5]. Each processor has its

own CPU, memory, access to the messaging busses, and access to

IO-Controllers. Each IO-controllers is dual ported and can be

accessed by either of two processors in the system. Pairs of IO-

Controllers accessed mirrored disks. This hardware architecture,

combined with the Guardian operating system, Transaction

Monitoring Facility (TMF), and Disk Process (DP) offered

industry leading availability [8] for OLTP systems through the

1980s and continuing today.

To perform transactional application work, an app runs in one of

the processes and uses messages to do READS and WRITES to

the Disk Processes which manage the data and generate log

records for the transactional log. Work is actively checkpointed2

for each WRITE to ensure the backup is able to continue in the

event of a failure of the primary disk processor. At transaction

commit, all dirtied DPs are asked to flush their log to a centralized

ADP (Audit Disk Process).

2 A checkpoint is a technique used to manage state in a Process

Pair as described in [12]. Two identical processes run on

different processors, one the primary and one the backup. A

checkpoint is a message from the primary to the backup

describing needed state to ensure fault tolerant service.

It is interesting to note the granularity of the pieces in the

approach to fault tolerance. Each WRTE operation is idempotent

and, circa 1984, was actively checkpointed to the backup DP [4].

The granularity of the failure is a single process or processor. The

granularity of the “idempotent sub-algorithm” is a single WRITE

to the DP which gets checkpointed. Failures of a primary DP do

not necessarily cause a failure of the transaction.

3.2 Example 2: Tandem NonStop circa 1986
In 1985, a new software release of the Tandem NonStop Guardian

operating system included a new Disk Process called DP2. This

release offered a number of changes including a dramatic

optimization in the strategy for fault tolerance [7].

DP2, a completely redesigned disk process, had a whole new

approach to checkpointing. The transaction log, describing the

changes to the state on disk, was also used to describe the changes

that should be known to the backup disk process. In other words,

checkpointing and transaction logging were combined into one

mechanism. The log would first go to the backup, then to the

ADP which would write it on disk.

CIDR Perspectives 2009

A design goal was to allow the changes for a transactional

WRITE to lollygag within the transactional log in memory of the

primary DP2 Disk Process. The WRITE to the primary DP2

could be answered back to the application. Of course, this left

open the challenge of correctness if a failure wipes out the

primary DP2 with buffered changes done by uncommitted

WRITEs. How can this be correct?

The key to the new approach to correctness in this example was to

ensure that any in-flight transactions that used a failed primary DP

would have their transactions aborted. Since all committed

transactions will have pushed their changes to disk, any loss of the

memory state when a primary DP fails will only impact an in-

flight transaction. Since the system automatically aborts any

relevant in-flight transactions when the primary DP fails,

correctness is preserved.

This scheme meant that a processor failure would result in more

transactions aborting. This was a very rare event and was

completely within the system rules which allowed transactions to

abort without cause. Arguably, this change was almost

transparent to application developers and to users.

The new scheme offered a huge performance improvement. A

WRITE to DP2 could be performed without checkpointing to the

backup. This was a dramatic savings in CPU cost and an even

more dramatic savings in latency since the application did not

need to wait for the checkpoint to see the response to the WRITE.

The buffer containing the log entries shifted to being pushed to

the backup (and, indeed, to the ADP) on a periodic basis. This is

much like group commit [11]. It is easy to understand the

efficiency when you think of the difference between a car per

driver racing across town versus a city bus sweeping up all the

passengers every five minutes or so. As described in [11], waiting

to participate in shared buffer writes can, under the right

circumstances, result in a reduction of latency since the overall

system work is reduced. This reduction in work may reduce

system utilization and may more than compensate for the delay.

Looking back at our abstraction for fault tolerance, we see that the

idempotent sub-algorithm has grown from a WRITE to a

transaction. The granule of failure is still a processor and the

application and user barely perceive the change in algorithm.

3.3 An Acceptable Erosion of Behavior
Tandem’s system in 1986 offered significantly better performance

than its predecessor in 1984. Still, there were failures of

processors that would yield different behavior than the previous

release. When a processor failed in the middle of a transaction,

the earlier release would continue forward. Circa 1986, a

processor failure may result in the loss of the ongoing transaction.

While this was technically a change in behavior, there were

reasons why this was acceptable. All along, the system rules for

transactions allowed the transaction to be aborted without

(apparent) cause. Deadlocks, operator decisions, timeouts, and

other reasons could cause transactions to fail. Because of this, the

change was an acceptable erosion of behavior.

The 1984 version of the Tandem system implemented

synchronous WRITES to the backup. The WRITE from the

user’s application was not acknowledged until checkpointed.

Circa 1984, the WRITES were asynchronous but the transaction

commit was guaranteed to be synchronously checkpointed across

the failure boundaries.

CIDR Perspectives 2009

4. The Creeping Arrival of Asynchrony
In this section, we see the first example of acknowledging the

incoming request BEFORE ensuring the work is sent to the

backup. This is asynchronous checkpointing to the backup.

We start with a very simple discussion of “log-shipping” wherein

the transaction log is sent to a backup system sometime after the

user request is acknowledged. This is a fundamental change

which deeply impacts the guarantees made to the user.

After introducing log-shipping, we discuss the takeover semantics

of this approach. Following this, we look at how this asynchrony

means we have to revisit our abstraction for fault tolerance.

4.1 Example 3: Log Shipping
This example is well known to most readers. A classic database

system has a process that reads the log and ships it to a backup

data-center. The normal implementation of this mechanism

commits transactions at the primary system (acknowledging the

user’s commit request) and asynchronously ships the log. The

backup database replays the log, constantly playing catch-up.

Typically, applications and users are oblivious to log-shipping.

Unless a fault occurs, the application and the user are fat, dumb,

and happy. When a fault DOES occur, some recent transactions

are lost as the backup takes-over and provides service.

This means that the abstraction described above in section 2

works here except the state is not immediately captured by the

backup. Fault tolerance is NOT transparent. It is OK (with low

probability) to completely discard recent work.

To allow a datacenter failure to be transparent, the log shipping

algorithm would need to stall the response to the commit request

at the primary until the primary knows the backup has received

the log. This delay is unacceptable in most installations and they

deal with the low probability chance of losing recent work. The

change from a synchronous transfer of state to an asynchronous

transfer is an interesting erosion of the basic abstraction and is

another example of where the cost for “consistency at a distance”

is too high just as it was when tried to stretch 2PC beyond

resource managers in the same room.

Log-shipping: Our first example where giving a little bit in

consistency yields a lot of resilience and scale!

4.2 Log Shipping and Takeover Semantics
Log shipping is asynchronous to the response to the client. This

inherently opens up a window in which the work is acknowledged

to the client but it has not yet been shipped to the backup. A

failure of the primary during this window will lock the work

inside the primary for an unknown period of time. The backup

will move ahead without knowledge of the locked up work.

In most deployments of log-shipping, this is not considered in the

application design. It is assumed that this window is rare and that

it is unnecessary to plan for it. Bad stuff just happens if you get

unlucky. Unfortunately, in most of these systems, a takeover

either requires manual cleanup of the work not transferred from

the primary to the backup or the work is simply lost.

4.3 Revisiting the Abstraction
So, we’ve seen a basic model for fault tolerance and how it can be

applied in a few different systems. In the first two examples, the

fallible component was a processor running in the same box as its

partner. The close proximity of the components allowed for

practical use of synchronous state copying. In the log shipping

example, the delay is considered impractical and the transfer of

the state is asynchronous. This results in “faults” in the fault

tolerance provided for data center failures.

5. Loosening the Abstraction
OK… So, maybe there’s a broader abstraction at play!

The old model assumed the work would be processed in exactly

one order of execution. There was a default “single system of

record” form of isolation provided by the classic database system

running at the primary. This single history allows for a low-level

READ and WRITE semantic that depends on “replaying history”.

In this new world, history cannot be exactly replayed and we must

count on the ability to reorder the work. This means that we

cannot completely know the accurate state of the system. It also

means we must move the correctness and reordering semantics up

from being based on system properties (i.e. READ and WRITE)

to application based business operations.

Section 5 examines a number of different aspects of asynchronous

checkpointing and how it impacts application design. We will

first discuss the impact of asynchrony on our ability to know the

actual true state of the application. Then, we look at probabilistic

business rules and how asynchronous checkpointing means we

cannot have definitive enforcement of business rules. We discuss

the impact of commutativity on the business rules. Next, we

consider partitioning of the work and idempotent operations

across the partitioned state. After this, we examine the possibility

of having a choice of sometimes performing synchronous

checkpointing of state if the risk for the specific operation is too

great. Next, we consider how the system may handle

unanticipated problems and when human intervention may be

required. After that, there is a discussion of how asynchronous

enforcement of business rules sometimes results in apologies.

Finally, we summarize the abstraction by observing that either

you have synchronous checkpoints to your backup or you must

sometimes apologize for your behavior…

5.1 Asynchrony and the Truth
Let’s consider those orphaned transactions dawdling in the belly

of the failed system in the log-shipping example. They are most

certainly out of the picture while the dethroned system (or data

center) is unavailable. When it does return, the goal of any recov-

ery policy would be to examine the work in the tail of the log and

determine what the heck to do! The backup system has continued

and there may be challenges when resurrecting the languishing

work. The only way this work can be kept is to ensure that the

out-of-order retrying of the work does not break things. In some

cases, the pending work is simply discarded due to lack of

designed mechanisms to reclaim it! This is part of the implicit

consistency model for log-shipping without recovery of lost work.

In the log-shipping example, we see rare cases of work reordering

as it is temporarily lost and then resurrected. In the more general

case, we see independent work performed at disconnected (or

slowly connected) sites which may get reordered as it becomes

visible to other systems partnering in the work.

The deeper observation is that two things are coupled:

1) The change from synchronous checkpointing to

asynchronous to save latency, and

2) The loss of a notion of an authoritative truth.

Back when we had a centralized machine with synchronous

checkpointing, we knew the one and only one answer at any given

CIDR Perspectives 2009

point in time. Allowing for work being locked up in an

unavailable backup (née primary) means we don’t know the truth.

5.2 Probabilistic Business Rules
When we have asynchronous checkpointing, we have windows of

failure that mean work may be lost or delayed. When a primary

fails, there may be work stuck inside the primary that has not yet

been sent to the backup. That work is either lost or delayed.

If a primary uses asynchronous checkpointing and applies a

business rule on the incoming work, it is necessarily a

probabilistic rule. The primary, despite its best intentions cannot

know it will be alive to enforce the business rules.

When the backup system that participates in the enforcement of

these business rules is asynchronously tied to the primary, the

enforcement of these rules inevitably becomes probabilistic!

It is the cost/benefit analysis that values lower latency from

asynchronous checkpointing higher than the risk of slippage in the

business rule that generalizes the fault tolerant algorithm.

Distribution + Asynchrony Probabilities of Enforcement

We are seeing the emergence of applications which take this even

farther by increasing disconnection to achieve the economic

benefits of loose-coupled parallelism and offline. They are lower

latency, more parallel, and more available. They just screw up

more often and sort the mess out later. Sometimes, that’s good!

5.3 Commutativity and Business Rules
In many applications, it is possible to express the business rules of

the application and allow different operations to be reordered in

their execution. When the operations occur on separate systems

and wind their way to each other, it is essential to preserve these

business rules.

Example business rules may be: “Don’t overbook the airplane by

more than 15%” or “Don’t overdraw the checking account”.

Escrow Locking in Serializable Databases

Escrow locking is a scheme to increase concurrency while
preserving classic transactional ACID behavior.

If you assume a set of commutative operations (such as
addition and subtraction), you ensure changes are logged
via “operation logging”. Operation logging does not capture
the before and after images of the value but rather logs
“Transaction T1 subtracted $10”. If transaction T1 needs to
be aborted, the system would add $10 rather than restore
the value that existed in the field before T1. In this fashion,
the work of multiple transactions can interleave as long as
they are doing the commutative operations. If any
transaction dares to READ the value, that does not
commute, is annoying, and stops other concurrent work.

Escrow locking can be implemented in conjunction with
constraints enforcing business rules. Consider addition and
subtraction operations with a worst-case minimum and
maximum for the value. The system simply needs to track
the worst case for all the transactions pending commitment.
A new operation will be delayed if it MIGHT cause the value
to fall out of bounds with the pending work.

Escrow locking offers crisp semantics because it is
functioning on a centralized location and can enforce the
worst case outcome of the business rules.

This approach is similar to escrow locking as described in [9]. In

escrow locking, commutative operations are allowed as long as

they do not violate the constraints of the system. Escrow locking

was envisaged as a pessimistic locking scheme which crisply

preserved serializable behavior. Escrow locking was

implemented in Tandem’s NonStop SQL in the late 1980s to

support high-throughput addition and subtraction.

WRITES to a database are not commutative!

The layering of an arbitrary application atop a storage
subsystem inhibits reordering. Only when commutative
operations are used can we achieve the desired loose
coupling. Application operations can be commutative.
WRITE is not commutative. Storage (i.e. READ and
WRITE) is an annoying abstraction…

5.4 Idempotence and Partitioned Workflow
It is essential to ensure that the work of a single operation is

idempotent. This is an important design consideration in the

creation of an application that can handle asynchrony as it

tolerates faults and as it allows loose-coupling for latency, scale,

and offline.

Each operation must occur once (i.e. have the business impact of a

single execution) even as it is processed (or simply logged) at

multiple replicas. One room reservations must (with high

probability) result in exactly one room set aside for the guest.

One book ordered online should not (very often) result in two

books delivered to the customer.

To ensure this, applications typically assign a unique number or

ID to the work. This is assigned3 at the ingress to the system (i.e.

whichever replica first handles the work). As the work request

rattles around the network, it is easy for a replica to detect that it

has already seen that operation and, hence, not do the work twice.

Sometimes, incoming work stimulates other work. For example,

processing a purchase order may result in scheduling a shipment.

Two replicas may get overly enthusiastic about the incoming

purchase order and each schedule a shipment. By uniquely

identifying the purchase order at its ingress to the system, the

irrational exuberance on the part of the replicas can be identified

as the knowledge sloshes through the network. We will see below

in the discussions of eventual consistency how this can

(probabilistically) be rectified.

3 The experienced reader will realize that this leaves the concern

for idempotence in the incoming message from the client as

captured at the point of ingress. Retries could cause two or

more different replicas to charge ahead to help the user. If the

work has no side effects (such as simply reading something), it

is OK to do the work multiple times. If the work has side-

effects, coordination around a cookie or user-id is usually

performed to eliminate duplicates.

To avoid duplicate processing, the uniquifier for the request

should be functionally dependent only on the request as seen by

the server system. This is possible if the unique id is generated

outside the server (e.g. a check number as discussed in Section

6.2) and it is also possible if the server calculates it in a

predictable way as discussed in Section 2.1).

CIDR Perspectives 2009

The unique identifier of the work (the “uniquifier”) has two very

important roles:

1) The uniquifier provides the key for partitioning the work in a

scalable system.

2) The uniquifier allows the system to recognize multiple

executions of the same request. In this fashion, they can be

collapsed and the work becomes idempotent.

5.5 What’s Your Stomach for Risk?
In all these cases, we started with the assumption that the cost to

know the truth is prohibitive for the application in question.

Hence, we are designing the system and, especially, the

application running on the system to probably deliver excellent

service and, occasionally, to violate the business rules of the

application.

Note that that it is possible to have multiple business rules with

different guarantees. Some operations can choose classic

consistency over availability (i.e. they will slow down, eat the

latency, and make darn sure before promising). Other operations

can be more cavalier. Some examples:

 Locally clear a check if the face value is less than $10,000.

If it exceeds $10,000, double check with all the replicas to

make sure it clears.

 Schedule the shipment of a “Harry Potter” book based on a

local opinion of the inventory. In contrast, the one and only

one Gutenberg bible requires strict coordination!

The major point is that availability (and its cousins offline
and latency-reduction) may be traded off with classic
notions of consistency. This tradeoff may frequently be
applied across many different aspects at many levels of

granularity within a single application.

5.6 Fussing and Whining (but Not Too Often)
So, what the heck does the application DO when its business rules

are violated? The application will usually be managing the proba-

bilities so that this is unlikely (since there is frequently a business

cost associated with screwing up). Still, this will happen!

The best model for coping with violations of the business rule is:

1. Send the problem to a human (via email or something else),

2. If that’s too expensive, write some business specific software

to reduce the probability that a human needs to be involved.

While this may sound too simplistic, it is what applications

typically do when dealing with these complex issues. It also

points out that, in the absence of generalizations of the business

rules, the patterns used by the business operations for

commutativity, and the business complications of

overzealousness, it is not possible to speak to the business

consequences or actions to compensate when your luck is bad.

5.7 Memories, Guesses, and Apologies
Arguably, all computing really falls into three categories:

memories, guesses, and apologies[16, 19]. The idea is that

everything is done locally with a subset of the global knowledge.

You know what you know when an action is performed. Since

you have only a subset of the knowledge, your actions are really

only guesses. When your knowledge as a replica increases, you

may have an “Oh, crap!” moment. Reconciling your actions (as a

replica) with the actions of an evil-twin of yours may result in

recognition that there’s a mess to clean up. That may involve

apologizing for your behavior (or the behavior of a replica).

So, consider these three aspects:

 Memories: Your local replica has seen what it has seen and

(hopefully) remembers it. The cost of spreading that

knowledge includes bandwidth, computation, and latency (in

the case where you are waiting for the backup to

acknowledge your memory of an operation).

 Guesses: Any time an application takes an action based upon

local information, it may be wrong. This occurs in log-

shipping systems where the action is logged locally and has

only a very high probability of getting to the backup system

before a crash and take-over. That makes it a good guess but

it doesn’t make it a sure bet. In any system which allows a

degradation of the absolute truth, any action is, at best, a

guess. It is simply a matter of business choice as to the

quality of the guess.

 Apologies: When a mistake is made (either due to

replication anomalies or because the FAA grounds your jets

and you cannot honor your flight reservations), you

apologize. Every business includes apologies. As mentioned

above, these may be manual with the software enqueuing the

problem for human work. Alternatively, application code

may issue some apologies for which it has specially designed

apology code while asking for human help for those

apologies beyond its designed cases.

In a loosely coupled world choosing some level of availability

over consistency, it is best to think of all computing as memories,

guesses, and apologies.

5.8 Synchronous Checkpoints OR Apologies!
So, section 5 is pointing out that there are design options:

1) You can synchronously checkpoint and incur the latency, or

2) You can asynchronously checkpoint, save the latency, and

experience modified application semantics.

These modified semantics mean that you don’t always know the

precise truth because work can be trapped in a partner. They

mean you may have to understand that the business rules are

enforced probabilistically and may experience reordering. Still,

you have the option of sometimes applying business criterion (e.g.

the check being for more than $10,000) which cause synchronous

checkpointing. Also, it is completely viable to allow human

intervention in the resolution of some problems if the chance of

this occurring is low enough for this to be cost effective.

In summary, all of these choices depend on their business value!

6. Zen and the Art of Eventual Consistency4
This section looks in more depth at eventual consistency and how

loosely-coupled applications are built to support this. We start

with a couple of examples: Amazon’s Dynamo storage with a

Shopping Cart application on top of it and a classic bank check

clearing application. We then talk about applications

implementing eventual consistency and contrast this with the

difficulties of building eventual consistency in a storage layer.

Finally, we discuss the importance of an “operation-centric”

approach to eventual consistency in which the operations desired

by the user of the application are recorded and become the

foundation for the implementation of eventual consistency.

4 We recommend the classic book “Zen and the Art of Motorcycle

Maintenance” [2]. A looser, more Zen-like, perspective can be

helpful in computing and in one’s personal life…

CIDR Perspectives 2009

6.1 Example 4: Shopping Cart and Dynamo
The Dynamo Storage system [18] is used to support the shopping

cart store as well as other systems within Amazon. Dynamo is a

replicated blob store implemented with a Dynamic Hash Table

(DHT). Dynamo is interesting in many ways including its

conscious choice to support availability over consistency.

Dynamo always accepts a PUT to the store even if this may result

in an inconsistent GET later on.

In [18], the interaction from the application to Dynamo is

described as a PUT and GET interface. Due to replication

anomalies, a GET may return old information. Performing a PUT

based on the old information results in parallel versions. A later

GET of this blob may return two sibling (or cousin) versions

which the shopping cart application must reconcile. Dynamo,

acting as a storage substrate, may present two or more old

versions in response to a GET. A subsequent PUT must include a

blob that integrates and reconciles all the presented versions.

To do the application level integration, the shopping cart

application must record its operations much like a ledger entry. A

deletion of an item from the shopping cart is recorded as an

operation appended to the cart. These “ADD-TO-CART”,

“CHANGE-NUMBER”, and “DELETE-FROM-CART”

operations can usually be reconciled when a union of the

operations is finally joined together. Very rare anomalies in the

shopping cart are acceptable since the shopper’s order is verified

as a part of order submission. Unavailability of the shopping cart

service is very expensive for Amazon since it results in a drop in

business and an unsatisfying user experience.

Dynamo is a storage substrate independent of the shopping cart

application layered on top of it. Dynamo returns a blob (and

sometimes two or more blobs) to a GET. When more than one is

returned, the shopping cart application has to reconcile the

confusion AND fold in the new operation it was planning for the

cart. The shopping cart application can do this by understanding

the contents of the cart as a set of operations. Uniquely

referenced operations on the items can be unioned together into a

list with a predictable outcome. This is key to the commutativity

of operations on the shopping cart. This, in turn, is used to

provide exceptionally high availability.

6.2 Example 5: Bank Accounts and Ledgers
There is a reason for check-numbers on checks. The check

numbers (combined with the bank-id and account-number)

provide a unique identifier. Excepting big mistakes (and/or

fraud), the payee and amount for a specific check are immutable.

The check enters the banking system with a unique identifier and

the participants in the loosely-coupled process share information

in what may be considered an ongoing workflow.5

You deposit your brother-in-law’s check for $100 into your bank

account and, since you’ve been a good customer, there is no hold

on the money. Your account’s balance bumps up from $1000 to

$1100. Your bank account information is associated with the

5 This mechanism has been used for many years and pre-dates

computerized systems. It was used by our grandparents for the

same reason that we advocate the use of a unique-id that is

functionally dependent on the incoming request (either by being

part of the request or by being derived from the request). The

check-number (along with bank and account number) is a

wonderful unique-id.

check. The check is forwarded to you brother-in-law’s bank.

Later, when the check bounces, your account is debited $130 (the

original $100 plus $30 bounce fee). Interestingly, the decision to

be optimistic is based on YOUR good standing with the bank. A

less desirable customer (like your brother-in-law) would have a

hold placed on the money (reserving for a potential bounce)6.

Debits and credits to bank accounts are commutative. There is an

expressed business rule that the account balance will not drop

below zero. If you had spent the $1100 before your brother-in-

law’s check was returned, your account would have violated the

business rule when your brother-in-law’s check bounced.

Banking policies make this less likely but not impossible. It is a

business decision on the part of the bank to allow this risk.

Consider, too, the ledger associated with a bank account. At the

end of the month, a statement is issued. It is not critical that it be

perfect. Some check floating on midnight of the 31st of the month

may land in this month’s statement or in next month’s statement.

The monthly statement starts out with a balance. Debits and

credits are applied. Once it is issued, it is permanent and

immutable. Errors in March’s statement may be adjusted in

April’s statement but March’s statement is never modified.

The bank has two jobs to do with the account. First, it needs to

decide if a check should clear based upon the best knowledge of

the account’s balance. Second, it needs to meticulously remember

all the operations (debits and credits) performed on the account.

Imagine a replicated bank system which has two (or more) copies

of my bank account, both of which are clearing checks. There is a

small (but present) possibility that multiple checks presented to

different replicas will cause an overdraft that is not detected in

time to bounce one of the checks. Each replica that clears a check

will remember the check with its check number. Assuming no

replica is permanently destroyed, the information about the check

will be added to the bank statement and funding allocated for it.

A very untimely outage could result in the check landing in next

month’s statement rather than this month but that’s no big deal.

6 It does make sense to base the decision on YOUR standing…

It’s the only information available locally to the bank and YOU

are more likely to eat the cost than the bank.

CIDR Perspectives 2009

In this banking system, the information about the checks can be

coalesced as the replicas communicate. The usage of check

numbers makes the processing of the check idempotent. The

nature of the operations (i.e. addition and subtraction) ensures the

work is both commutative AND associative.

It is VERY likely that a banking system layered on flakey

computers without raised floors, operators, or backup power

would be more cost effective than a high-priced centralized one.

As demonstrated above, the dissection of the work into memories,

guesses, and apologies is exactly how banks function today.

6.3 Eventual Consistency and Applications
In both the Dynamo/ShoppingCart example and in the banking

example, uniquely identified work arrives into the system and is

processed by a single replica. The work is propagated to other

replicas as connectivity allows.

Because the requests are commutative (i.e. reorderable), it is OK

for them to be processed at different replicas in different orders.

The chances are very high that the result will be the same. Also,

the design of each system includes business policies for resolving

what will happen if the different orders of execution result in

different answers.

6.4 Eventual Consistency and Storage
It is interesting that much of the literature on eventual consistency

focuses on READ and WRITE semantics. For example, a recent

paper [20] by Werner Vogels explains many great concepts in the

area of eventual consistency but still couches the discussion in the

context of clients, storage systems, and updates.

The Amazon Dynamo paper [18] covers many fascinating topics

and shows how Dynamo is a key-value blob store. Still, section

4.4 on Data Versioning discusses the use of “add to cart” and

“delete item from cart” and how these operations are captured

within the blobs being stored by Dynamo. Even if the version

histories are reordered, items added to the cart will not be lost

once their stored blob version is collapsed together with the other

versions. Occasionally deleted items will reappear.

Storage systems alone cannot provide the commutativity we need

to create robust systems that function with asynchronous

checkpointing. We need the business operations to reorder.

Amazon’s Dynamo does not do this by itself. The shopping cart

application on top of the Dynamo storage system is responsible for

the semantics of eventual consistency and commutativity.

The authors think it is time for us to move past the examination of

eventual consistency in terms of updates and storage systems.

The real action comes when examining application based

operation semantics.

6.5 The “Operation-Centric” Pattern
Both the Dynamo/Shopping-Cart example and the Banking

example show the capture of the application’s desires.

The Shopping-Cart example uses “add-to-cart” and “delete-item-

from-cart” operations to capture the intention of the user as they

add and delete items from the cart. In the Dynamo blob store, the

usage of this operation-centric approach offers resiliency to the

occasional interleaving of versions that results from replication

combined with choosing availability over consistency. It is

interesting to note that operation-centric work can be made

commutative (with the right operations and the right semantics)

where a simple READ/WRITE semantic does not lend itself to

commutativity.

In the Banking example, “debit” and “credit” operations are

processed at separate replicas and then shared as soon as possible.

Again, this is an operation-centric approach which results in

commutativity of the operations. Allowing the loose-coupled

processing of the “debit” and “credit” operations will occasionally

(but rarely) result in a cleared check that we hope would have

bounced. Still, for many environments, this is an acceptable

business expense and may be codified in a business rule for

loosely coupled systems.

7. Managing Resources with Asynchrony
This section looks at how resources are managed in the face of

asynchronous checkpointing and the possibility of independent

work and potentially redundant work.

First, we consider how resources get allocated across loosely-

coupled systems and whether they are over-booked or over-

provisioned. After this, we observe that the computers’ opinions

do not necessarily map to the real world in the face of accidents

and other mistakes. Next, we look at one example pattern of

conservative (over-provisioned) resource management in the

“seat-reservation” pattern. Then, we consider the advantage of

making resources similar (or “fungible”) whenever possible.

Following this, we look at the use of unique identifiers in the

management of asynchronous requests. Moving along, we

consider eventual consistence and asynchronous management of

resources. Finally, we consider the patterns that existed in

business before the rise of computers and their use as inspiration

in our design of loosely-coupled systems.

7.1 Over-Booking versus Over-Provisioning
As we consider a system with asynchronous checkpointing, we

are considering a system with a probability that two or more

replicas will be allocating resources to their users. Since these

replicas will sometimes be incommunicado, we must consider the

policy used for allocating resources while not in communication.

There are two approaches:

1) Over-Provisioning. In this approach, each replica has a fixed

subset of the resources that it may allocate. If there are 1000

books in inventory, each of the two replicas may have 500 to

sell. When over-provisioning, a replica cannot make the

mistake of allocating a resource that is not truly available to

be allocated. On the other hand, over-provisioning means

that there will be excess resources kept within the replicas.

2) Over-Booking. Unlike over-provisioning, over-booking

allows for the possibility that the disconnected replicas will

occasionally promise something they cannot deliver. By

allowing independent allocation without ensuring strict

partitioning of the resources, sometimes commitments are

made that cannot be kept. On the other hand, sometimes

business will be scheduled that would be declined under the

strict partitioning of over-provisioning.

It is possible to be conservative and ensure you NEVER have to

apologize to your customers. This will, however, sometimes

result in you deciding to decline business you would rather have.

You may accept the business on a disconnected replica without

the confidence that you will be able to keep your commitments.

You can dynamically slide between these positions (while you are

connected) and adjust the probabilities and possibilities.

In the face of disconnection, you cannot know the perfect answer

and must adopt a business policy that allows for the tradeoffs that

are right for your business!

CIDR Perspectives 2009

7.2 Computing versus Reality
In the previous section, we described how over-provisioning of

resources means you cannot make the mistake of allocating a

resource that is not truly available. This is true in that the

computational resource will not show an allocation for which

there are no resources. Unfortunately, the real world is not always

accurately modeled in the computers (and cannot always be).

Consider a case where the only book in inventory is scheduled for

delivery. Due to an over-provisioning scheme, there is no

confusion about the inventory and the book is promised to a

customer. In preparing the book for shipment, it is run over by

the forklift in the warehouse. So, over-provisioning

notwithstanding, you need to apologize!

Even if the computer systems are perfect, business includes

apologizing because stuff will go wrong!

7.3 The “Seat Reservation” Pattern
In certain real world transactions, the resources involved are not

considered fungible. One good example is reserving a seat at a

concert where the actual seat(s) are considered critical to the

buying decision. This sets up a condition where prime seats are

crucial both from the perspective of the supplier and consumer.

One way to implement a correct application which maintains the

business rule that any seat must either be “available” or “occupied

and associated with a valid purchase” is to use a database

transaction to scope and protect the business rule. This scheme

works if you have a trusted agent handling the purchase. Ticketing

agents would control the transaction and reserve potentially

available seats. If a purchaser reneges, the transaction is rolled

back making the seats available for purchase again.

Online buying situations, where the consumer is in control,

changes the transaction in both space and time in ways that break

our ticketing system in several ways. First off, in the space

dimension, the consumer is not a trusted agent. Our transaction

now extends beyond the trust boundary originally established for

the system business rule. Secondly, in the time dimension, we

have no way to constrain the time in which untrusted agents can

hold our system in an inconsistent state. In this particular

example, untrusted agents could exploit these aspects of the

system to quickly start a set of transactions against prime seats,

making them unavailable to others, and then reselling them at a

profit. Seats that are not sold by our unscrupulous agent could be

released by simply rolling back transactions at no cost.

Anyone who has purchased tickets online will recognize the “Seat

Reservation” pattern where you can identify potential seats and

then you have a bounded period of time, (typically minutes), to

complete the transaction. If the transaction is not successfully

concluded within the time period, the seats are once again marked

as “available”. This is done by using three states for seats:

1. {“available”}

2. {“purchase pending”, session-identity}

3. {“purchased”, purchaser-identity}

Individual database transactions are used to transition from one

state to another and to durably enqueue requests to clean up seats

abandoned in the “purchase pending” state.

This is an example of sliding the allocation spectrum towards the

“over-provisioning” side. The seats are considered unique and

coordination is mandated between the primary and backup

ensuring a conservative (i.e. “over-provisioned”) management of

the resources. To avoid this challenge, we need to make a pool of

resources.

7.4 The Quest for Fungibility
As you look at functions in the computing world, you see an ever

increasing categorization of things into fungible buckets. You

can’t reserve room 301 at the Hilton but you can get a king sized

non-smoking room.

Consider a pork-belly. What the heck is a pork-belly? It is a term

to describe a bunch of pork7. By standardizing a collection of

pork, it is possible to sell a pig before it is grown. The existence

of a pork-belly as a unit of trade has offered powerful financial

mechanisms in support of the raising and distribution of pigs.

Farmers can sell their pigs in advance of their maturation and

moderate their risk.

The real world is rife with algorithms for idempotence,

commutativity, and associativity. They are part of the lubrication

of real world business and of the applications we must support on

our fault tolerant platforms. A major trick is to look for

mechanisms to create equivalence of the operation or resource.

7.5 The Importance of Uniquifiers
One important pattern in the management of asynchrony is the

usage of the unique identifier in tracking the request through the

distributed system. Sometimes the over-zealous replicas will both

do the work for a single request and only later detect that this

work has been duplicated. If the work has allocated a fungible

resource, the system needs to detect this and return the

redundantly allocated resource. The detection of the redundant

work is made possible by the uniquifier on the request.

So, even as we look at the topic of managing resources under

asynchrony, we see the importance of having uniquely identified

requests so we can create idempotent behavior.

7.6 Eventually We’ll Talk and Be Consistent
As disconnected replicas work independently, they accumulate

operations. This is identical to a replica of the bank account

clearing some checks but not others. It is also identical to a blob

in the Dynamo store having some of the operations to the

shopping cart (e.g. “ADD-TO-CART” and “DELETE-FROM-

CART”) but missing out on other operations due to the timing of

management of the replication.

When the work flows together, a new, more accurate answer is

created. When an application is built to support eventual

consistency, the design should ensure that the order of the work’s

arrival at the node is not the determining factor in the outcome.

Replicas that have seen the same work should see the same result,

independent of the order in which the work has arrived.

As mentioned above, sometimes the operations accumulated by

different replicas result in a violation of the application’s business

rules. The bank account with independent replicas clearing

checks may find an overdraft on the account that, in a centralized

system, would have resulted in a bounced check rather than

clearing too many checks for the available funds. This level of

violation of the business rules becomes a probabilistic analysis

with the application designers choosing their stomach for risk.

7 Wikipedia describes a pork belly as the underside of a pig from

which bacon is made. A unit of trade is 20 tons of frozen,

trimmed bellies. See [21].

CIDR Perspectives 2009

7.7 Back to the Future
Whenever the authors struggle with explaining how to implement

loosely-coupled solutions, we look to how things were done

before computers. In almost every case, we can find inspiration in

paper forms, pneumatic tubes, and forms filed in triplicate.

Consider the lost request and its idempotent execution. In the

past, a form would have multiple carbon copies with a printed

serial number on top of them. When a purchase-order request was

submitted, a copy was kept in the file of the submitter and placed

in a folder with the expected date of the response. If the form and

its work were not completed by the expected date, the submitter

would initiate an inquiry and ask to locate the purchase-order

form in question. Even if the work was lost, the purchase-order

would be resubmitted without modification to ensure a lack of

confusion in the processing of the work. You wouldn’t change

the number of items being ordered as that may cause confusion.

The unique serial number on the top would act as a mechanism to

ensure the work was not performed twice.

8. CAP and ACID2.0
As mentioned above, the CAP Theorem [13, 14] states that with

Consistency, Availability, and Partition tolerance you can have

any two at once but not three. We do not argue with this.

What is interesting is that the consistency for this is based upon

the classic ACID. That is: Atomic, Consistent, Isolated, and

Durable. The classic ACID has the goal to make the application

perceive that there is exactly one computer and it is doing nothing

else while this transaction is being processed.

Consider the new ACID (or ACID2.0). The letters stand for:

Associative, Commutative, Idempotent, and Distributed [17]. The

goal for ACID2.0 is to succeed if the pieces of the work happen:

 At least once,

 Anywhere in the system,

 In any order.

This defines a new KIND of consistency. The individual steps

happen at one or more system. The application is explicitly

tolerant of work happening out of order. It is tolerant of the work

happening more than once per machine, too.

Notice that examples 4 (the shopping cart) and 5 (banking) meet

this style of consistency.

8.1 Fault Tolerance on ACID
To maintain serializability, classic algorithms do one thing at a

time. All the concurrency mechanisms we know and love work

hard to provide an appearance that one thing happens at a time.

When considering the fault tolerant abstraction described in

section 2, we see the focus on synchronous checkpointing and a

linear history. When correctness is defined by the classic ACID,

it is essential to provide an ordering amongst the transactions.

This is, of course, serializability [3, 10, 12].

It is interesting to contrast example #1 (Tandem circa 1984) and

example #2 (Tandem circa 1986). In example #1, the

synchronous checkpointing of state to the backup occurs on a

WRITE by WRITE basis. This is correct but not necessarily

highly performant. In example #2, the synchronous capture of

state is at the completion of the transaction. Intra-transaction

concurrency is managed by classic database management

techniques. Only when completing a transaction is it necessary

ensure the work survives a fault.

8.2 Fault Tolerance on ACID2.0
OK, now let’s consider what happens to the concept of fault

tolerance when you are NOT shooting for serializability (classic

ACID) but rather for the new ACID of Associativity,

Commutativity, Idempotence, and Distribution.

If you break the algorithm for the desired work into pieces, each

piece must be idempotent (just like in the basic approach to fault

tolerance). Furthermore, we are considering having the work

distributed around the network rather than concentrated within a

centralized system. The only way to do this while preserving the

old guarantees of classic ACID is with the well documented

pessimistic or optimistic concurrency control mechanisms. These

tend to be fragile.

When the application is constrained to the additional requirements

of commutativity and associativity, the world gets a LOT easier.

No longer must the state be checkpointed across failure units in a

synchronous fashion. Instead, it is possible to be very lazy about

the sharing of information. This opens up offline, slow links, low

quality datacenters, and more.

Surprisingly, we find that many common business practices

comply with these constraints. Looking at the business operations

from the standpoint of how work has traditionally been performed

shows many examples supportive of this approach. It appears we

in database-land have gotten so attached to our abstractions of

READ and WRITE that we forgot to look at what normal people

do for inspiration.

9. Future Work
It seems that it would be of great value to dissect different

applications in business environments to see the recurring

patterns. What are the operations in play for various applications?

When are they commutative? What practices make the operations

idempotent? Are there different solutions that are recast

syntactically in different environments? Is there a taxonomy of

patterns into which the various solutions can be cast?

Our forefathers were VERY smart and were dealing with loosely

coupled systems to implement their businesses. They knit the

loosely-coupled systems together with messages, telegrams,

letters, and the postal system. To cope, they needed reorderable

operations. Sometimes, the work was requested twice and this

required protocols to implement idempotence. How were these

schemes used to run a railroad and build a Model-T? Are these

patterns still there waiting for us to use in our distributed systems?

10. Conclusion
We have reviewed some of the evolution in highly available and

fault tolerant systems. As far as we can see, all reliable systems

are built out of a collection of unreliable components which are

stitched together in a fashion that provides service in the face of

the failure of some of these unreliable components. Over time,

the size of the failure unit has gotten larger and larger.

For years, the state of the art in fault tolerant systems provided

crisp transactional behavior by synchronously checkpointing state

across the failure boundaries. As the size of the failure unit has

increased, the latency involved in synchronous checkpointing has

grown to be punitive.

In response to the increased latency, applications have embraced

the asynchronous transmission of state across failure boundaries.

That has required new models and patterns of application design.

CIDR Perspectives 2009

We have attempted to describe the patterns in use by many

applications today as they cope with failures in widely distributed

systems. It is the reorderability of work and repeatability of work

that is essential to allowing successful application execution on

top of the chaos of a distributed world in which systems come and

go when they feel like it. Application designers instinctively

gravitate to a world of eventual consistency (usually without the

formalisms to help them get there).

Finally, we have examined this with respect to the CAP theory

and described how, in this new world, many solutions are

designed to take a relaxation of classic consistency to preserve

both availability and partition tolerance. This relaxed notion of

consistency is very valuable and deserves more academic work.

11. ACKNOWLEDGMENTS
We would like to thank Dexter Barnes and Swami

Sivasubramanian for their comments on this paper.

12. REFERENCES

[1] John von Neumann, Probabilistic Logics and the Synthesis of

Reliable Organisms from Unreliable Components, Automata

Studies, Princeton University Press (1956).

[2] Robert M. Pirsig, Zen and the Art of Motorcycle

Maintenance: An Inquiry into Values. New York, Quill. 25th

Anniversary Edition, ISBN: 0688171664 (1974).

[3] Jim Gray, Notes on Data Base Operating Systems, Lecture

Notes in Computer Science (60): 393-481 Springer-Verlag

(1978).

[4] Andrea Borr, Transaction Monitoring in ENCOMPASS,

Proceedings of the 7th VLDB (September 1981).

[5] Joel Bartlett, A NonStop Kernel, Proceedings of the Eighth

Symposium on Operating Systems Principles (SOSP). Pp

22-29. December, 1981.

[6] L. Lamport, R. Shostak, and M. Pease, The Byzantine

Generals Problem, ACM Transactions on Programming

Languages and Systems 4 (3): 382-401. (July 1982)

[7] Andrea Borr, Robustness to Crash in a Distributed

Database: A Non Shared-Memory Multi-Processor

Approach, Proceedings of the 9th VLDB (September 1984).

Also Tandem Computers TR 84.2

[8] Jim Gray, Why Do Computers Stop and What Can Be Done

About It?, Tandem Computers TR85.7

[9] O’Neil, Pat, The Escrow Transactional Method, ACT

Transactions on Database Systems (TODS), Volume 11,

Issue 4 (December 1986).

[10] Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman,

Concurrency Control and Recovery in Database Systems.

Addison-Wesley Longman (1987). Available for download

from http://research.microsoft.com/~philbe/

[11] Pat Helland, Harald Sammer, Jim Lyon, Richard Carr, Phil

Garrett, Andreas Reuter, Group Commit Timers and High

Volume Transaction Systems, Proceedings of the 2nd

International Workshop on High Performance Transaction

Systems, also Lecture Notes in Computer Science, vol 359,

Springer-Verlag, 1987.

[12] Jim Gray and Andreas Reuter, Transaction Processing:

Concepts and Techniques, Morgan Kaufmann Publishers,

Inc. 1993.

[13] Eric Brewer, Towards Robust Distributed Systems, PODC

(Principles of Distributed Computing) Keynote (July 2000)

[14] Seth Gilbert and Nancy Lynch, Brewer’s Conjecture and the

Feasibility of Consistent, Available, and Partition-Tolerant

Web Services, ACM SIGACT News, Volume 33, Issue 2

(June 2002).

[15] Pat Helland, Life Beyond Distributed Transactions an

Apostate’s Opinion, Conference on Innovative Database

Research (CIDR) January 2007.

[16] Pat Helland, Memories, Guesses, and Apologies, Blog entry

(May 2007). See

http://blogs.msdn.com/pathelland/archive/2007/05/15/memor

ies-guesses-and-apologies.aspx

[17] Shel Finkelstein invented the clever new acronym for ACID.

Captured in private communication (September 2007).

[18] Guiseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swami Sivasubramanian, Peter Vosshall and Werner Vogels,

“Dynamo: Amazon's Highly Available Key-Value Store”,

21st ACM Symposium on Operating Systems Principles,

Stevenson, WA, October 2007.

[19] Pat Helland, The Irresistible Forces Meet the Movable

Objects, Microsoft TechEd Developers EMEA Keynote,

Barcelona, Spain (November 2007). See

http://blogs.msdn.com/pathelland/archive/2008/05/02/link-

to-the-video-of-the-irresistible-forces-meet-the-movable-

objects.aspx

[20] Werner Vogel Eventually Consistent, ACM Queue Vol. 6,

Number 6. October 2008.

[21] Wikipedia. Futures Contract.

http://en.wikipedia.org/wiki/Futures_contract

http://research.microsoft.com/~philbe/
http://blogs.msdn.com/pathelland/archive/2007/05/15/memories-guesses-and-apologies.aspx
http://blogs.msdn.com/pathelland/archive/2007/05/15/memories-guesses-and-apologies.aspx
http://blogs.msdn.com/pathelland/archive/2008/05/02/link-to-the-video-of-the-irresistible-forces-meet-the-movable-objects.aspx
http://blogs.msdn.com/pathelland/archive/2008/05/02/link-to-the-video-of-the-irresistible-forces-meet-the-movable-objects.aspx
http://blogs.msdn.com/pathelland/archive/2008/05/02/link-to-the-video-of-the-irresistible-forces-meet-the-movable-objects.aspx
http://en.wikipedia.org/wiki/Futures_contract

