
Semantic Conditions for Correctness at Different Isolation Levels�

Arthur J. Bernstein, Philip M. Lewis, Shiyong Lu
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400, USA
fart, pml, shiyongg@cs.sunysb.edu

Abstract

Many transaction processing applications execute at isola-
tion levels lower than SERIALIZABLE in order to increase
throughput and reduce response time. The problem is that
non-serializable schedules are not guaranteed to be correct
for all applications. The semantics of a particular applica-
tion determines whether that application will run correctly
at a lower isolation level, and in practice it appears that
many applications do. Unfortunately, we know of no analy-
sis technique that has been developed to test an application
for its correctness at a particular level. Apparently deci-
sions of this nature are made on an informal basis. In this
paper we describe such a technique in a formal way.

We use a new definition of correctness, semantic correct-
ness, which is weaker than serializability, to investigate the
correctness of such executions. For each isolation level,
we prove a condition under which transactions that exe-
cute at that level will be semantically correct. In addition to
the ANSI/ISO isolation levels of READ UNCOMMITTED,
READ COMMITTED, and REPEATABLE READ, we also
prove a condition for correct execution at the READ COM-
MITTED with first-committer-wins (a variation ofREAD
COMMITTED) and at the SNAPSHOT isolation level. We
assume that different transactions can be executing at dif-
ferent isolation levels, but that each transaction is executing
at least at the READ UNCOMMITTED level.

1. Introduction

Serializability is the correctness criterion generally used
in the literature to determine a schedule’s correctness. Such
a criterion is clearly inappropriate, however, in determin-
ing the correctness of schedules that are produced when a
application is run at an isolation level lower than SERIAL-
IZABLE since such schedules might no longer serializable.

�This paper is based upon work supportedby NSF grantCCR-9402415.

Hence, in this paper, we use a correctness criterion proposed
in [6] and [3] (and further developed in [4]), calledseman-
tic correctness, which requires that the interleaved execu-
tion of a set of transactions have the samesemanticeffect
as a serial schedule of the same transactions. The semantic
correctness condition for a transaction schedule is based on
the conditions developed in [11] for the correct execution of
an arbitrary concurrent program.

The ANSI/ISO standard [1] defines three isolation lev-
els lower than SERIALIZABLE: READ UNCOMMIT-
TED, READ COMMITTED, and REPEATABLE READ.
Database systems frequently use a locking protocol to im-
plement these levels. In addition, at least one major
database vendor uses SNAPSHOT isolation implemented
through a combination of locking and multiversion tech-
niques. An excellent analysis of these levels and a proposed
locking implementation for each is given in [2].

In this paper we assume the locking implementation de-
scribed in [2] and analyze the way transactions can be inter-
leaved at each isolation level. The semantic correctness of a
transaction schedule depends on the pattern of interleaving.
By taking this pattern into account it is possible to greatly
reduce the semantic analysis called for in [11] that is re-
quired to demonstrate the correctness of general concurrent
programs. We present conditions for semantic correctness
for each isolation level based on the allowable interleaving
patterns at that level. These conditions provide the formal
basis that underlies the informal reasoning that justifies the
use of non-serializable isolation levels. They allow the ap-
plication designer to choose the lowest isolation level for
each type of transaction of an application in order to achieve
high performance transaction processing.

2. Semantic correctness

When transactions are executed at isolation levels lower
than SERIALIZABLE, the interleaving might no longer be
serializable and correctness depends on what kind of in-
terleaving can occur and what the transactions are doing.



Hence we need a way of describing what each transactions
does: its semantics. The semantics of a transaction,Ti, can
be formally characterized by the triple

fIi ^Bi ^ (xi = Xi)g Ti fIi ^Qig (1)

I is theconsistency constraintof the database, andIi repre-
sents those conjuncts ofI required for the correct execution
of Ti. For example, the consistency constraint of a banking
database might assert thatall accounts have non-negative
balances. However, the correct execution of a transaction
that accesses a particular account requires only that the bal-
ance ofthataccount be non-negative.Ii represents the con-
junction of those conjuncts ofI that are required for the cor-
rect execution ofTi. Ii is also a postcondition ofTi since
we require that any conjunct ofI that is made false during
the execution ofTi is returned to the true state whenTi ter-
minates. It follows thatI �

Vn

i=1
Ii, wheren is the number

of transaction types in the system.Bi describes all condi-
tions thatTi assumes to be true of the arguments passed to
it. For example, ifTi is a deposit transaction anddep is the
parameter representing the money to be deposited, thenBi

might assertdep � 0.
Qi is called theresultand asserts thatTi has performed

its intended function. Continuing the above example, ifTi
deposits into an account whose balance isbal, we need to
assert as a postcondition ofTi that the final balance isdep
more than the initial balance. In order to refer to the initial
balance in the postcondition, we introduce a logical vari-
able,Xi whose sole purpose is to record the initial value of
a database variable,xi, whose value is changed byTi. In
the example, we characterizeTi with the triple

fbal >= 0 ^ dep � 0 ^ bal = BALg Ti
fbal >= 0 ^ bal = BAL + depg

(1) goes beyond the consistency requirement placed on
a transaction by asserting that not only mustTi move the
database from one consistent state to another, but that only a
subset of the consistent states are acceptable when the trans-
action terminates. (1) can be regarded as a formal restate-
ment of the specification ofTi. We can demonstrate thatTi
is correct by proving that (1) is a theorem using a formal
system such as that of [10].1

To overcome the limit of serializability and to increase
performance, in [3] we propose a new correctness criterion,
called semantic correctness. A schedule,Sch, of transac-
tions issemantically correctif

fIg Sch fI ^QSchg (2)

is true. First, a semantically correct schedule must main-
tain the consistency of the database, as indicated by the fact
that I is a pre- and postcondition ofSch. A semantically

1although this is not generally done.

correct schedule must also transform the database to a state
that reflects the cumulative results of all the transactions in
Sch in some order. We denote the assertion that describes
that set of states byQSch, the cumulative result. The re-
lationship betweenQSch and the results,Qi, of the indi-
vidual transactions is described in [4]. In essence,Sch is
semantically correct if its postcondition is the same as the
postcondition of a serial schedule of the same set of trans-
actions, where the serial order is the order of transaction
completion inSch. For example, ifSch consists of several
deposit transactions on some bank account,QSch might as-
sert that the final balance is greater than the initial balance
by an amount equal to the sum of the deposits.

As illustrated in [3], semantic correctness is weaker than
serializability, and it allows schedules that result in states
that could not have been reached in any serial schedule. A
semantically correct schedule can perform significantly bet-
ter than any equivalent serial schedule [5].

A proof of (1) can be abbreviated by an annotated pro-
gram in which each (atomic) statement ofTi, Si;j , is pre-
ceded by an assertion,Pi;j, its precondition, describing the
state of the system at the timeSi;j is eligible for execu-
tion. Hence, assertions are associated with control points
and we say that an assertion and its corresponding control
point areactiveif the following statement is eligible for ex-
ecution. Each assertion states some condition on the val-
ues of items inTi’s workspace and in the database. IfSi;j
is executed starting in a state wherePi;j is true, the next
assertion,Pi;j+1, will be true of the state whenSi;j termi-
nates. Hence, if when each statement is executed its pre-
condition is true, the postcondition of the transaction will
be true when the transaction terminates.

The major issue with concurrency isinvalidation: if the
execution of the statements ofTi andTk (i 6= k) are in-
terleaved,Pi;j might not be true of the database state when
Si;j is initiated. Thus, ifSk;l is executed whenPi;j is active
and true, it might transform the state to one in whichPi;j is
false. If this occurs, we say thatSk;l hasinvalidatedPi;j.
For example, the execution of the statementx := x+1 will
invalidate the assertionx = y, but not the assertionx > y.
If, during execution ofTi, an active assertion is invalidated,
its subsequent behavior will be unpredictable and semantic
correctness is not guaranteed. A sufficient condition to en-
sure that no invalidation occurs is that, for all preconditions
Pi;j and all statementsSk;l, the triple [11]:

fPi;j ^ Pk;lg Sk;l fPi;jg (3)

is a theorem. A similar condition must be specified forQi.
If (3) cannot be proven, we say that the proofs ofTi and

Tk interferewith one another and in particular,Sk;l inter-
feres withPi;j. Hence there is apossibilityof invalidation
at run time if the interleaving actually occurs. Interference
is static. It is a property of the proofs of the transactions.



Invalidation is dynamic. It is a result of interference if the
interfering operation is executed when the interfered with
assertion is active. Hence, interference does not necessarily
lead to invalidation. For example, in [4] each transaction is
decomposed into atomic isolated steps. A concurrency con-
trol is used to prevent those step interleavings that lead to
invalidation from happening, thus ensuring that all sched-
ules are semantically correct.

In [4] we apply the results of [11] to a schedule,Sch, of
transactions and show thatSch is semantically correct if for
all transactions,Ti, in Sch

1. Pi;j is true whenSi;j is executed and

2. Qi is not invalidated by any step of a transaction inter-
leaved inSch with Ti.

By extension, we say that a particular transaction,Ti, is se-
mantically correct inSch if these conditions apply toPi;j
andQi.

As indicated by (3), checking for non-interference in-
volves examining each statement and each assertion of all
transactions. This checking requires a significant amount of
work. For example, in a system ofK transaction types, each
containingN operations,(KN )2 possible triples must be
checked. When the isolation levels of transactions are taken
into account, however, the number of triples that must be
checked is greatly reduced since the locking discipline that
implements the levels prevents certain interleavings from
occurring. Hence, although a particular triple (3) may not
be a theorem, it cannot result in invalidation if the locking
discipline preventsSk;l from being executed whenPi;j is
active. A major goal of this paper is to determine, for each
isolation level, which triples must be checked. This dra-
matically reduces the amount of analysis. For example, for
SMAPSHOT isolation onlyK2 triples must be checked, re-
gardless of the number of operations per transaction.

3. Semantic conditions for conventional
databases

In this section we present conditions which, for each
isolation level, enumerate the non-interference theorems
that must be demonstrated in order to ensure semantic cor-
rectness. We first consider conventional databases and
then relational databases. In conventional databases, no
database items are deleted or inserted, and each item is re-
ferred to by name in read or write statements. In relational
databases, predicates are used in SQL statements to specify
the database items they access.

3.1. Model

A transaction program accesses local variables (in its
workspace) and database variables using the following con-

structs.

1. assignment statement. There are three kinds of assign-
ment statements: a read statement, which atomically
assigns the value of a database item to a local vari-
able, a write statement, which atomically assigns the
value of a local variable to a database item, and a lo-
cal assignment statement, which does not involve any
database items.

2. conditional statement. We assume that the condition is
constructed from local variables.

3. loop statement. We assume that the condition is con-
structed from local variables.

Local variables will be denotedX; Y and database vari-
ables will be denotedx; y. We use the notationsp(P; Si;k)
to denote the strongest postcondition ofSi;k that can be as-
serted when it is executed starting in a state that satisfiesP .
We assume the protocols given in [2] are used to implement
all isolation levels.

3.2. Semantic condition for READ UNCOMMIT-
TED

The locking implementation for READ UNCOMMIT-
TED [2] requires that transactions obtain long-term write
locks on items that they write,2 but no read locks are ac-
quired on items that they read. Long term locks are held un-
til the transaction completes. The following theorem states
a condition under which a transaction will execute correctly
at READ UNCOMMITTED.

Theorem 1 A transaction,Ti, that executes at READ UN-
COMMITTED will execute semantically correctly if each
write statement (including those that rollback a transaction)
in every transaction does not interfere withIi, the postcon-
dition of every read statement inTi, andQi.

Proof: See Appendix B. Q:E :D:
Since a transaction executing at READ UNCOMMITTED
can read uncommitted data, it is necessary to consider the
interference caused by write statements that rollback any
transaction.

Suppose a transaction executing at READ UNCOMMIT-
TED executes a statement,s, that updates data itemx. The
fact that the transaction will then hold a long term write
lock onx implies that no write statement,s0, accessingx
in a concurrent transaction can be interleaved afters, and
hences0 cannot possibly invalidatepost(s) (or any subse-
quent assertions).

2Database systems often prohibit transactions at this level from updat-
ing the database. We ignore this restriction here.



Example 1: The elements of arraycust are records de-
scribing a merchant’s customers, and an integrity constraint
of the database,Ic, asserts this fact. Two transaction types
access the array. TheMailing List transaction type scans
the array and prints a mailing label. The specification of the
transaction requires only that each printed label contains a
valid name and address. TheNew Order transaction type
enters a new record into the array if the customer placing the
new order is not described by an existing record. Each time
a label is printed by aMailing List transaction we would
like to assert “The printed label contains a valid name and
address”. NeitherIc nor this assertion is interfered with
by either the insertion of a new record by an instance of
New Order or the deletion of a record if that instance is
rolled back. HenceMailing List transactions can run at
READ UNCOMMITTED. The database might include a
second array in which each record describes an order that
has been placed. A transaction that analyzes last year’s or-
ders can run at READ UNCOMMITTED since only this
year’s orders are subject to modification.

3.3. Semantic condition for READ COMMITTED

The locking implementation of READ COMMITTED
[2] requires that transactions obtain long-term write locks
on items that they write and short-term read locks on items
that they read. A short term lock is released when the oper-
ation completes. The following theorem states a condition
under which a transaction will execute correctly at READ
COMMITTED.

Theorem 2 A transaction,Ti, executed at READ COM-
MITTED will execute semantically correctly if each trans-
action does not interfere with the postcondition of every
read statement inTi, and withQi.

Proof: See Appendix B. Q:E :D:
Example 2: If the specification of theMailing List

transaction is strengthened to require that all labels refer
to customers,Mailing List transactions must be run at
least at the READ COMMITTED level since the new post-
condition ofMailing List “The printed label refers to a
customer” is interfered with by the update statement that
deletes an entry incust if New Order is rolled back.

In addition tocust, the database might contain an array
emp, with one record for each employee.emp[i]:rate is the
ith employee’s hourly rate,emp[i]:num hrs is the number
of hours that employee has worked so far this week, and
emp[i]:sal is that employee’s accumulated salary for the
week. A conjunct of the integrity constraint,Isal asserts that
for all records inemp, “emp[i]:rate � emp[i]:num hrs =
emp[i]:sal”.

The granularity of locking is at the level of records. An
instance of transaction typeHours is executed at the end

of each workday to record the number ofhours worked by
an employee that day. It executes one write statement to
incrementemp[i]:num hrs and another to update the ac-
cumulated salary. Hence, although the two write statements
together preserveIsal, individually they do not. A second
transaction type,Print Records causes the records to be
printed. Its specifications require that each printed record is
a consistent snapshot of that employee’s information at the
time the record is printed. This specification makes it nec-
essary thatPrint Record be run at a level no lower than
READ COMMITTED for two reasons: (1) Only committed
information can be printed. (2) It follows from Theorem 2
that, in order to ensure that the snapshot ofemp[i] is con-
sistent, the write statements ofHours must be seen as an
atomic unit byPrint Records. The specification does not
require that all printed records come from the same commit-
ted snapshot ofemp. Hence, it is not necessary to prohibit
instances ofHours from updating records that have been
printed whilePrint Records is printing other records. As
a result the long term read locks that would be acquired
on each record printed ifPrint Records were run at RE-
PEATABLE READ are not required.

3.4. Semantic condition for READ COMMITTED
with first-committer-wins

TheREAD COMMITTED with first-committer-winsiso-
lation level is an extension of READ COMMITTED with
one feature from the SNAPSHOT isolation level. Transac-
tions obtain long-term write locks on items that they write
and short-term read locks on items that they read. In ad-
dition, if T1 writes a data item and commits between the
times thatT2 has read and attempts to write the item,T2
will be aborted (first-committer-wins). READ COMMIT-
TED with first-committer-wins is easily and often imple-
mented in relational databases by running an application at
the READ COMMITTED level and encoding, (perhaps us-
ing sequence numbers) in the UPDATE statements of the
application, checks to determine whether the data item to be
updated has changed since it was read. The isolation level
is also supported by a number of vendors. Some vendors
call this level READ COMMITTED with optimistic reads.

Theorem 3 A transaction,Ti, executed at READ COM-
MITTED with first-committer-wins will execute semanti-
cally correctly if each transaction does not interfere with
the postconditions of those read statements inTi that are
not followed by a write statement on the same item, and
withQi.

Proof: See Appendix B. Q:E :D:
Note that if transactionTi writes all the data items it

reads, then whenTi commits,Ti has effectively held long
term read locks on the data items that it read, and hence in



this case, READ COMMITTED with first-committer-wins
is equivalent to REPEATABLE READ. We give an exam-
ple of correct execution at the READ COMMITTED with
first-committer-wins level in Section 6.

3.5. Semantic condition for REPEATABLE READ

The locking implementation of the REPEATABLE
READ isolation level [2] requires that a transaction acquire
long-term read and write locks on the data items that it
accesses. The only problem at the REPEATABLE READ
level is the possibility of phantoms [8]. Since phantoms do
not occur in conventional (non-relational) databases, RE-
PEATABLE READ ensures serializability and hence se-
mantic correctness. Thus we have the theorem:

Theorem 4 Under the conventional database model, a
transaction executed at REPEATABLE READ executes se-
mantically correctly.

3.6. Semantic condition for SNAPSHOT isolation

SNAPSHOT isolation is not one of the ANSI/ISO stan-
dard isolation levels but is implemented in at least one com-
mercial DBMS. The implementation of SNAPSHOT iso-
lation given in [2] does not use locks. Instead, it uses a
multiversion concurrency control that satisfies each read re-
quest made by transactionTi with values from the version
of the database, called asnapshot, that reflects the effect of
all committed transactions at the timeTi was started. Hence
read requests never wait. Writing is deferred until the trans-
action commits.Ti can be committed as long as no other
transaction that committed afterTi’s first read has updated
a data item thatTi has also updated. This mechanism is
referred to asfirst committer wins, because the first transac-
tion that has updated a particular data item and requests to
commit is allowed to do so, while concurrent transactions
that have updated that item are ultimately aborted. Thus
first committer winshas at least the effect of a long-term
write locks on the items written.

We model a transactionTi at the SNAPSHOT isolation
level as two isolated atomic steps: aread stepfollowed by
a write step. The read step reads a snapshot of the database
that reflects the effect of all committed transactions at the
timeTi was started. The write step is the remainder of the
transaction. The step boundary reflects the fact that other
transactions can commit whileTi is active, creating new
versions of the database that might invalidate assertions that
Ti has made about the database based on its snapshot. IfTi
commits, its write step must commute with the write steps
of these other transactions because they must have written
to disjoint data items. Note that the postcondition of the
snapshot does not necessarily state that the value of a data

item in a snapshot is equal to the most recent committed
value of that data item. It only needs to be strong enough to
support the proof of the transaction [6].

Theorem 5 A schedule produced under SNAPSHOT isola-
tion is semantically correct if, given any two transactions
Ti andTj from the schedule, either:

1. Ti’s write set intersectsTj ’s write set or

2. Tj does not interfere with the postcondition of the read
step ofTi, and withQi.

Proof: The read step ofTi reads the snapshot of the
database that reflects the effect of all committed transac-
tions at the timeTi was started. This snapshot either reflects
the whole result ofTj or it does not reflect any result ofTj .
Thus, when we reason about the semantic correctness ofTi
in a schedule that includesTi andTj , Tj can be considered
as a single isolated unit. If (1) applies, then eitherTi or Tj
will be aborted and has no effect. If not, then using Lemma
1, Lemma 2 and condition 2 of the theorem, it follows that
no assertion inTi will be invalidated byTj . Note that since
Tj preservesI, the precondition ofTi is not interfered with
by Tj . �

Example 3: Suppose we have two types of
withdraw transactions, Withdraw sav(i; w) and
Withdraw ch(i; w), which withdraw w from the ith

depositor’s savings and checking accounts, respec-
tively. Savings and checking account information is
held in arraysacct sav and acct ch respectively and
a conjunct of the integrity constraint,Ibal requires that
acct sav[i]:bal + acct ch[i]:bal � 0. An annotated
version of theWithdraw sav program is given in Figure
1. The annotation forWithdraw ch is similar.
Sav andCh are local variables. The postcondition of

the read step ofWithdraw sav is interfered with by the
write step ofWithdraw ch. Hence, the theorem states
that a concurrent schedule of the two transactions might
not be semantically correct. A schedule in which the write
step is interleaved between the read and write step of the
other exhibits write skew [2]. Note that although this same
precondition is also interfered with by another instance of
Withdraw sav, a concurrent schedule in which two in-
stances ofWithdraw sav are interleaved is semantically
correct because the first-committer-wins rule implies that
one of them will be aborted (this is reflected in the sec-
ond condition of the theorem). Finally, aDeposit sav
(Deposit ch) transaction, which adds money toacct sav
(acct ch) does not interfere with the postcondition of the
read step ofWithdraw sav. In this case, their concur-
rent execution is semantically correct (this is reflected in
the third condition of the theorem).



Withdraw sav(i; w)
BEGIN TRANSACTION

facct sav[i]:bal + acct ch[i]:bal � 0
^ Sav = Sav0g

Sav := acct sav[i]:bal;
Ch := acct ch[i]:bal;

facct sav[i]:bal + acct ch[i]:bal � 0
^ acct sav[i]:bal + acct ch[i]:bal �
Sav + Ch ^ Sav = Sav0g

if (Sav + Ch � w) then
facct sav[i]:bal + acct ch[i]:bal � 0 ^
acct sav[i]:bal + acct ch[i]:bal �
Sav + Ch ^ Sav + Ch � w

^ Sav = Sav0g
acct sav[i]:bal := Sav � w;

fi
facct sav[i]:bal + acct ch[i]:bal � 0
^(acct sav[i]:bal = Sav0 � w)g

END TRANSACTION

Figure 1. Withdraw from savings account

4. Semantic conditions for relational databases

In adapting the conditions for semantic correctness to re-
lational databases, we must deal with database operations
that involve predicates. The read statement is now the SE-
LECT and its postcondition might assert that it read all the
tuples that satisfy a certain predicate. Similarly, the write
statements are UPDATE, INSERT, and DELETE and their
postconditions might assert that they wrote, inserted, or
deleted all the tuples that satisfy a certain predicate.

Interference now takes new forms. For example, the
postcondition of a SELECT statement might assert that the
statement read all the tuples that satisfy a predicate,P . That
assertion can be interfered with by another transaction that
inserts a phantom tuple that also satisfiesP .

Phantoms can occur in connection with write statements
as well as in connection with the SELECT. Thus, the post-
condition of an UPDATE that asserts that the value of all tu-
ples satisfyingP have been updated can be interfered with
by an INSERT that inserts a phantom tuple that satisfiesP .
That interference might not cause invalidation of the predi-
cate, however, if the locking policy prevented the INSERT
from executing after the UPDATE had taken place.

The locking policy for implementing the ANSI isolation
levels discussed in [2] states that all “write locks on data
items and predicates (are) long duration”. Thus when an
UPDATE, INSERT, or DELETE statement refers to a pred-
icate, that predicate is write-locked for the duration of the
transaction, and phantoms cannot be inserted into that pred-
icate. Most DBMSs do not implement predicate locking,

but instead use a locking protocol (perhaps consisting of
some combination of table locks and index locks) that is
equivalent to, or stronger than, predicate locking. We as-
sume in what follows that the DBMS uses such a locking
protocol. Then Theorems 1, 2, 3 remain valid for relational
databases. A more complete treatment of the relational case
is contained in a full version of this paper [7].

Theorem 4 can be restated for relational databases by
considering the possibility of phantoms. At REPEATABLE
READ, the long term read locks obtained on tuples read by
a SELECT statement block the execution of a statement in a
concurrent transaction that attempts to delete or update such
tuples. Hence, the postcondition of the SELECT statement
cannot be invalidated by a transaction that attempts to delete
or update such a tuple. As a result we get the following
theorem. Its proof can be found in [7].

Theorem 6 For a transaction,Ti, executed at REPEAT-
ABLE READ, letSi;j be an arbitrary SELECT inTi. Ti
will execute semantically correctly if each transaction does
not interfere withQi and either (1) does not interfere with
the postcondition ofSi;j , or (2) includes DELETE or UP-
DATE statements whose predicates intersect the predicate
of Si;j.

For SNAPSHOT isolation, we model a transaction in the
same way as we did for conventional databases. Theorem 5
remains valid for relational databases. A proof can be found
in [7].

5. Choosing an isolation level

Given the set of transactions types of an application, the
problem faced by the application designer is to determine,
for each type, the lowest isolation level at which a transac-
tion of that type can execute correctly. Since SNAPSHOT
isolation is not generally offered in the context of the other
isolation levels, we do not consider it in what follows.

Using the previous results it follows that while we de-
termine the isolation level at which to execute transaction,
T1, we do not have to be concerned about the level of other
transactions. Specifically, it we are performing an interfer-
ence analysis to determine the correctness of executingT1
at READ UNCOMMITTED, we must consider the interfer-
ence effects of each write of another transaction,T2, indi-
vidually, regardless of the level ofT2. Similarly, if we are
considering executingT1 at any higher level, we consider
the interference effects of the whole transactionT2 as an
atomic isolated unit, regardless of the level ofT2. Then
a procedure for determining the lowest isolation level at
which each transaction can execute semantically correctly
is: for each transaction,Ti, in the set, consider the iso-
lation levels READ UNCOMMITTED, READ COMMIT-



TED, REPEATABLE READ, and SERIALIZABLE in se-
quence and return the first at which execution is semanti-
cally correct.

6. an example

To motivate the conditions for semantic correctness in a
relational setting, consider a business application that ac-
cesses a schema with the following three tables (primary
keys are underlined):

ORDERS(order info , cust name,
deliv date, done )

CUST(cust name, address, #orders )
MAXDATE (maximum date )

A conjunct of I, Io, asserts that each row ofORDER de-
scribes an order anddone is true if that order has been
delivered. MAXDATE is a table containing a single row
that satisfies a second conjunct,Imax, that asserts that
maximum date is the maximum delivery date for any or-
der inORDERS.

This application has four transaction types shown in
Figures 2 through 5. Each figure shows an annotation of a
transaction program indicating the pre- and postconditions
of the transaction and the postcondition ofeach SELECT
statement. These are the critical assertions. The purpose of
the figures is to display the critical assertions; the code is
just sketched.

Mailing List (Figure 2): This transaction scansCUST

and prints a label usingcust name andaddress . The
specification of the transaction places no condition on the
labels printed. Since no critical assertion is interfered with
by any single write statement in any of the transaction
types, this transaction will execute correctly at READ
UNCOMMITTED.

Mailing List()
BEGIN TRANSACTION

ftrueg
SELECTcust name, address FROM CUST

fReturned data contains names and addressesg
Print labels using returned names and addresses
fLabels have been printedg

END TRANSACTION

Figure 2. Prints out a mailing list

New Order (Figure 3): This transaction inserts a new
order intoORDERS and, if this is the first order forcus-
tomer, inserts a new tuple intoCUST. In order to keep the

delivery truck busy, a business rule asserts that there can be
no gaps in the sequence of delivery dates: there must be
at least one order to be delivered on each date up to some
maximum date which is the delivery date of the last out-
standing order. A conjunct of the integrity constraint of the
database, which we call “no gaps”, asserts this fact. How-
ever, there can be more than one order for any particular
delivery date. Furthermore, the number of orders for a par-
ticular customer inORDERSmust be equal to the value of
the #orders field of that customer’s tuple inCUST. We
refer to this integrity constraint as “order consistency”.
The intermediate assertionI 0

max in Figure 3 asserts that
maximum date is one greater than the latest delivery
date in ORDERS. ThusNew Order reads the value of
maximum date in MAXDATE into the workspace vari-
able maxdate; and incrementsmaximum date in MAX -
DATE by 1. If the customer is new it inserts the tuple
(customer; address; 1) into CUST; otherwise it incre-
ments#orders in the customer’s tuple inCUST. 3 Finally,
it inserts(order info; customer; maxdate + 1; false)
into ORDERS.4

Since no critical assertion is interfered with by any
transaction type, this transaction can run at READ COM-
MITTED. The transaction cannot run at READ UNCOM-
MITTED because, for example, theno gap assertion that
is a conjunct of assertions in aNew Order transaction,
T1, is interfered with by the rollback statement of another
New Order transaction,T2, that deletes a tuple fromOR-
DERS (it might leave a gap in delivery dates below the de-
livery date selected byT1).

Suppose an additional business rule is imposed: there
must beexactlyone order with a particular delivery date for
each date up to some maximum. The “no gap” conjunct
of the integrity constraint is replaced by the conjunct
“one order per day” which asserts the new requirement.
The sameNew Order transaction can be used to enforce
this rule if it is run at READ COMMITTED with first-
committer-wins. At READ COMMITTED the INSERT
into ORDERS in the New Order transaction interferes
with the conjunctone order per day in the postcondition
of the SELECT. However, sinceNew Order updates
MAXDATE after reading it,one order per day cannot
be invalidated at the READ COMMITTED with first-
committer-wins isolation level. Also note the postcondition
of the whole transaction is not interfered with by any
transaction type, and thus this transaction can run at READ
COMMITTED with first-committer-wins.

3The postcondition ofNew Order in Figure 3 indicates that the in-
serted tuple has a particular value in the#orders field. Since the value
will change as the customer adds new orders, in order to avoid interference
the postcondition should actually be weakened to assert thatat commit time
this tuple was an element ofCUST.

4Since the value ofdone will subsequently change, the comments in
the previous footnote apply.



New Order(customer; address; order info)
BEGIN TRANSACTION

fno gap ^ order consistency ^ Imaxg
SELECT maximum date FROM MAXDATE

INTO : maxdate
fno gap ^ order consistency

^ Imax ^ (maxdate � maximum date)g
UPDATE MAXDATE SET
maximum date = : maxdate + 1
SELECT COUNT(*) INTO : custcount FROM
ORDERSWHERE cust name= : customer

fno gap ^ order consistency ^ I0

max

^(maxdate � maximum date) ^
(custcount = 0) ) (customer is new)g

if (custcount == 0) then
INSERT INTO CUST

VALUES (: customer; : address; 1)
else

UPDATE CUST SET #orders = :custcount+1
WHERE cust name= : customer

fi
INSERT INTO ORDERSVALUES
(: order info; : customer; : maxdate+ 1; false)

fno gap ^ order consistency ^ Imax^
(customer; address; custcount+ 1) 2 cust

^ (order info; customer; maxdate + 1; false)
2 ordersg

END TRANSACTION

Figure 3. Processes a new order

Delivery (Figure 4): This transaction delivers an order.
ThusDelivery scansORDERSto find all the orders that are
due today and updates thedone attributes in the orders to
be delivered totrue.

The postcondition of theSELECT statement of
a Delivery transaction is interfered with by another
Delivery transaction. Thus this transaction type cannot ex-
ecute at READ COMMITTED. However, if the transaction
is executed at REPEATABLE READ, the selected tuples
are read locked after the SELECT statement is executed.
Hence aDelivery transaction would not be allowed to up-
date these tuples and the assertion could not be invalidated.
Thus this transaction meets the condition for correct execu-
tion at the REPEATABLE READ isolation level.

Audit (Figure 5): This transaction checks that the in-
tegrity constraintorder consistency is true. ThusAudit
scansORDERSand counts the number of orders registered
for a particular customer; reads the tuple for that customer
in CUST and compares#orders with the count.

Delivery(today)
BEGIN TRANSACTION

fIog
SELECT order info INTO : buff FROM ORDERS

WHERE deliv date = : today AND done = FALSE
fIo ^ returned values are undelivered orders
to be delivered todayg

while ((ord inf := next in buff)
UPDATE ORDERSSET done = TRUE
WHERE order info = : ord inf

fIo ^ (tuples inORDERSdescribing orders
due today havedone = TRUE)g

END TRANSACTION

Figure 4. Delivers an order

Audit(customer)
BEGIN TRANSACTION

fIog
SELECT COUNT(*) INTO : count1 FROM ORDERS

WHERE cust name= : customer
fIo ^ (count1 = the number of tuples
in ORDERSfor customer)g

SELECT #orders INTO : count2 FROM CUST

WHERE cust name= : customer
fIo ^ (count1 = the number of tuples in
ORDERSfor customer) ^ (count2 = the value
of #orders inCUST for customer)g

retv := (count1 == count2);
fIo ^ (retv = order consistency)g

END TRANSACTION

Figure 5. Produces accounting information

This transaction must run at the SERIALIZABLE level
because the postconditions of both SELECT statements
might be interfered with by aNew Order transaction that
inserts a (phantom) new order. Note that this transaction
does not satisfy the second half of the condition for correct
execution at REPEATABLE READ because tuple locks do
not prevent the insertion of a phantom new order.

7. Conclusion and future work

We have used semantic correctness as the criterion to in-
vestigate the correctness of schedules at different isolation
levels. Specifically, for each isolation level, we prove a con-
dition under which transactions that execute at that level
will be semantically correct. This technique also clarifies
the relationship between interference and invalidation. In-
terference does not necessarily lead to invalidation because



the underling locking scheme might prevent the offending
interleavings from happening. Furthermore, an assertion
that is interfered with can often be replaced by a stronger
assertion that is not interfered with. In that case, the weaker
assertion is not invalidated.

We are planning to use our theorems to analyze the TPC-
Ctm Benchmark transactions and run them at a combination
of isolation levels to evaluate the performance.

References

[1] ANSI X3.135-1992. American national standard for infor-
mation systems–database languages–sql, November 1992.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. InPro-
ceedings 1995 ACM SIGMOD International Conference on
Management of Data, pages 1–10, San Jose, CA, May 1995.

[3] A. J. Bernstein, D. S. Gerstl, W. H. Leung, and P. M. Lewis.
Design and performance of an assertional concurrency con-
trol system. InProceeding of International Conference on
Data Engineering, 1998.

[4] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis. A concurrency
control for step-decomposed transactions.Information Sys-
tems, 1999. Accepted for publication.

[5] A. J. Bernstein, D. S. Gerstl, P. M. Lewis, and S. Lu. Using
transaction semantics to increase performance. Inthe Eighth
International Workshop on High Performance Transaction
Systems (HPTS), Pacific Grove, California, USA, Sept. 1999.

[6] A. J. Bernstein and P. M. Lewis. High performance trans-
action systems using transaction semantics.Distributed and
Parallel Databases, 4(1), Jan. 1996.

[7] A. J. Bernstein, P. M. Lewis, and S. Lu. Semantic conditions
for correctness at different isolation levels. Technical report,
SUNY at Stony Brook, Stony Brook, 1999. TR 99/22.

[8] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notions of
consistency and predicate locks in a database system.Com-
munications of the ACM, 19(11), Nov. 1976.

[9] D. Gries, editor. The Science Of Programming. Springer-
Verlag New York Inc., 1981.

[10] Hoare, C. An axiomatic basis for computer programming.
Commun. ACM, 12(10), October 1969.

[11] Owicki, S. and Gries, D. An axiomatic proof technique for
parallel programs I.Acta Informatica, 6:319–340, 1976.

A. Proofs of lemmas

Lemma 1: Let Si;k : X := e be a local assignment
statement of transactionTi, andSj;h be a write statement
of another transactionTj. SupposeSi;k is characterized by
the triplefPg Si;k fQg, whereQ � sp(P; Si;k). If Sj;h
does not interfere withP , thenSj;h does not interfere with
Q.

Proof: The strongest postcondition,Q, ofSi;k with precon-
ditionP is given by [9]:Q � 9v(PX

v

V
X = eXv ). Since

Sj;h does not interfere withP , the triple

fP
^

P 0g Sj;h fPg (4)

is a theorem, whereP 0 is the precondition ofSj;h. Since
X is a local variable ofTi, transactionTj cannot change its
value, it follows from (4) that

fPX
v

^
P 0g Sj;h fP

X
v g (5)

wherev is an arbitrary value ofX. Our goal is to show that

fQ
^

P 0g Sj;h fQg (6)

Supposeq is an arbitrary state satisfyingQ ^ P 0, andq0 is
the state that results afterSj;h is executed starting inq. We
would like to show thatq0 satisfiesQ. Let v0 be a value of
X that makesQ true inq. ThenPX

v0
is true inq and from

(5)PX
v0

is true inq0 as well. Furthermore, sinceX is a local
variable andeXv0 only involves local variables,X = eXv0 is
still true ofq0. Hence,Q is true ofq0. Sinceq is an arbitrary
state satisfyingQ ^ P 0, it follows that (6) is a theorem.�

Lemma 2: Let Si;k : x := X be a write statement of
transactionTi, andSj;h : y := Y be a write statement of
another transactionTj . Supposex and y are two distinct
database variables andSi;k is characterized by the triple
fPg Si;k fQg whereQ � sp(P; Si;k). If Sj;h does not
interfere withP , thenSj;h does not interfere withQ.

Proof: The strongest postcondition,Q, of Si;k with pre-
conditionP is given by [9]: Q � 9v(P x

v

V
x = X).

SinceSj;h does not change the values ofx andX, we can
prove this lemma using the same technique that we used in
Lemma 1.�

B. Proofs of theorems

Theorem 1 A transaction,Ti, that executes at READ UN-
COMMITTED will execute semantically correctly if each
write statement (including those that rollback a transaction)
in every transaction does not interfere withIi, the postcon-
dition of every read statement inTi, andQi.

Proof: Consider an arbitrary execution path of transaction
Ti and label the control points along this path�1, �2, : : :,
�n. LetP�k be the assertion associated with�k in the proof
(1) of Ti. In the following, we show that, when each con-
trol point,�k, of the path is active, the state of the system,
denoted bystate(�k), satisfies an assertionP 0

�k
such that:

(1)P 0

�k
=) P�k, and (2) for each write statement,Sj;h, of

transactionTj , eitherSj;h does not interfere withP 0

�k
, or if

it does, it will not invalidateP 0

�k
.

The proof is by induction onk.

1. Induction basis k = 1: Let P 0

�1
� P�1 . Since�1 is

the first control pointP�1 � Pi;1. By the conditions of
the theorem,Pi;1 is not interfered with bySj;h.



2. Induction hypothesis: For all control points�i in the
execution path�1 � � ��m, state(�i) satisfies an asser-
tionP 0

�i
that satisfies (1) and (2).

3. Induction step: We need to exhibit an assertion,
P 0

�m+1
, satisfying (1) and (2). Consider all possible

control point transitions from�m to�m+1:

(a) Ti executes a read statement. By the conditions
of the theorem,P�m+1

is not interfered with by
Sj;h.

(b) Ti executes a write statementstmt, that writes
the same database item asSj;h. Let P 0

�m+1
�

sp(P 0

�m
; stmt). SinceP 0

�m
=) P�m , it follows

that P 0

�m+1
=) P�m+1

. Furthermore,P 0

�m+1

cannot be invalidated bySj;h because ifstmt has
executed,Ti has acquired a write lock on the data
item written bystmt. Thus,Sj;h cannot be exe-
cuted untilTi terminates. (Note in this case, it is
possible thatSj;h interferes withP 0

�m+1
.)

(c) Ti executes a write statement,stmt, that writes
a database item that is distinct from the item
written bySj;h. Let P 0

�m+1
� sp(P 0

�m
; stmt).

SinceP 0

�m
=) P�m, it follows thatP 0

�m+1
=)

P�m+1
. Furthermore, sinceP 0

�m
is not inter-

fered with bySj;h, it follows from Lemma 2 that
P 0

�m+1
is not interfered with bySj;h.

(d) Ti executes a local assignment,stmt. LetP 0

�m+1

= sp(P 0

�m
; stmt). Since

P 0

�m
=) P�m , it follows that P 0

�m+1
=)

P�m+1
. SinceP 0

�m
is not interfered with bySj;h,

it follows from Lemma 1 thatP 0

�m+1
is not inter-

fered with bySj;h.

(e) Ti enters theTHEN body of a conditional state-
ment with guardG. Let
P 0

�m+1
� P 0

�m
^G. SinceP 0

�m
=) P�m , it fol-

lows that(P 0

�m
^G) =) (P�m ^G). SinceP 0

�m

is not interfered with bySj;h andG only involves
local variables, (P 0

�m
^G), is not interfered with

by Sj;h.

(f) Ti enters theELSE body of a conditional state-
ment with guardG. Let
P 0

�m+1
= P 0

�m
^ :G. The argument is the same

as the previous case.

(g) Ti enters (or re-enters) the body of a while loop
with guardG. Let P 0

�m+1
= P 0

�m
^ G. Since

P 0

�m
=) P�m , it follows that (P 0

�m
^ G) =)

(P�m ^G), i.e.,P 0

�m+1
=) P�m+1

. SinceP 0

�m

is not interfered with bySj;h andG only involves
local variables,P 0

�m+1
is not interfered with by

Sj;h.

(h) Ti exits from awhile loop with guardG. Let
P 0

�m+1
= P 0

�m
^ :G. The argument is the same

as the previous case..

Thus whenTi commits,Q0

i will be true of the final state
whereQ0

i =) (Ii ^ Qi). As one of the conditions of the
theorem,Ii ^Qi is not interfered with bySj;h. Hence none
of the assertions ofTi will be invalidated. Since the proof is
done for an arbitrary execution ofTi and an arbitrary write
statement ofTj, the semantic correctness ofTi is guaran-
teed.�

Theorem 2 A transaction,Ti, executed at READ COM-
MITTED will execute semantically correctly if each trans-
action does not interfere with the postcondition of every
read statement inTi, and withQi.

Proof: Since the isolation level ofTj is at least READ UN-
COMMITTED, Tj will hold a long term write lock on any
item it writes. Since at the READ COMMITTED level,Ti
uses short term read locks,Ti cannot read any item written
by Tj until Tj terminates. Thus, when we reason about the
semantic correctness of a schedule that includesTi, as far
asTi is concerned,Tj can be considered a single isolated
unit. Using the same reasoning as employed in the proof
of Theorem 1, we can prove that no assertion ofTi can be
invalidated byTj . Note that sinceTi preservesI, the only
conjunct of the postcondition ofTi that can be interfered
with by Tj isQi. �

Theorem 3 A transaction,Ti, executed at READ COM-
MITTED with first-committer-wins will execute semanti-
cally correctly if each transaction does not interfere with
the postconditions of those read statements inTi that are
not followed by a write statement on the same item, and
withQi.

Proof: Consider any (annotated) read statement,fPgX :=
x fQg, in Ti which has a following write statement onx.
Then sp(P; X := x) � 9v(PX

v )
V
(X = x) Assuming

P is not interfered with byTj, then, using Lemma 1, only
the second conjunct,X = x, can be invalidated. SinceTi
commits, no concurrent transaction writesx and the above
postcondition is not invalidated. With this observation in
mind, the proof follows in a manner similar to the proof for
the READ COMMITTED isolation level.�


