Semantic Conditions for Correctness at Different Isolation Levels

Arthur J. Bernstein, Philip M. Lewis, Shiyong Lu
Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794-4400, USA
{art, pml, shiyon@cs.sunysb.edu

Abstract Hence, in this paper, we use a correctness criterion proposed
in [6] and [3] (and further developed in [4]), calls@man-
Many transaction processing applications execute at isola- tic correctnesswhich requires that the interleaved execu-
tion levels lower than SERIALIZABLE in order to increase tion of a set of transactions have the saseenanticeffect
throughput and reduce response time. The problem is thatas a serial schedule of the same transactions. The semantic
non-serializable schedules are not guaranteed to be correctcorrectness condition for a transaction schedule is based on
for all applications. The semantics of a particular applica- the conditions developed in [11] for the correct execution of
tion determines whether that application will run correctly an arbitrary concurrent program.
at a lower isolation level, and in practice it appears that The ANSI/ISO standard [1] defines three isolation lev-
many applications do. Unfortunately, we know of no analy- els lower than SERIALIZABLE: READ UNCOMMIT-
sis technique that has been developed to test an applicatioTED, READ COMMITTED, and REPEATABLE READ.
for its correctness at a particular level. Apparently deci- Database systems frequently use a locking protocol to im-
sions of this nature are made on an informal basis. In this plement these levels. In addition, at least one major
paper we describe such a technique in a formal way. database vendor uses SNAPSHOT isolation implemented
We use a new definition of correctness, semantic correct-through a combination of locking and multiversion tech-
ness, which is weaker than serializability, to investigate the niques. An excellent analysis of these levels and a proposed
correctness of such executions. For each isolation level, locking implementation for each is given in [2].
we prove a condition under which transactions that exe- In this paper we assume the locking implementation de-
cute at that level will be semantically correct. In additionto scribed in [2] and analyze the way transactions can be inter-
the ANSI/ISO isolation levels of READ UNCOMMITTED, leaved at each isolation level. The semantic correctness of a
READ COMMITTED, and REPEATABLE READ, we also transaction schedule depends on the pattern of interleaving.
prove a condition for correctxecution at the READ COM- By taking this pattern into account it is possible to greatly
MITTED with first-committer-wins (a variation dREAD reduce the semantic analysis called for in [11] that is re-
COMMITTED) and at the SNAPSHOT isolation level. We quired to demonstrate the correctness of general concurrent
assume that different transactions can be executing at dif-programs. We present conditions for semantic correctness
ferent isolation levels, but that each transaction is executing for each isolation level based on the allowable interleaving
at least at the READ UNCOMMITTED level. patterns at that level. These conditions provide the formal
basis that underlies the informal reasoning that justifies the
use of non-serializable isolation levels. They allow the ap-
plication designer to choose the lowest isolation level for
each type of transaction of an application in order to achieve

o o high performance transaction processing.
Serializability is the correctness criterion generally used

in the literature to determine a schedule’s correctness. Suc .

a criterion is clearly inappropriate, however, in determin- fé Semantic correctness
ing the correctness of schedules that are produced when a

application is run at an isolation level lower than SERIAL-
IZABLE since such schedules might no longer serializable.

1. Introduction

When transactions are executed at isolation levels lower
than SERIALIZABLE, the interleaving might no longer be
serializable and correctness depends on what kind of in-
*This paper is based upon work supported by NSF qE&iR-9402415. terleaving can occur and what the transactions are doing.

Hence we need a way of describing what each transactiongorrect schedule must also transform the database to a state
does: its semantics. The semantics of a transactigrcan that reflects the cumulative results of all the transactions in

be formally characterized by the triple Sch in some order. We denote the assertion that describes
I that set of states b@s.», the cumulative result The re-
{LinBiA(zi = %)} Ti {1 A Qi} 1) lationship betweemQs., and the resultsg;, of the indi-

vidual transactions is described in [4]. In essergeh is
semantically correct if its postcondition is the same as the

of T;. For example, the consistency constraint of a banking postcondltlon of a serlql schedul.e of the same set of traps-
actions, where the serial order is the order of transaction

database might assert thet nts have non-n ivi L . .
g t accounts have non-negative completion inSch. For example, ifSch consists of several

balances. However, the correct execution of a transaction Jeposit transactions on some bank acco@riy, might
that accesses a particular aoat requires only that the bal- P n Might as

ance ofthataccount be non-negativé, represents the con- sert that the final balance is greater than the initial balance

junction of those conjuncts dfthat are required for the cor- by:g aw;l::ttez‘?ﬂza[‘gogzg Zz;rcigtrf:zc(:ﬁpo&its.w ot
rect execution off;. I; is also a postcondition df; since ' ess 1S Weaker "ha

we require that any conjunct dfthat is made false during serializability, and it allows schedules that result in states

the execution off; is returned to the true state wh&hter- g;‘;;ggld ITOt h;e:ve tbe(;n dre?Cheg n efmy se.rlallicheﬂuls ' tA
minates. Itfollows thal = A, I;, wheren is the number cally correct schedule can periorm significantly bet-

of transaction types in the system®; describes all condi- ter;\ha? a?y feqluwalr?nt;[Segilrssridglg [5] tated
tions thatT; assumes to be true of the arguments passed to rampir?(Jvh(i) é) ca;] f ?ni et ? em 3{ a? ;n'nq ated pro-
it. For example, iff; is a deposit transaction adp is the 9 ch each (atomic) statementf 5; 5, is pre-

parameter representing the money to be deposited,Bhen ceded by an assertiof; ;, its .preco.nditi.or?, describing the
might assertiep > 0 state of the system at the tinf ; is eligible for execu-

Q; is called theesultand asserts th&f; has performed 2123.wHeesna::e,the:tsaerrmt:snsseﬁirsnaasligﬁltitigr\rlgth cr?gitrr]ol por:?rtsl
its intended function. Continuing the above exampld; if y sPo g contro

deposits into an account whose balancéais we need to point areactiveif the following statement is eligible for ex-
assert as a postcondition @y that the final balance idep ecution. Each assertion states some condition on the val-
more than the initial balance. In order to refer to the initial ilfe,ezx%fclmss'gﬁt?nw?;k;p;ieacvw;h? dt?tab?ﬁe‘?fjxt
balance in the postcondition, we introduce a logical vari- 9 7y 1S U, the ne

able,&; whose sole purpose is to record the initial value of ﬁ:g;“oﬂepgé gl’ifw vl\/HhZﬁ ter:ghogttgfers;gﬁ \i';hefi’j tterdmilt- .
a database variable,;, whose value is changed l#y. In : ' executed Its pre

the example, we characteriZe with the triple condition is true, the pochondlthn of the transaction will
be true when the transaction terminates.

{bal >=0Adep>0Abal = BAL} T, The major issue with concurrencyiis/alidation if the

{bal >= 0 A bal = BAL + dep} execution of the statements @f andTy (¢ # k) are in-

) i terleaved,P; ; might not be true of the database state when
(1) goes beyond the consistency requiremeatedl on g, s injtiated. Thus, ifSy ; is executed whei®; ; is active

a transaction by asserting that not only miisimove the 4 rye, it might transform the state to one in whigly is
database from one consistent state to another, butthatonly &,,se i this occurs. we say th&k hasinvalidatedP; ;
" 1 ’ 4,3

subset of the consistent states are acceptable when the trangy, example, the execution of the statement z + 1 will
action terminates. (1) can be regarded as a formal reStateTnvalidatethe; assertian = y, but notthe assertian > .
ment of the specification df;. We can demonstrate th# If, during execution off}, an active assertion is invalidated,

is correct by proving that (1) is a theorem using a formal ji5 5bsequent behavior will be unpredictable and semantic

system such as that of [10. correctness is not guaranteed. A sufficient condition to en-

To overcome the limit of serializability and to increase g that no invalidation occurs is that, for all preconditions
performance, in [3] we propose a new correctness criterion, p, - and all statementsy,;, the triple [11]:

called semantic correctness. A schedflek, of transac-
tions issemantically correcif {Pi; A Py} Sei {Pi;} (3)

I is theconsistency constraimtf the database, arfg repre-
sents those conjuncts dfequired for the correct execution

{1} Sch {IAQscn} (2) isatheorem. A similar condition must be specified@qr

. . . . If (3) cannot be proven, we say that the proof¥baind
is true. First, a semantically correct schedule must main- » interferewith one another and in particulay ; inter-

tain the consistency of the database, as indicated by the fac{

. L ; eres withP; ;. Hence there is aossibilityof invalidation
thatI'is a pre- and postcondition dich. A semantically at run time if the interleaving actually occurs. Interference

Lalthough this is not generally done. is static. It is a property of the proofs of the transactions.

Invalidation is dynamic. It is a result of interference if the structs.
interfering operation is executed when the interfered with
assertion is active. Hence, interference does not necessarily 1. assignment statement. There are three kinds of assign-

lead to invalidation. For example, in [4] each transaction is ment statements: a read statement, which atomically

decomposed into atomic isolated steps. A concurrency con- assigns the value of a database item to a local vari-

trol is used to prevent those step interleavings that lead to ~ able, a write statement, which atomically assigns the

invalidation from happening, thus ensuring that all sched- value of a local variable to a database item, and a lo-

ules are semantically correct. cal assignment statement, which does not involve any
In [4] we apply the results of [11] to a schedulh, of database items.

transactions and show th&¢h is semantically correct if for

all transactionsTy, in Sch 2. conditional statement. We assume that the condition is

. . constructed from local variables.
1. P;; is true whenS; ; is executed and
3. loop statement. We assume that the condition is con-

2. Q; is not invalidated by any step of a transaction inter- structed from local variables.

leaved inSch with T;.

By extension, we say that a particular transactifinjs se- Local variables will be denote&, Y and database vari-
mantically correct inSch if these conditions apply t&; ; ables will be denoted, y. We use the notatiosp(P, Si x)
and@;. to denote the strongest postconditiorSpt. that can be as-

As indicated by (3), checking for non-interference in- serted when it is executed starting in a state that satiBfies
volves examining each statement and each assertion of al¥We assume the protocols given in [2] are used to implement
transactions. This checking requires a significant amount ofall isolation levels.
work. For example, in a system &f transaction types, each
containingN operations{ K N)? possible triples must be 3.2. Semantic condition for READ UNCOMMIT-
checked. When the isolation levels of transactions are taken TED
into account, however, the number of triples that must be
checked is greatly reduced since the locking disciplinethat The locking implementation for READ UNCOMMIT-
implements the levels prevents certain interleavings from TED [2] requires that transactions obtain long-term write
occurring. Hence, although a particular triple (3) may not |ocks on items that they writeput no read locks are ac-
be a theorem, it cannot result in invalidation if the locking quired on items that they read. Long term locks are held un-
discipline preventsS; ; from being executed wheR; ; is til the transaction completes. The following theorem states
active. A major goal of this paper is to determine, for each a condition under which a transaction will execute correctly
isolation level, which triples must be checked. This dra- 3t READ UNCOMMITTED.
matically reduces the amount of analysis. For example, for
SMAPSHOT isolation onlyX ? triples must be checked, re- Theorem 1 A transactionT}, that executes at READ UN-
gardless of the number of operations per transaction. COMMITTED will execute semantically correctly if each

write statement (including those that rollback a transaction)

3. Semantic conditions for conventional inevery transaction does notinterfere with the postcon-
databases dition of every read statement i, andQ;.

In this section we present conditions which, for each girggga ﬁgﬁgﬁgg:d&imm at READ UNCOI\Q/Ii\(/IgI"I?‘I"ED
isolation level, enumerate the non-interference theorems . ga :
can read uncommitted data, it isagessary to consider the

hat m monstr in order nsur manti r: :
that must be demonstrated in order to ensure semantic co interference caused by write statements that rollback any

rectness. We first consider conventional databases an%ransaction
then relational databases. In conventional databases, n : . .

database items are deleted or inserted, and each item is rengugfe%ﬁ:StggtS;gﬁgeﬁﬁg‘:ﬂ”%:&ii@%i’:ﬁ%ﬁgﬂm
ferred to by name in read or write statements. In relational ' P

databases, predicates are used in SQL statements to specifggtk ?r?t tihn’? :irgg‘:’?;??]g vv\\lllrlilt;h:tr;tg(r)rigni’ Ioar::%;im write
the database items they access. 2 1mp N &®

in a concurrent transaction can be interleaved afteand
3.1. Model hences’ cannot possibly invalidatgost(s) (or any subse-
o guent assertions).

A transaction program accesses |C_JCa| variableg (in its™ 2patabase systems often prohibit transactions at this level from updat-
workspace) and database variables using the following con-ing the database. We ignore this restriction here.

Example 1: The elements of arrayust are records de- of each workday to record the numbertajurs worked by
scribing a merchant’s customers, and an integrity constraintan employee that day. It executes one write statement to
of the databasd,., asserts this fact. Two transaction types incrementemp|i].num_hrs and another to update the ac-
access the array. Th ailing _List transaction type scans cumulated salary. Hence, although the two write statements
the array and prints a mailing label. The specification of the together preservé,,;, individually they do not. A second
transaction requires only that each printed label contains atransaction typePrint_Records causes the records to be
valid name and address. Tiew _Order transaction type printed. Its specifications require that each printed record is
enters a new record into the array if the customer placing thea consistent snapshot of that employee’s information at the
new order is not described by an existing record. Each timetime the record is printed. This specification makes it nec-
a label is printed by @£ ailing _List transaction we would essary thaPrint_Record be run at a level no lower than
like to assert “The printed label contains a valid name and READ COMMITTED for two reasons: (1) Only conitted
address”. Neithef, nor this assertion is interfered with information can be printed. (2) It follows from Theorem 2
by either the insertion of a new record by an instance of that, in order to ensure that the snapsho¢:p[i] is con-
New_Order or the deletion of a record if that instance is sistent, the write statements Hfours must be seen as an
rolled back. HenceM ailing_List transactions can run at atomic unit byPrint_Records. The specification does not
READ UNCOMMITTED. The database might include a require that all printed records come from the same commit-
second array in which each record describes an order thated snapshot afmp. Hence, it is not necessary to prohibit
has been placed. A transaction that analyzes last year’s orinstances off ours from updating records that have been
ders can run at READ UNCOMMITTED since only this printed while Print_Records is printing other records. As

year's orders are subject to modification. a result the long term read locks that would be acquired
on each record printed Print_Records were run at RE-
3.3. Semantic condition for READ COMMITTED PEATABLE READ are not required.

The locking implementation of READ COMMITTED 3.4. Semantic condition for READ COMMITTED
[2] requires that transactions obtain long-term write locks with first-committer-wins
on items that they write and short-term read locks on items
that they read. A short term lock is released when the oper- TheREAD COMMITTED with first-comitter-winsiso-
ation completes. The following theorem states a condition lation level is an extension of READ COMMITTED with
under which a transaction will execute correctly at READ one feature from the SNAPSHOT isolation level. Transac-
COMMITTED. tions obtain long-term write locks on items that they write
and short-term read locks on items that they read. In ad-
Theorem 2 A transaction,T;, executed at READ COM- jtion, if T; writes a data item and commits between the
MITTED will execute semantically correctly if each trans- times thatT, has read and attempts to write the itef,
action does not interfere with the postcondition of every i pe aborted (first-committer-wins). READ COMMIT-
read statement iff;, and withQ;. TED with first-committer-wins is easily and often imple-
Proof: See Appendix B. 0.£.D. mented in relational databases by running an application at
Example Z:plrf) the specification of theM ailing _List the READ COMMITTED level and encoding, (perhaps us-

S : ing sequence numbers) in the UPDATE statements of the
transaction is strengthened to require that all labels refer L . .
- . . application, checks to determine whether the data item to be
to customers,Mazling_List transactions must be run at

) [i . The isolation level
least at the READ COMMITTED level since the new post- il;pglz fi::aso(;?eatjn%edasétﬁt;gvgfvrssgo; eslgrzztl?enn;gres
condition of M ailing_List “The printed label refers to a bp y :

L . Il this | | READ MMITTED with imisti .
customer” is interfered with by the update statement that call this leve co with optimistic reads

deletes an entry icust if New_Order is rolled back. Theorem 3 A transaction,T;, executed at READ COM-
In addition tocust, the database might contain an array pmiTTED with first-committer-wins will seecute semanti-

emp, with one record for each employeenpli].rateisthe cajly correctly if each transaction does not interfere with

i*" employee’s hourly ratempl[i].num._hrs is the number the postconditions of those read statementinthat are

of hours that employee has worked so far this week, andpot followed by a write statement on the same item, and
empli].sal is that employee’s accumulated salary for the ity ;.

week. A conjunct of the integrity constraitit,; asserts that

for all records iremp, “empli].rate *x emp[i].num_hrs = Proof: See Appendix B. Q.£.D.

empli].sal”. Note that if transactiorf; writes all the data items it
The granularity of locking is at the level of records. An reads, then wheff; commits,T; has effectively held long

instance of transaction typours is executed at the end term read locks on the data items that it read, and hence in

this case, READ COMMITTED with first-comitter-wins item in a snapshot is equal to the most recent cdtech
is equivalent to REPEATABLE READ. We give an exam- value of that data item. It only needs to be strong enough to
ple of correct execution at the READ COMMITTED with support the proof of the transaction [6].
first-committer-wins level in Section 6.
Theorem 5 A schedule produced under SNAPSHOT isola-
3.5. Semantic condition for REPEATABLE READ tion is semantically correct if, given any two transactions
T; andTj; from the schedule, either:
The locking implementation of the REPEATABLE
READ isolation level [2] requires that a transaction acquire 1. T;’s write set intersect§}'s write set or
long-term read and write locks on the data items that it
accesses. The only problem at the REPEATABLE READ 2. T} does not interfere with the postcondition of the read
level is the possibility of phantoms [8]. Since phantoms do step ofZ;, and with@;.
not occur in conventional (non-relational) databases, RE-
PEATABLE READ ensures serializability and hence se- Proof: The read step off; reads the snapshot of the
mantic correctness. Thus we have the theorem: database that reflects the effect of all committed transac-
tions at the tim&; was started. This snapshot either reflects
Theorem 4 Under the conventional database model, a the whole result offj or it does not reflect any result @ .
transaction executed at REPEATABLE READ executes SeThus, when we reason about the semantic correctnegs of

mantically correctly. in a schedule that includdg andT}, T; can be considered
as a single isolated unit. If (1) applies, then eittiigor T;
3.6. Semantic condition for SNAPSHOT isolation will be aborted and has no effect. If not, then using Lemma

1, Lemma 2 and condition 2 of the theorem, it follows that

SNAPSHOT isolation is not one of the ANSI/ISO stan- no assertion iff; will be invalidated byT};. Note that since
dard isolation levels but is implemented in at least one com-Z; preserved, the precondition of; is not interfered with
mercial DBMS. The implementation of SNAPSHOT iso- by Tj. ¢
lation given in [2] does not use locks. Instead, it uses a Example 3: Suppose we have two types of
multiversion concurrency control that satisfies each read re-withdraw transactions, Withdraw sav(i,w) and
quest made by transactidi with values from the version ~ Withdraw ch(i,w), which withdraw w from the it*
of the database, calledsmapshatthat reflects the effect of depositor’'s savings and checking accounts, respec-
all committed transactions at the tirfiewas started. Hence tively. Savings and checking account information is
read requests never wait. Writing is deferred until the trans-held in arraysacct_sav and acct_ch respectively and
action commits.T; can be committed as long as no other a conjunct of the integrity constrainfz,; requires that
transaction that committed aft@&’s first read has updated acct_sav[i].bal + acct_ch[i].bal > 0. An annotated
a data item thafl; has also updated. This mechanism is version of theWithdraw_sav program is given in Figure
referred to agirst committer winsbecause the first transac- 1. The annotation foWithdraw_ch is similar.
tion that has updated a particular data item and requests to Saev and Ch are local variables. The postcondition of
commit is allowed to do so, while concurrent transactions the read step oW ithdraw _sav is interfered with by the
that have updated that item are ultimately aborted. Thuswrite step of Withdraw ch. Hence, the theorem states
first committer windhas at least the effect of a long-term that a concurrent schedule of the two transactions might
write locks on the items written. not be semantically correct. A schedule in which the write

We model a transactiofi; at the SNAPSHOT isolation step is interleaved between the read and write step of the
level as two isolated atomic stepsremd stepfollowed by other exhibits write skew [2]. Note that although this same
awrite step The read step reads a snapshot of the databaserecondition is also interfered with by another instance of
that reflects the effect of all committed transactions at the Withdraw_sav, a concurrent schedule in which two in-
time T; was started. The write step is the remainder of the stances oW ithdraw_sav are interleaved is semantically
transaction. The step boundary reflects the fact that othercorrect because the first-coritter-wins rule implies that
transactions can commit whil&; is active, creating new one of them will be aborted (this is reflected in the sec-
versions of the database that might invalidate assertions thabnd condition of the theorem). Finally, Beposit_sav
T; has made about the database based on its snapstipt. If (Deposit_ch) transaction, which adds money doct_sav
commits, its write step must commute with the write steps (acct_ch) does not interfere with the postcondition of the
of these other transactions because they must haiteemr read step ofiWithdraw_sav. In this case, their concur-
to disjoint data items. Note that the postcondition of the rent execution is semantically correct (this is reflected in
snapshot does not necessarily state that the value of a datéhe third condition of the theorem).

Withdraw_sav(i, w)

BEGIN TRANSACTION

{acct_sav[i].bal + acct_ch[i].bal >0
A Sav = Savo}

Sav := acct_sav[i].bal;

Ch := acct_ch[i].bal;
{acct_sav[i].bal + acct_ch[i].bal >0
A acct_sav[i].bal + acct_ch[i].bal >
Sav + Ch A Sav = Sawo}

if (Sav + Ch > w) then
{acct_sav[i].bal + acct_ch[i].bal > 0 A
acct_sav[i].bal + acct_ch[i].bal >
Sav + Ch A Sav + Ch > w
A Sav = Savo}

acct_sav[i].bal := Sav — w;

but instead use a locking protocol (perhaps consisting of
some combination of table locks and index locks) that is
equivalent to, or stronger than, predicate locking. We as-
sume in what follows that the DBMS uses such a locking
protocol. Then Theorems 1, 2, 3 remain valid for relational
databases. A more complete treatment of the relational case
is contained in a full version of this paper [7].

Theorem 4 can be restated for relational databases by
considering the possibility of phantoms. At REPEATABLE
READ, the long term read locks obtained on tuples read by
a SELECT statement block the execution of a statementin a
concurrent transaction that attempts to delete or update such
tuples. Hence, the postcondition of thELECT statement
cannot be invalidated by a transaction that attempts to delete
or update such a tuple. As a result we get the following

fi theorem. Its proof can be found in [7].
{acct_sav[i].bal + acct_ch[i].bal >0

N acct_sav[i].bal = Savy — w)}
END TRANSACTION

Theorem 6 For a transaction,T;, executed at REPEAT-
ABLE READ, letS; ; be an arbitrary SELECT ir¥;. T;

will execute semantically correctly if each transaction does
not interfere with@); and either (1) does not interfere with
the postcondition of; ;, or (2) includes DELETE or UP-
DATE statements whose predicates intersect the predicate

4. Semantic conditions for relational databases ©f Si;-

Figure 1. Withdraw from savings account

In adapting th ditions f . For SNAPSHOT isolation, we model a transaction in the
h adapting the conditions for semantic correctness to re- o, way as we did for conventional databases. Theorem 5

lational databases, we must deal with database operationg, . ins valid for relational databases. A proof can be found
that involve predicates. The read statement is now the SE- [7]

LECT and its postcondition might assert that it read all the
tuples that satisfy a certain predicate. Similarly, the write)]]
statements are UPDATE, INSERT, and DELETE and their 5. Choosing an isolation level
postconditions might assert that they wrote, inserted, or
deleted all the tuples that satisfy a certain predicate. Given the set of transactions types of an application, the
Interference now takes new forms. For example, the problem faced by the application designer is to determine,
postcondition of a BLECT statement might assert that the for each type, the lowest isolation level at which a transac-
statement read all the tuples that satisfy a predi¢at@hat tion of that type can execute correctly. Since SNAPSHOT
assertion can be interfered with by another transaction thatisolation is not generally offered in the context of the other
inserts a phantom tuple that also satisfies isolation levels, we do not consider it in what follows.
Phantoms can occur in connection with write statements Using the previous results it follows that while we de-
as well as in connection with the SELECT. Thus, the post- termine the isolation level at which to execute transaction,
condition of an UPDATE that asserts that the value of all tu- Ty, we do not have to be concerned about the level of other
ples satisfyingP have been updated can be interfered with transactions. Specifically, it we are performing an interfer-
by an INSERT that inserts a phantom tuple that satigfies ence analysis to determine the correctness of execffiing
That interference might not cause invalidation of the predi- at READ UNCOMMITTED, we must consider the interfer-
cate, however, if the locking policy prevented the INSERT ence effects of each write of another transactiBy,indi-
from executing after the UPDATE had taken place. vidually, regardless of the level @. Similarly, if we are
The locking policy for implementing the ANSI isolation considering executin@y at any higher level, we consider
levels discussed in [2] states that all “write locks on data the interference effects of the whole transactinas an
items and predicates (are) long duration”. Thus when anatomic isolated unit, regardless of the levelf Then
UPDATE, INSERT, or DELETE statement refers to a pred- a procedure for determining the lowest isolation level at
icate, that predicate is write-locked for the duration of the which each transaction can execute semantically correctly
transaction, and phantoms cannot be inserted into that predis: for each transactioril;, in the set, consider the iso-
icate. Most DBMSs do not implement predicate locking, lation levels READ UNCOMMITTED, READ COMMIT-

TED, REPEATABLE READ, and SERIALIZABLE in se-

guence and return the first at which execution is semanti-

cally correct.

6. an example

To motivate the conditions for semantic correctness in a

relational setting, consider a business application that ac-
cesses a schema with the following three tables (primary

keys are underlined):

ORDERYorder _info , cust _name,
deliv _date, done)

cusT(cust _name, address, #orders

MAXDATE (maximum date)

)

A conjunct of I, I,,, asserts that each row @fRDER de-
scribes an order andone is true if that order has been
delivered. MAXDATE is a table containing a single row
that satisfies a second conjundt,.,, that asserts that
maximumdate is the maximum delivery date for any or-
der inORDERS

This application has four transaction types shown in

delivery truck busy, a business rule asserts that there can be
no gaps in the sequence of delivery dates: there must be
at least one order to be delivered on each date up to some
maximum date which is the delivery date of the last out-
standing order. A conjunct of the integrity constraint of the
database, which we calhkéb_gaps”, asserts this fact. How-
ever, there can be more than one order for any particular
delivery date. Furthermore, the number of orders for a par-
ticular customer iMORDERSMust be equal to the value of
the#orders field of that customer’s tuple icusT. We
refer to this integrity constraint as#der _consistency”.
The intermediate assertiafj,,, in Figure 3 asserts that
maximum.date is one greater than the latest delivery
date inORDERS Thus New_Order reads the value of
maximum.date in MAXDATE into the workspace vari-
able maxdate and incrementsnaximum.date in MAX-
DATE by 1. If the customer is new it inserts the tuple
(customer, address, 1) into cusT, otherwise it incre-
ments#orders in the customer’s tuple iousT. 2 Finally,
it inserts(order_info, customer, mazdate + 1, false)
into ORDERS*

Since no critical assertion is interfered with by any
transaction type, this transaction can run at READ COM-

Figures 2 through 5. Each figure shows an annotation of aMITTED. The transaction agmot run at READ UNCOM-
transaction program indicating the pre- and postconditionsMITTED because, for example, the_gap assertion that

of the transaction and the postconditionezich SELECT

is a conjunct of assertions in Hew_Order transaction,

statement. These are the critical assertions. The purpose ofy, is interfered with by the rollback statement of another

the figures is to display the critical assertions; the code is
just sketched.

Mailing _List (Figure 2): This transaction scal/ST
and prints a label usingust _name andaddress . The
specification of the transaction places randition on the
labels printed. Since no critical assertion is interfered with
by any single write statement in any of the transaction
types, this transaction will execute correctly at READ
UNCOMMITTED.

Mailing _List()

BEGIN TRANSACTION
{true}

SELECTcust _name, address FROM cusT

{Returned data contains names and addresses
Print labels using returned names and addresses
{Labels have been printéd

END TRANSACTION

Figure 2. Prints out a mailing list

New_Order (Figure 3): This transaction inserts a new
order intoorRDERS and, if this is the first order focus-
tomer, inserts a new tuple intausT. In order to keep the

New_Order transactions, that deletes a tuple fromr-
DERS (it might leave a gap in delivery dates below the de-
livery date selected by).

Suppose an additional business rule is imposed: there
must beexactlyone order with a particular delivery date for
each date up to some maximum. The‘gap” conjunct
of the integrity constraint is replaced by the conjunct
“one_order_per_day” which asserts the new requirement.
The sameNew Order transaction can be used to enforce
this rule if it is run at READ COMMITTED with first-
committer-wins. At READ COMMITED the INSERT
into ORDERS in the New_Order transaction interferes
with the conjuncbne_order_per_day in the postcondition
of the SELECT. However, sinceNew_Order updates
MAXDATE after reading it, one_order_per_day cannot
be invalidated at the READ COMMITTED with first-
committer-wins isolation level. Also note the postcondition
of the whole transaction is not interfered with by any
transaction type, and thus this transaction can run at READ
COMMITTED with first-comnitter-wins.

3The postcondition ofVew_Order in Figure 3 indicates that the in-
serted tuple has a particular value in therders field. Since the value
will change as the customer adds new orders, in order to avoid interference
the postconditiontsould actually be weakenedto assert titatommit time
this tuple was an element aUST.

4Since the value oflone will subsequently change, the comments in
the previous footnote apply.

New_Order(customer, address, order_info) Delivery(today)

BEGIN TRANSACTION BEGIN TRANSACTION

{no_gap A order_consistency A Ijaz} {I,}

SELECT maximumdate FROM MAXDATE SELECT order _info INTO: buff FROM ORDERS

INTO : mazdate WHERE deliv _date =:today AND done = FALSE
{no_gap A order_consistency {I, A returned values are undelivered orders
A Imaz A (mazdate < maximum date)} to be delivered today

UPDATE MAXDATE SET while ((ord_inf = nextin buff)

maximum.date =:mazdate + 1 UPDATE ORDERSSET done = TRUE

SELECT COUNT(*) INTO : custcount FROM WHERE order _info =:ord_inf

ORDERSWHERE cust _name=: customer {I, A (tuples inorRDERSdescribing orders
{no_gap A order_consistency A I},,.. due today haveone = TRUE)}
A(mazdate < maximum date) A END TRANSACTION

(custcount = 0) = (customer is new)}
if (custcount == 0) then

INSERT INTO cusT Figure 4. Delivers an order
VALUES (: customer, : address, 1) .
else Audit(customer)
UPDATE cusT SET #orders = :custcount+1 BEGIN TRANSACTION
WHERE cust _name=: customer {5}

SELECT COUNT(*) INTO : countl FROM ORDERS
WHERE cust _name=: customer
{I, A (countl = the number of tuples
in ORDERSfor customey}
SELECT #orders INTO : count2 FROM cusT
WHERE cust _name=: customer
{I, A (countl = the number of tuples in
ORDERSfor customey A (count2 = the value
of #orders incusT for customey}

fi

INSERT INTO ORDERSVALUES

(: order_info, : customer, : mazdate + 1, false)
{no_gap A order_consistency A Inuz A
(customer, address, custcount + 1) € cust
A (order_info, customer, mazdate + 1, false)
€ orders}

END TRANSACTION

retv := (countl == count2);
Figure 3. Processes a new order {I, A (retv = order_consistency)}
END TRANSACTION

Figure 5. Produces accounting information

Delivery (Figure 4): This transaction delivers an order.
ThusDelivery scansORDERStO find all the orders that are _ _
due today and updates tdene attributes in the orders to This transaction must run at the SERIALIZABLE level
be delivered tarue. because the posinditions of both SELECT statements

The postcondition of theSELECT statement of might be interfered with by & ew_Order transaction that
a Delivery transaction is interfered with by another inserts a (phantom) new order. Note that ?his transaction
Delivery transaction. Thus this transaction type cannot ex- does not satisfy the second half of the condition for correct
ecute at READ COMMITTED. However, if the transaction execution at REPEATABLE READ because tuple locks do

is executed at REPEATABLE READ, the selected tuples MOt Prévent the insertion of a phantom new order.

are read locked after the SELECT statement is executed. _

Hence aDelivery transaction would not be allowed to up- 7. Conclusion and future work

date these tuples and the assertion could not be invalidated.

Thus this transaction meets the condition for correct execu- \ve have used semantic correctness as the criterion to in-

tion at the REPEATABLE READ isolation level. vestigate the correctness of schedules at different isolation
Audit (Figure 5): This transaction checks that the in- levels. Specifically, for each isolation level, we prove a con-
tegrity constrainbrder_consistency is true. ThusAudsit dition under which transactions that execute at that level

scansoRDERSand counts the number of orders registered will be semantically correct. This technique also clarifies
for a particular customer; reads the tuple for that customerthe relationship between interference and invalidation. In-
in cusTand comparegorders with the count. terference does not necessarily lead to invalidation because

the underling locking scheme might prevent the offending is a theorem, wheré®’ is the precondition of5; . Since
interleavings from happening. Furthermore, an assertionX is a local variable of;, transactiorf; cannot change its
that is interfered with can often be replaced by amstyer value, it follows from (4) that
assertion that is not interfered with. In that case, the weaker

{P¥ \P'} Sin {P)} (5)

assertion is not invalidated.
Ct™ Benchmark transactions and run them at a combinationwherev is an arbitrary value ok . Our goal is to show that

We are planning to use our theorems to analyze the TPC-
of isolation levels to evaluate the performance.

References

[1] ANSI X3.135-1992. American national standard for infor-

mation systems—database languages—sgl, November 1992.
[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and

P. O'Neil. A critique of ANSI SQL isolation levels. IRro-
ceedings 1995 ACM SIGMOD International Conference on

Management of Datgpages 1-10, San Jose, CA, May 1995.
[3] A.J.Bernstein, D. S. Gerstl, W. H. Leung, and P. M. Lewis.

Design and performance of an assertional concurrency con-
trol system. InProceeding of International Conference on

Data Engineering1998.)
[4] A.J.Bernstein,D. S. Gerstl, and P. M. Lewis. A concurrency

control for step-decomposed transactiohfformation Sys-

tems 1999. Accepted for publication.]
[5] A.J. Bernstein, D. S. Gerstl, P. M. Lewis, and S. Lu. Using

transaction semantics to increase performanctdrighth
International Workshop on High Performance Transaction
Systems (HPT Sfpacific Grove, California, USA, Sept. 1999.
[6] A.J. Bernstein and P. M. Lewis. High performance trans-
action systems using transaction semantistributed and
Parallel Databases4(1), Jan. 1996.) -
[7] A.J.Bernstein, P. M. Lewis, and S. Lu. Semantic conditions
for correctness at different isolation levels. Technical report,
SUNY at Stony Brook, Stony Brook, 1999. TR 99/22.
K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notions of
consistency and predicate locks in a database sy<tem-
munications of the ACML9(11), Nov. 1976.)
D. Gries, editor. The Science Of ProgrammingSpringer-
Verlag New York Inc., 1981.)
Hoare, C. An axiomatic basis for computer programming.
Commun. ACM12(10), October 1969. _
[11] Owicki, S. and Gries, D. An axiomatic proof technique for
parallel programs lActa Informatica 6:319-340, 1976.

(8]

(9]
[10]

A. Proofs of lemmas

Lemma 1. LetS;; : X := e be a local assignment
statement of transactiofi;, and S; , be a write statement
of another transactioff;. Suppose; , is characterized by
the triple {P} S; x {Q}, whereQ = sp(P, Six). If Sjn

does not interfere witt®, thenS; ; does not interfere with

Q.

Proof: The strongest postconditio, of S; x with precon-
dition P is given by [9]: @ = Fv(PX A X = eX). Since
S; » does not interfere wittP, the triple

{P \ P'} S;n {P} (4)

{QA\P}S;n{Q} (6)

Supposg is an arbitrary state satisfying A P’, andq’ is

the state that results aft&% ; is executed starting iq. We

would like to show thag’ satisfies). Let vg be a value of
X that makes true ing. ThenPjg is true ing and from
(5) Pjg is true ing’ as well. Furthermore, sinck is a local
variable ance¥ only involves local variablesX = ef is

still true ofg’. HenceQ is true ofg’. Sinceg is an arbitrary
state satisfying) A P, it follows that (6) is a theoren.

Lemma 2: LetS;; : z := X be a write statement of
transactionZ;, and S; 5 : ¥ := Y be a write statement of
another transactiorf;. Suppose: andy are two distinct

database variables anfl; . is characterized by the triple
{P} Six {Q} where@ = sp(P,S; ;). If S;5 does not

interfere withP, thenS; ;, does not interfere witl).

Proof: The strongest postconditio, of S; with pre-
condition P is given by [9]: @ = Fv(PF A z = X).
SinceS;,, does not change the valuessotnd X, we can
prove this lemma using the same technique that we used in
Lemma 1.0

B. Proofs of theorems

Theorem 1 A transaction/T;, that executes at READ UN-
COMMITTED will execute semantically correctly if each
write statement (including those that rollback a transaction)
in every transaction does not interfere with the postcon-
dition of every read statement i, andQ;.

Proof: Consider an arbitrary execution path of transaction
T; and label the control points along this path, e, ...,

ay. Let P,, be the assertion associated within the proof

(1) of 7;. In the following, we show that, when each con-
trol point, oy, of the path is active, the state of the system,
denoted bytate(ay), satisfies an assertidf,, such that:
(1) P,, = Py, and (2) for each write statemest; ,, of
transactiorfy, eitherS; , does not interfere witt®,, , or if

it does, it will not invalidateP,, .

The proofis by induction ok.

1. Induction basisk = 1: Let P, = P,,. Sincea; is
the first control poinP,, = P; ;. By the conditions of
the theoremp; ; is not interfered with by5; .

2. Induction hypothesis For all control pointsy; in the
execution patl; - - - oy, state(a;) satisfies an asser-
tion P, that satisfies (1) and (2).

3. Induction step: We need to exhibit an assertion,

PI

Am41’

satisfying (1) and (2). Consider all possible

control point transitions from,, t0 ay,y1:

(h) T; exits from awhile loop with guardG. Let
P, .. =P, AN—-G. The argument is the same

as the previous case..

Thus whenT; commits,@; will be true of the final state
where@; = (I; A Qi). As one of the conditions of the
theorem/J; A Q; is not interfered with bys; . Hence none
of the assertions df; will be invalidated. Since the proofis

(a) T; executes a read statement. By the conditions done for an arbitrary execution @ and an arbitrary write

of the theoremP,, ,, is not interfered with by
Sjh-

(b) T; executes a write statemestmi, that writes

(©

(d)

(€)

(f)

(9)

the same database item Sisn. Let P, .
sp(P,, ,stmt). SinceP, = P,,,, itfollows
that P, .. — Pa,,,. FurthermorepP,
cannot be invalidated by; ;, because iktmt has

executed(; has acquired a write lock on the data
item written bystmt. Thus,S; ; cannot be exe-

cuted untilT; terminates. (Note in this case, itis

possible thas; , interferes with?;, . .)

T; executes a write statementmt, that writes

a database item that is distinct from the item
written by S; 5. Let PC’,[er1 = sp(P,,,_,stmt).
SinceP, = Pa,, itfollowsthatp, .. —
Py,,.,. Furthermore, sinceP, is not inter-
fered with byS; p, it follows from Lemma 2 that
P,.... is notinterfered with by5; 5.

T; executes alocal assignmestint. Let P,
= sp(P;,_,stmt). Since
P, = P,,, it follows that P, = —

P, SinceP, is notinterfered with bys; 5,
it follows from Lemma 1 thaP, _ is notinter-
fered with byS; 5.

T; enters thd'H E N body of a conditional state-
ment with guardz. Let

P.... =P, NG.SinceP, = P, itfol-
lows that(P;, AG) = (P, AG). SinceP,,
is notinterfered with bys; », andG only involves
local variables, P, A G), is not interfered with

byS',h-

T; enters the? LS E body of a conditional state-
ment with guard=. Let
P, ... =P, A~G. The argument is the same

as the previous case.

T; enters (or re-enters) the body of a while loop
with guardG. Let P, =P, AG. Since
P, = P,,, itfollowsthat(P, AG)=
(Pa,, NG), i€, P, . = Pg,,,. Sincep,

is not interfered with bys; ; andG only involves
local variables,P, is not interfered with by
Sjh-

+1

statement ofl;, the semantic correctness Bf is guaran-
teed.o

Theorem 2 A transaction,T;, executed at READ COM-
MITTED will execute semantically correctly if each trans-
action does not interfere with the postcondition of every
read statement iff;, and with@;.

Proof: Since the isolation level df; is at least READ UN-
COMMITTED, T; will hold a long term write lock on any
item it writes. Since at the READ COMMITTED level;
uses short term read locKg, cannot read any item written
by T; until T; terminates. Thus, when we reason about the
semantic correctness of a schedule that inclijess far
asT; is concernedy} can be considered a single isolated
unit. Using the same reasoning as employed in the proof
of Theorem 1, we can prove that no assertioff;o€an be
invalidated byT;. Note that sincel; preserved, the only
conjunct of the postcondition df; that can be interfered
with by Tj is @;. o

Theorem 3 A transaction,T;, executed at READ COM-
MITTED with first-committer-wins will xecute semanti-
cally correctly if each transaction does not interfere with
the postconditions of those read statementg;ithat are

not followed by a write statement on the same item, and

Proof: Consider any (annotated) read statem&Rf} X :=

z {Q}, in T; which has a following write statement an
Thensp(P, X := z) = Fu(PX)A(X = z) Assuming
P is not interfered with byl;, then, using Lemma 1, only
the second conjuncX = =z, can be invalidated. SincE
commits, no concurrent transaction writeand the above
postcondition is not invalidated. With this observation in
mind, the proof follows in a manner similar to the proof for
the READ COMMITTED isolation levele

