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r e P liCated storaGe systems for the cloud deliver 
different consistency guarantees to applications that 
are reading data. Invariably, cloud storage providers 
redundantly store data on multiple machines so that 
data remains available in the face of unavoidable 
failures. Replicating data across datacenters is not 
uncommon, allowing the data to survive complete 
site outages. However, the replicas are not always kept 
perfectly synchronized. Thus, clients that read the 
same data object from different servers can potentially 
receive different versions.

Some systems, like Microsoft’s Windows Azure, 
provide only strongly consistent storage services to 

their applications.5 These services 
ensure clients of Windows Azure 
Storage always see the latest value 
that was written for a data object. 
While strong consistency is desirable 
and reasonable to provide within a 
datacenter, it raises concerns as sys-
tems start to offer geo-replicated ser-
vices that span multiple datacenters 
on multiple continents. 

Many cloud storage systems, such 
as the Amazon Simple Storage Ser-
vice (S3), were designed with weak 
consistency based on the belief that 
strong consistency is too expen-
sive in large systems. The designers 
chose to relax consistency in order 
to obtain better performance and 
availability. In such systems, clients 
may perform read operations that 
return stale data. The data returned 
by a read operation is the value of the 
object at some past point in time but 
not necessarily the latest value. This 
occurs, for instance, when the read 
operation is directed to a replica that 
has not yet received all of the writes 
that were accepted by some other 
replica. Such systems are said to be 
eventually consistent.12

Recent systems, recognizing the 
need to support different classes of 
applications, have been designed 
with a choice of operations for ac-
cessing cloud storage. Amazon’s 
DynamoDB, for example, provides 
both eventually consistent reads and 
strongly consistent reads, with the 
latter experiencing a higher read la-
tency and a twofold reduction in read 
throughput.1 Amazon SimpleDB of-
fers the same choices for clients that 
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A broader class of consistency guarantees 
can, and perhaps should, be offered to clients 
that read shared data. 
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 key insights
    although replicated cloud services 

generally offer strong or eventual 
consistency, intermediate consistency 
guarantees may better meet an 
application’s needs.

    consistency guarantees can be defined in 
an implementation-independent manner 
and chosen for each read operation.

    Dealing with relaxed consistency need 
not place an excessive burden on 
application developers.
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read data. Similarly, the Google App 
Engine Datastore added eventually 
consistent reads to complement its 
default strong consistency.8 PNUTS, 
which underlies many of Yahoo’s 
Web services, provides three types 
of read operations: read-any, read-
critical, and read-latest.7 Modern 
quorum-based storage systems allow 
clients to choose between strong and 
eventual consistency by selecting dif-
ferent read and write quorums.4

In the research community over 
the past 30 years, a number of consis-
tency models have been proposed for 
distributed and replicated systems.10 
These offer consistency guarantees 
that lie somewhere in between strong 
consistency and eventual consistency. 
For example, a system might guarantee 
that a client sees data that is no more 
than five minutes out of date or that a 
client always observes the results of its 
own writes. Actually, some consistency 

models are even weaker than eventual 
consistency, but those I ignore as being 
less than useful. 

The reason for exploring differ-
ent consistency models is that there 
are fundamental trade-offs between 
consistency, performance, and avail-
ability.9,10,12,13 Offering stronger con-
sistency generally results in lower 
performance and reduced availability 
for reads or writes or both. The CAP 
theorem has proven that, for systems 
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writes whose results are visible to a 
read operation. Table 1 summarizes 
these six consistency guarantees. 

Strong consistency is particularly easy 
to understand. It guarantees a read op-
eration returns the value that was last 
written for a given object. If write oper-
ations can modify or extend portions of 
a data object, such as appending data 
to a log, then the read returns the result 
of applying all writes to that object. In 
other words, a read observes the effects 
of all previously completed writes.

Eventual consistency is the weakest 
of the guarantees, meaning it allows 
the greatest set of possible return 
values. For whole-object writes, an 
eventually consistent read can return 
any value for a data object that was 
written in the past. More generally, 
such a read can return results from 
a replica that has received an arbi-
trary subset of the writes to the data 
object being read. The term “eventu-
al” consistency derives from the fact 
that each replica eventually receives 
each write operation, and if clients 
stopped performing writes then read 
operations would eventually return 
an object’s latest value.

By requesting a consistent prefix, 
a reader is guaranteed to observe an 
ordered sequence of writes starting 
with the first write to a data store. For 
example, the read may be answered by 
a replica that receives writes in order 
from a master replica but has not yet 
received some recent writes. In other 
words, the reader sees a version of 
the data store that existed at the mas-
ter at some time in the past. This is 
similar to the “snapshot isolation” 
consistency offered by many database 
management systems. For reads to a 
single data object in a system where 
write operations completely overwrite 
previous values of an object, even 
eventual consistency reads observe a 
consistent prefix. The main benefit of 
requesting a consistent prefix arises 
when reading multiple data objects or 
when write operations incrementally 
update an object. 

Bounded staleness ensures read re-
sults are not too out of date. Typically, 
staleness is defined by a time period 
T, say five minutes. The storage sys-
tem guarantees a read operation will 
return any values written more than 
T minutes ago or more recently writ-

that must tolerate network partitions, 
designers must choose between con-
sistency and availability.5 In practice, 
latency is an equally important con-
sideration.1 Each proposed consisten-
cy model occupies some point in the 
complex space of trade-offs. 

Are different consistencies useful 
in practice? Can application develop-
ers cope with eventual consistency? 
Should cloud storage systems offer 
an even greater choice of consistency 
than the consistent and eventually 
consistent reads offered by some of 
today’s services? 

This article attempts to answer 
these questions, at least partially, by 
examining an example (but clearly fic-
titious) application: the game of base-
ball. In particular, I explore the needs 
of different people who access the 
score of a baseball game, including the 
scorekeeper, umpire, radio reporter, 
sportswriter, and statistician. Suppos-
ing the score is stored in a cloud-based, 
replicated storage service, I show even-
tual consistency is insufficient for 
most of the participants, but strong 
consistency is not needed either. Most 
participants benefit from some inter-
mediate consistency guarantee. 

The next section defines six pos-
sible consistency guarantees for read 
operations. Then I present an algo-
rithm that emulates a baseball game, 
indicating where data is written and 
read, and I enumerate the results that 
might be returned when reading the 
score with different guarantees. I also 
examine the roles of various people 
who want to access the baseball score 
and the read consistency that each de-
sires and draw conclusions from this 
simple example.

Read consistency Guarantees
While replicated systems have provid-
ed many types of data consistency over 

the past 30 years, and a wide variety of 
consistency models have been explored 
in the computer science research com-
munity, many of these are tied to spe-
cific implementations. Frequently, 
one needs to understand how a system 
operates in order to understand what 
consistency it provides in what situa-
tions. This places an unfortunate bur-
den on those who develop applications 
on top of such storage systems.

The six consistency guarantees I 
advocate here can be described in a 
simple, implementation-indepen-
dent way. This not only benefits appli-
cation developers but also can permit 
flexibility in the design, operation, 
and evolution of the underlying stor-
age system. 

These consistency guarantees are 
based on a simple model in which 
clients perform read and write op-
erations to a data store. Multiple cli-
ents may concurrently access shared 
information, such as social network 
graphs, news feeds, photos, shopping 
carts, or financial records. The data is 
replicated among a set of servers, but 
the details of the replication protocol 
are hidden from clients. A write is any 
operation that updates one or more 
data objects. Writes are eventually 
received at all servers and performed 
in the same order. This order is con-
sistent with the order in which clients 
submit write operations. In practice, 
the order could be enforced by per-
forming all writes at a master server 
or by having servers run a consensus 
protocol to reach agreement on the 
global order. Reads return the values 
of one or more data objects that were 
previously written, though not nec-
essarily the latest values. Each read 
operation can request a consistency 
guarantee, which dictates the set of 
allowable return values. Each guar-
antee is defined by the set of previous 

table 1. Six consistency guarantees.

Strong Consistency See all previous writes.

eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic reads See increasing subset of writes.

read My Writes See all writes performed by reader.
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ten values. Alternative, some systems 
have defined staleness in terms of the 
number of missing writes or even the 
amount of inaccuracy in a data value. 
I find that time-bounded staleness is 
the most natural concept for applica-
tion developers.

Monotonic reads is a property that ap-
plies to a sequence of read operations  
performed by a given storage system 
client. As such, it is called a “session 
guarantee.”11 With monotonic reads, 
a client can read arbitrarily stale data, 
as with eventual consistency, but is 
guaranteed to observe a data store that 
is increasingly up to date over time. In 
particular, if the client issues a read op-
eration and then later issues another 
read to the same object(s), the second 
read will return the same value(s) or a 
more recently written value.

Read my writes is a property that 
also applies to a sequence of opera-
tions performed by a single client. 
It guarantees the effects of all writes 
that were performed by the client 
are visible to the client’s subsequent 
reads. If a client writes a new value for 
a data object and then reads this ob-
ject, the read will return the value that 
was last written by the client (or some 
other value that was later written by 
a different client). For clients that 
have issued no writes, the guarantee 
is the same as eventual consistency. 
(Note: In previous articles this has 
been called “Read Your Writes,”11 but 
I have chosen to rename it to more ac-
curately describe the guarantee from 
the client’s viewpoint.)

These last four read guarantees 
are all a form of eventual consistency 
but stronger than the eventual con-
sistency model that is typically pro-
vided in cloud storage systems. The 
“strength” of a consistency guarantee 
does not depend on when and how 
writes propagate between servers, but 
rather is defined by the size of the set 
of allowable results for a read opera-
tion. Smaller sets of possible read re-
sults indicate stronger consistency. 
When requesting strong consistency, 
there is a single value that must be 
returned, the latest value that was 
written. For an object that has been 
updated many times, an eventually 
consistent read can return one of 
many suitable values. Of the four in-
termediate guarantees, none is stron-

ger than any of the others, meaning 
each might have a different set of pos-
sible responses to a read operation. In 
some cases, as will be shown later, ap-
plications may want to request multi-
ple guarantees. For example, a client 
could request both monotonic reads 
and read my writes so that it observes 
a data store that is consistent with its 
own actions.11

In this article, the data store used 
for baseball scores is a traditional 
key-value store, popularized by the 
“noSQL” movement. Writes, also 
called puts, modify the value asso-
ciated with a given key. Reads, also 
called gets, return the value for a key. 
However, these guarantees can apply 
to other types of replicated data stores 
with other types of read and write op-
erations, such as file systems and rela-
tional databases. This is why the guar-
antees are defined in terms of writes 
rather than data values. For example, 
in a system that offers an increment 
or an append operation, all writes per-
formed on an object contribute to the 
object’s observed value, not just the 
latest write. Moreover, the guarantees 
could apply to atomic transactions 
that access multiple objects, though 
the examples in this article do not re-
quire atomic updates.

Table 2 shows the performance 
and availability typically associated 
with each consistency guarantee. It 
rates the three properties on a scale 
from poor to excellent. Consistency 
ratings are based on the strength of 
the consistency guarantee as previ-
ously defined. Performance refers to 
the time it takes to complete a read 
operation, that is, the read latency. 
Availability is the likelihood of a read 
operation successfully returning suit-
ably consistent data in the presence 
of server failures. 

Strong consistency is desirable 

from a consistency viewpoint but of-
fers the worst performance and avail-
ability since it generally requires 
reading from a designated primary 
site or from a majority of replicas. 
Eventual consistency, on the other 
hand, allows clients to read from any 
replica, but offers the weakest con-
sistency. The inverse correlation be-
tween performance and consistency 
is not surprising since weaker forms 
of consistency generally permit read 
requests to be sent to a wider set of 
servers. With more choices of servers 
that are sufficiently up to date, clients 
are more able to choose a nearby serv-
er. The latency difference between ac-
cessing a local rather than a remote 
server can be a factor of 100. Similar-
ly, a larger choice of servers means a 
client is more likely to find one (or a 
quorum) that is reachable, resulting 
in higher availability. 

Each guarantee offers a unique 
combination of consistency, perfor-
mance, and availability. Labeling each 
cell in Table 2 is not an exact science 
(and I could devote a whole article to 
this topic). One might argue that some 
entry listed as “okay” should really be 
“good”, or vice versa, and indeed the 
characteristics do depend to some 
extent on implementation, deploy-
ment, and operating details. For some 
clients, eventually consistent reads 
may often return strongly consistent 
results, and may not be any more 
efficient than strongly consistent 
reads.3,13 But, the general compari-
sons between the various consistency 
guarantees are qualitatively accurate. 
The bottom line is that one faces sub-
stantial trade-offs when choosing a 
particular replication scheme with a 
particular consistency model. 

Without offering any evidence, 
I assert that all of these guarantees 
can be provided as choices within 

table 2. consistency, performance, and valuability trade-offs.

Guarantee consistency Performance availability

Strong Consistency excellent poor poor

eventual Consistency poor excellent excellent

Consistent Prefix okay good excellent

Bounded Staleness good okay poor

Monotonic reads okay good good

read My Writes okay okay okay
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stretch), and the home team is win-
ning 2-5.

Suppose the key-value store that 
holds the visitors and home team’s 
run totals resides in the cloud and is 
replicated among a number of serv-
ers. Different read guarantees may re-
sult in clients reading different scores 
for this game that is in progress. Ta-
ble 3 lists the complete set of scores 
that could be returned by reading the 
visitors and home scores with each of 
the six consistency guarantees. Note 
that the visitors’ score is listed first, 
and different possible return values 
are separated by comas.

A strong consistency read can only 
return one result, the current score, 
whereas an eventual consistency read 
can return one of 18 possible scores. 
Observe that many of the scores that 
can be returned by a pair of eventually 
consistent reads are ones that were 
never the actual score. For example, 
reading the visitors’ score may return 
two and reading the home team’s 
score may return zero, even though the 
home team never trailed. The consis-
tent prefix property limits the result 
to scores that actually existed at some 
time. The results that can be returned 
by a bounded staleness read clearly 
depend on the desired bound. Table 
3 illustrates the possible scores for a 
bound of one inning, that is, scores 
that are at most one inning out of date; 
for a bound of seven innings or more, 

the same storage system. In fact, my 
colleagues and I at the MSR Silicon 
Valley Lab have built a prototype of 
such a system (but that is the topic 
for another article). In our system, 
clients requesting different consis-
tency guarantees experience differ-
ent performance and availability for 
the read operations they perform, 
even when accessing shared data. 
Here, let’s assume the existence of a 
storage system that offers its clients 
a choice of these six read guarantees. 
I proceed to show how they would be 
used…in baseball.

Baseball as a Sample application
For those readers who are not famil-
iar with baseball, but who love to read 
code, Figure 1 illustrates the basics 
of a nine-inning baseball game. The 
game starts with the score of 0-0. The 
visitors bat first and remain at bat 
until they make three outs. Then the 
home team bats until it makes three 
outs. This continues for nine innings. 
Granted, this leaves out many of the 
subtleties that are dear to baseball afi-
cionados, like myself. But it does ex-
plain all that is needed for this article. 

Assume the score of the game is 
recorded in a key-value store in two 

objects, one for the number of runs 
scored by the “visitors” and one for 
the “home” team’s runs. When a team 
scores a run, a read operation is per-
formed on its current score, the re-
turned value is incremented by one, 
and the new value is written back to the 
key-value store. 

As a concrete example, consider the 
write log for a sample game as shown 
in Figure 2. In this game, the home 
team scored first, then the visitors tied 
the game, then the home team scored 
twice more, and so on. 

This sequence of writes could be 
from a baseball game with the inning-
by-inning line score that is illustrated 
in Figure 3. This hypothetical game is 
currently in the middle of the seventh 
inning (the proverbial seventh-inning 

table 3. Possible scores read for each consistency guarantee.

Strong Consistency 2-5

eventual Consistency 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 
2-1, 2-2, 2-3, 2-4, 2-5

Consistent Prefix 0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5

Bounded Staleness scores that are at most one inning out-of-date:  2-3, 2-4, 2-5

Monotonic reads after reading 1-3:  1-3, 1-4, 1-5, 2-3, 2-4, 2-5

read My Writes for the writer:  2-5  
for anyone other than the writer:  0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 
1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5

figure 2. Sequence of writes for  
a sample game.

Write (“home”, 1)  
Write (“visitors”, 1)
Write (“home”, 2)
Write (“home”, 3)
Write (“visitors”, 2)
Write (“home”, 4)
Write (“home”, 5)

figure 3. the line score for this sample game.

1 2 3 4 5 6 7 8 9 RunS

Visitors 0 0 1 0 1 0 0 2

home 1 0 1 1 0 2 5

figure 1.  a simplified baseball game.

Write (“visitors”, 0);
Write (“home”, 0);
for inning = 1 .. 9  
   outs = 0;
   while outs < 3 
     visiting player bats;
     for each run scored
        score = Read (“visitors”);
        Write (“visitors”, score + 1);
   outs = 0;
   while outs < 3 
      home player bats;
      for each run scored 
         score = Read (“home”);
         Write (“home”, score + 1);
end game;
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the result set is the same as for eventu-
al consistency in this example. In prac-
tice, a system is unlikely to express 
staleness bounds in units of “innings.” 
So, for this example, assume  the read-
er requested a bound of 15 minutes 
and the previous inning lasted exactly 
that long. For monotonic reads, the 
possible return values depend on what 
has been read in the past. For read my 
writes they depend on who is writing to 
the key-value store; in this example, as-
sume all of the writes were performed 
by a single client.

Read Requirements for Participants
Now, let’s examine the consistency 
needs of a variety of people involved in 
a baseball game who want to read the 
score. Certainly, each of these folks 
could perform a strongly consistent 
read to retrieve the visiting and home 
team’s score. In this case, as pointed 
out in the previous section, only one 
possible value would be returned: the 
current score. However, as shown in 
Table 2, readers requesting strong 
consistency will likely receive longer 
response times and may even find that 
the data they are requesting is not cur-
rently available due to temporary server 
failures or network outages. The point 
of this section is to evaluate, for each 
participant, the minimum consistency 
that is required. By requesting read 
guarantees that are weaker than strong 
consistency, these clients are likely to 
experience performance benefits and 
higher availability.

Official scorekeeper. The official 
scorekeeper is responsible for main-
taining the score of the game by writ-
ing it to the persistent key-value store. 
Figure 4 illustrates the steps taken by 
the scorekeeper each time the visit-
ing team scores a run; his action when 
the home team scores is similar. Note 
that this code is a snippet of the overall 
baseball game code that was presented 
in in Figure 1. 

What consistency does the score-
keeper require for his read opera-
tions? Undoubtedly, the scorekeeper 

needs to read the most up-to-date 
previous score before adding one to 
produce the new score. Otherwise, 
the scorekeeper runs the risk of writ-
ing an incorrect score and undermin-
ing the game, not to mention inciting 
a mob of angry baseball fans. Suppose 
the home team had previously scored 
five runs and just scored the sixth. Do-
ing an eventual consistency read, as 
shown in Table 3, could return a score 
of anything from zero to five. Perhaps, 
the scorekeeper would get lucky and 
receive the correct score in response 
to his read, but he should not count 
on it.

Interestingly, while the scorekeeper 
requires strongly consistent data, he 
does not need to perform strong con-
sistency reads. Since the scorekeeper is 
the only person who updates the score, 
he can request the read my writes guar-
antee and receive the same effect as a 
strong read. Essentially, the scorekeep-
er uses application-specific knowledge 
to obtain the benefits of a weaker con-
sistency read without actually giving up 
any consistency.

This might seem like a subtle dis-
tinction, but, in fact, could be quite 
significant in practice. In processing 
a strong consistency read the stor-
age system must pessimistically as-
sume that some client, anywhere in 
the world, may have just updated the 
data. The system therefore must ac-
cess a majority of servers (or a fixed set 
of servers) in order to ensure the most 
recently written data is accessed by 
the submitted read operation. In pro-
viding the read my writes guarantee, 
on the other hand, the system simply 
needs to record the set of writes that 
were previously performed by the cli-
ent and find some server that has 
seen all of these writes.11 In a base-
ball game, the previous run that was 
scored, and hence the previous write 
that was performed by the scorekeep-
er, may have happened many minutes 
or even hours ago. In this case, almost 
any server will have received the pre-
vious write and be able to answer the 

next read that requests the read my 
writes guarantee.

Umpire. The umpire is the person 
who officiates a baseball game from 
behind home plate. The umpire, for 
the most part, does not actually care 
about the current score of the game. 
The one exception comes after the top 
half of the 9th inning, that is, after 
the visiting team has batted and the 
home team is about to bat. Since this 
is the last inning (and a team cannot 
score negative runs), the home team 
has already won if they are ahead in 
the score; thus, the home team can 
and does skip its last at bat in some 
games. The code for the umpire who 
needs to make this determination is 
illustrated in Figure 5.

When accessing the score during 
the 9th inning, the umpire does need 
to read the current score. Otherwise, 
he might end the game early, if he in-
correctly believes the home team to 
be ahead, or make the home team bat 
unnecessarily. Unlike the scorekeeper, 
the umpire never writes the score; he 
simply reads the values that were writ-
ten by the official scorekeeper. Thus, 
in order to receive up-to-date informa-
tion, the umpire must perform strong 
consistency reads.

Radio reporter. In most areas of the 
U.S., radio stations periodically an-
nounce the scores of games that are 
in progress or have completed. In the 
San Francisco area, for example, KCBS 
reports sports news every 30 minutes. 
The radio reporter performs the steps 
outlined in Figure 6. A similar, perhaps 
more modern, example is the sports 
scores that scroll across the bottom of 
the TV screen while viewers are watch-
ing ESPN.

figure 6. Role of the radio sports reporter.

do {
     vScore = Read (“visitors”);
     hScore = Read (“home”);
     report vScore and hScore;
     sleep (30 minutes);    
}

figure 4. Role of the scorekeeper.

score = Read (“visitors”);
Write (“visitors”, score + 1);

figure 5. Role of the umpire.

if first half of 9th inning complete then
     vScore = Read (“visitors”);
     hScore = Read (“home”);
     if vScore < hScore 
         end game;
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goes out to a leisurely dinner before 
sitting down to summarize the game. 
He certainly wants to make sure that 
he reports the correct final score for 
the game. So, he wants the effect of a 
strong consistency read. However, he 
does not need to pay the cost. If the 
sportswriter knows he spent an hour 
eating dinner after the game ended, 
then he also knows it has been at least 
an hour since the scorekeeper last up-
dated the score. Thus, a bounded stale-
ness read with a bound of one hour is 
sufficient to ensure the sportswriter 
reads the final score. In practice, any 
server should be able to answer such 
a read. In fact, an eventual consisten-
cy read is likely to return the correct 
score after an hour, but requesting 
bounded staleness is the only way for 
the sportswriter to be 100% certain he 
is obtaining the final score.

Statistician. The team statistician 
is responsible for keeping track of the 
season-long statistics for the team and 
for individual players. For example, the 
statistician might tally the total num-
ber of runs scored by her team this sea-
son. Suppose these statistics are also 
saved in the persistent key-value store. 
As shown in Figure 8, the home team’s 
statistician, sometime after each game 
has ended, adds the runs scored to the 
previous season total and writes this 
new value back into the data store.

When reading the team’s score 
from today, the statistician wants to 
be sure to obtain the final score. Thus, 
she needs to perform a strong con-
sistency read. If the statistician waits 
for some time after the game, then a 
bounded staleness read may achieve 
the same effect (as discussed earlier 
for the sportswriter).

When reading the current statistics 
for the season, that is, for the second 
read operation in Figure 8, the statisti-
cian also wants strong consistency. If an 
old statistic is returned, then the updat-
ed value written back will undercount 
the team’s total runs. Since the statisti-
cian is the only person who writes statis-
tics into the data store, she can use the 
read my writes guarantee to get the lat-
est value (as discussed previously).

Stat watcher. Others who periodi-
cally check on the team’s season statis-
tics are usually content with eventual 
consistency. The statistical data is only 
updated once per day, and numbers 

If the radio reporter broadcasts 
scores that are not completely up to 
date, that is okay. People are accus-
tomed to receiving old news. Thus, 
some form of eventual consistency 
is fine for the reads he performs. But 
what guarantees, if any, are desirable? 

As shown in Table 3, the read with 
the weakest guarantee, an eventual 
consistency read, may return scores 
that never existed. For the sample 
line score given in Figure 3, such a 
read might return a score with the 
visitors leading 1-0, even though the 
visiting team has never actually been 
in the lead. The radio reporter does 
not want to report such fictitious 
scores. Thus, the reporter wants both 
his reads to be performed on a snap-
shot that hold a consistent prefix of 
the writes that were performed by the 
scorekeeper. This allows the reporter 

to read the score that existed at some 
time, without necessarily reading the 
current score.

But reading a consistent prefix is 
not sufficient. For the line score in Fig-
ure 3, the reporter could read a score 
of 2-5, the current score, and then, 30 
minutes later, read a score of 1-3. This 
might happen, for instance, if the re-
porter happens to read from a primary 
server and later reads from another 
server, perhaps in a remote datacen-
ter, that has been disconnected from 
the primary and has yet to receive the 
latest writes. Since everyone knows 
that baseball scores are monotonically 
increasing, reporting scores of 2-5 and 
1-3 in subsequent news reports would 
make the reporter look foolish. This 
can be avoided if the reporter requests 
the monotonic reads guarantee in ad-
dition to requesting a consistent pre-
fix. Observe that neither guarantee is 
sufficient by itself.

Alternatively, the reporter could 
obtain the same effect as a monotonic 
read by requesting bounded staleness 
with a bound of less than 30 minutes. 
This would ensure the reporter ob-
serves scores that are at most 30 min-
utes out of date. Since the reporter 
only reads data every 30 minutes, he 
must receive scores that are increas-
ingly up to date. Of course, the re-
porter could ask for a tighter bound, 
say five minutes, to get scores that are 
reasonably timely. 

Sportswriter. Another interesting 
person is the sportswriter who watch-
es the game and later writes an article 
that appears in the morning paper or 
that is posted on some website. Differ-
ent sportswriters may behave different-
ly, but my observations (from having 
been a sportswriter) is they often act as 
in Figure 7.

The sportswriter may be in no hurry 
to write his article. In this example, he 

table 4. Read guarantees for baseball participants.

Official scorekeeper read My Writes

umpire Strong Consistency

radio reporter Consistent Prefix & Monotonic reads

Sportswriter Bounded Staleness

Statistician Strong Consistency, read My Writes

Stat watcher eventual Consistency

figure 7. Role of the sportswriter.

While not end of game {
    drink beer;
    smoke cigar;
} 
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

figure 8. Role of the statistician.

Wait for end of game;
score = Read (“home”);
stat = Read (“season-runs”);
Write (“season-runs”, stat + score);

figure 9. Role of the stat watcher.

do {
    stat = Read (“season-runs”);
    discuss stats with friends;
    sleep (1 day);    
}
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that are slightly out of date are okay. 
For example, a fan inquiring about 
the total number of runs scored by his 
team this season, as shown in Figure 9, 
can perform an eventual consistency 
read to get a reasonable answer. 

conclusion
Clearly, storing baseball scores is not 
the killer application for cloud storage 
systems. And we should be cautious 
about drawing conclusions from one 
simple example. But perhaps some les-
sons can be learned.

Table 4 summarizes the consisten-
cy guarantees desired by the variety 
of baseball participants that were dis-
cussed in the previous section. Recall 
that the listed consistencies are not 
the only acceptable ones. In particular, 
each participant would be okay with 
strong consistency, but, by relaxing the 
consistency requested for his reads, he 
will likely observe better performance 
and availability. Additionally, the stor-
age system may be able to better bal-
ance the read workload across servers 
since it has more flexibility in select-
ing servers to answer weak consistency 
read requests. 

These participants can be thought 
of as different applications that are 
accessing shared data: the baseball 
score. In some cases, such as for the 
scorekeeper and sportswriter, the 
reader, based on application-specif-
ic knowledge, knows he can obtain 
strongly consistent data even when 
issuing a weakly consistent read us-
ing a read my writes or bounded stale-
ness guarantee. In some cases, such 
as the radio reporter, multiple guar-
antees must be combined to meet the 
reader’s needs. In other cases, such 
as the statistician, different guaran-
tees are desired for reads to different 
data objects.

I draw four main conclusions from 
this exercise:

 ˲ All of the six presented consistency 
guarantees are useful. Observe that 
each guarantee appears at least once in 
Table 4. Systems that offer only even-
tual consistency would fail to meet the 
needs of all but one of these clients, 
and systems that offer only strong con-
sistency may underperform in all but 
two cases. 

 ˲ Different clients may want differ-
ent consistencies even when accessing 

the same data. Often, systems bind a 
specific consistency to a particular da-
taset or class of data. For example, it is 
generally assumed that bank data must 
be strongly consistent while shopping 
cart data needs only eventually con-
sistency. The baseball example shows 
that the desired consistency depends 
as much on who is reading the data as 
on the type of data. 

 ˲ Even simple databases may have 
diverse users with different consis-
tency needs. A baseball score is one 
of the simplest databases imaginable, 
consisting of only two numbers. Nev-
ertheless, it effectively illustrates the 
value of different consistency options. 

 ˲ Clients should be able to choose 
their desired consistency. The system 
cannot possibly predict or determine 
the consistency that is required by a 
given application or client. The pre-
ferred consistency often depends on 
how the data is being used. Moreover, 
knowledge of who writes data or when 
data was last written can sometimes 
allow clients to perform a relaxed 
consistency read, and obtain the as-
sociated benefits, while reading up-
to-date data. 

The main argument often expressed 
against providing eventual consistency 
is that it increases the burden on ap-
plication developers. This may be true, 
but the extra burden need not be ex-
cessive. The first step is to define con-
sistency guarantees developers can 
understand; observe that the six guar-
antees presented in Table 1 are each 
described in a few words. By having 
the storage system perform write op-
erations in a strict order, application 
developers can avoid the complica-
tion of dealing with update conflicts 
from concurrent writes. This leaves 
developers with the job of choosing 
their desired read consistency. This 
choice requires a deep understanding 
of the semantics of their application, 
but need not alter the basic structure 
of the program. None of the code snip-
pets that were provided in the previous 
section required any additional lines to 
deal specifically with stale data. 

Cloud storage systems that offer 
only strong consistency make it easy 
for developers to write correct pro-
grams but may miss out on the bene-
fits of relaxed consistency. The inher-
ent trade-offs between consistency, 

performance, and availability are 
tangible and may become more pro-
nounced with the proliferation of geo-
replicated services. This suggests that 
cloud storage systems should at least 
consider offering a larger choice of 
read consistencies. Some cloud pro-
viders already offer two both strongly 
consistent and eventually consistent 
read operations, but this article shows 
their eventual consistency model may 
not be ideal for applications. Allowing 
cloud storage clients to read from di-
verse replicas with a choice of several 
consistency guarantees could benefit 
a broad class of applications as well 
as lead to better resource utilization 
and cost savings.  
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