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1 Background and History

Multics:

Many
Unnecessary
Large
Tables
In
Core
Simultaneously

Alternatively, “Multiplexed Information and Computing Service”.

History

Canonical example of Fred Brooks’ “second system” syndrome: the first system is minimal and conservative, the second system
includes any and all cool ideas and attempts to do everything.

The first system in this case was the MIT CTSS (Compatible Time-Sharing System) - the first true time-sharing system (1959-
1965).

• Interative working on-line

• Online storage of information

• Tape-drives for both storage and swapping

• 4 consoles (110-baud teleprinters), 2 tape drives per user.

• No protection

• Enabled lots of new ideas in interactive computing: editors, interactive debugging, etc.

Multics mostly developed 1963-1970, ran through the mid 1980s, but never really finished.

• New hardware: Honeywell 645 initially

• Everything built from scratch (mostly written in PL/1)

• Large. Very large.

• Very complex.

• Never really took the world by storm: eclipsed by Unix (written as a reaction to it).

• Nevertheless: pioneered many concepts which are now taken for granted in operating systems, and also many others
which are rarely seen these days.
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One way to approach Multics

One difference between good Systems Research and good Software Engineering: investigate the consequences of an idea by
taking it to its logical extreme in the design of a system.

• Bound to break: you don’t necessarily want to build a product this way

• But when it does, you’ll understand the nature of the idea (including in more moderate, applicable forms) much more
deeply.

• Think of Multics in this way: sharing, protection, addressing.

Alternative is LPU (Least Publishable Increment: safe, more applicable short-term, much less fun, and with little long-term
impact.

New ideas in Multics:

• Single-level store (memory-mapped file system, or really no files at all, only memory segments).

• Dynamic linking

• On-line reconfiguration

• Shared-memory multiprocessing

• Three-level physical store

• Hierarchical namespace

• Almost all the system written in a high-level language (PL/1)

2 The Virtual Memory System

Main goals at the time

• Single-level store

– Segments as the basic units of storage, sharing and protection.

– Referred to in 2 ways: symbolic name (pathname) and virtual address (segment number) within a process.

– Segments are variable size.

• Fine-grained sharing - in particular, sharing of all code in the system at the level of procedures and variables. Extreme.

• Dynamic linking: all references to variables and procedures are resolved late, in fact, when first referenced by the
program.

• Autonomy of address spaces: each process should be able to resolve a different set of segment names.

Why would you want to do this?

• Many users ⇒ many copies of programs / procedures ⇒ want sharing

• Lots of packages / shared components ⇒ where to load package into address space?

– Could always load at same address (c.f. early Unix dynamic linking, doesn’t scale with # packages)

– . . . or could have autonomous address spaces.

• Leads to requirement for dynamic linking

• Problem: when is a package available for linking? Answer: always (combine VM and file system)



Basics

• Process = address space

• Address space = segment table (actually KST & DS)

• Generalized address: segment index + offset

• Per-address space segment numbers

• Everything except the DS Page Table Segment is (potentially) paged underneath

• Translation cached using 2 lookaside buffers

Descriptor Segment
Page Table:

Core                F

PTW:

core             L

Descriptor Base Register:

offset          page #

Segment number:

offset          page #

Segment offset:

Segment Page Table:

Core                F

PTW:

Page:

Word (s#,off):

Desc.Segment Page:

Core  L   Acc   F

SDW(s#):

Known Segment Table:

Seg. #  Pathname

KSTE(s#):

Directory segment:

BRANCH

See the paper for details on algorithms for setting these up.



3 Dynamic Linking

• All cross-references to symbols are initially, well, symbolic (filename, symbol name)

• link trap on first reference

• Trap rewrites the symbolic address with real generalized address for the current process

• Subtle business: see below

Link trap is taken for every different external cross reference - a good example of “lazy evaluation”.

Process 1

Descriptor Segment

"Caller" code segment

"Callee" code segment

ld (callee,bar)

 -- start bar --
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Process 2

Descriptor Segment
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Problem 1: Per-process table for links (inter-segment references)

Every process has a different mapping from symbolic addresses to generalized addresses.

Linkage section: all external references for a code segment (both imports and exports).

• Initially a symbol table: (callee filename, symbol name)

• becomes an indirection table over time: (segment #, offset)

• One linkage section in a process for each code segment

Linkage segment: Segment to hold all linkage sections for a process

• All rewrites occur within this (private, per-process) segment.

Process layout with linkage segment:

Process 1

Descriptor Segment

"Caller" code segment

"Callee" code segment

ldi "LS"

 -- start bar --

Linkage Segment

{linkage section
for "caller" seg

(callee, bar)

68

Load indirect  through l
linkage segment
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Key idea: link trap rewrites 
linkage section entry from
symbolic address (callee, bar) to
real process-specific address (3,68)



Problem 2: How do you find the right place in the linkage segment?

• The caller code knows nothing about the structure of the (per-process) linkage segment. How does it find the right
entry in the linkage section for caller to rewrite it?

• Note that the format of the linkage section for a code segment (like caller) is fixed and known when that segment is
compiled.

• Solution: process has a register LP (linkage pointer) which points to start of linkage section for the current segment (i.e.,
the segment where the program counter currently is).

• Compiled code in the current segment can use a fixed offset from this to find (callee, bar).

Process 1

Descriptor Segment

"Caller" code segment

"Callee" code segment

ldi LP[k]

 -- start bar --

Linkage Segment

{linkage section
for "caller" seg

(callee, bar)

68LP

Load indirect  through LP
with offset k
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Offset ’k’ is a compile-time
constant and is the same for
every process.



Problem 3: LP needs to be reloaded on each inter-segment call. How do we know what value?

The LP must be reloaded after the call (since we need to old one to look up the offset!). Hence, the first few instructions at each
entry point load the LP. But from where?

Enter the LOT:

• The Linkage Offset Table, located at the start of the Linkage Segment.

• Indexed by segment number of the code segment (which we can get from the PC).

• Holds the appropriate LP value for the linkage section for that code segment.

• After subroutine jump into a new segment, push the old LP, load new one from LOT( PC segment #).

Process 1

Descriptor Segment

"Caller" code segment

"Callee" code segment

push LP
calli LP[k]
pop LP

ld LP,LS[PC.seg] 
 -- start bar --

Linkage Segment

{linkage section
for "caller" seg

(callee, bar)

68LP

Call indirect  through LP
with offset k

k

{linkage section
for "callee" seg

LOT
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Historical note: In the published papers, a different approach is described. The linkage segment contains code for each entry
point: load the LP, and jump to a real procedure. The caller indirects through its own linkage section into a jump table in the
callee’s linkage section. Has the advantage that the LP isn’t reloaded for inter-segment calls.

Resolving symbolic names

So how do we convert (callee, bar) to (3, 68)?

1. We now know that the target entry that needs to be rewritten is at LP[k], which points to somewhere in caller’s linkage
section. We first need to distinguish symbolic addresses from real addresses. This is done with a bit set in the indirect
address (at LP[k]). The link trap occurs exactly if this bit is set, otherwise it is a real address and the load/call works just
fine. Assuming we have a trap, we need to rewrite the target with the real address.



2. First we have to see if this segment is already loaded. We check the known segment table (KST) for this. The KST is an
array of pointers indexed by segment number (much like the descriptor segment, but separate). The pointers point to a
data structure that contains the name, length, and attributes of the segment. The linker scans the KST to see if any of the
names match callee, if so we have found the right segment, goto step 4.

3. The segment is not already known (at least not for this process). The symbolic name, callee, is relative to a specific
path (following some PATH-like “search rules”) and thus fully specifies the file to be initiated. The supervisor (i.e. kernel)
assigns it a (local) segment number, and adds it to the KST. If the file was already loaded for another process (i.e. it is an
active segment, its directory entry (“branch” info) points to its page table, which is shared by the new process. If the file
is not already mapped, there will be a “missing segment fault”, which will actually create its page table; later there will
be page faults as well . . .

4. At this point, we know that callee equals segment 3, but we don’t know the value of bar, which is an exported symbol
for the file callee. Note that the value for bar is just an offset into the segment. Since Multics allows independent
recompilation, we need to get the current offset of bar from the symbol table, which is at the head of the code segment
callee. Since the operation is read-only, it is OK to read it directly from callee, which means we don’t have to copy
this part of the symbol table into the linkage section. Like the KST, the symbol table is just an array of symbols that is
scanned linearly for a match. No match implies a linking error (presumably non-recoverable). At this point we know that
bar means offset 68, and we know the full generalized address.

5. The only remaining trick is that if the symbol is an entrypoint (i.e. this is a call), then we must load the new LP value
from the LOT, using the new PC to tell us the new segment number.

6. Rewrite the symbolic address and restart the faulting instruction.

Conclusion

Why all this dynamic linking rigmarole?

• The original UNIX approach was to statically link each binary: each address space had 3 segments (text, data, stack).
Unit of sharing was entire program binary.

• Later, a growable heap was added (bss) separate from the data segment.

• Then, shared libraries (X Windows probably the forcing factor): each library had to be loaded at an address fixed at
compile time . . .

• Some systems (e.g. Sun Labs’ Spring) introduced copy-on-write dynamically loadable object files which were patched
at load for each address space. Then they had to cache partially patched images for performance.

• RISC machines’ calling conventions by now passed “frame pointers” and other context anyway in registers . . . .

• Eventually: UNIX link-loading now posesses all the complexity of Multics, except that segments are emulated by allo-
cating ranges of virtual addresses.

Moral? . . .

A note from Paul Green about using Multics:

By the way, the dynamic linking feature of Multics worked extremely well and was a very popular capability of
the system. It was another reason that application developers enjoyed working on the system. The output of the
compilers was directly executable. You didn’t need to use the static linker (”binder”) until you were ready to
optimize your work and give it to someone else. Many development projects kept all of the separately-compiled
object files lying around in a common directory for everyone to search. You put your own private directory,
containing the pieces that you were changing, earlier in your search rules. The very first time you started up the
subsystem, things would kind of chug along while the segments got activated and the linking took place. But then
the test / debug / edit / compile cycle was fast and efficient for the rest of the day. Every now and then something
would screw up and a program wouldn’t get unsnapped correctly, or you’d do something dumb and wipe out the
process and have to start over, but in general, it all worked very well.


