Logging and
Recovery

If you are going to be in the
logging business, one of the
things that you have to do is
to learn about heavy
equipment.

~ Robert VanNatta,

Logging History of

Columbia County

Motivation

¢ Atomicity:
— Transactions may abort (“Rollback”).
¢ Durability:
— What if DBMS stops running? (Causes?)

< Desired Behavior after

Assumptions

¢ Concurrency control is in effect.
— Strict 2PL, in particular.
¢ Updates are happening in DIRECT mode
— i.e. data is overwritten on (deleted from) the disk.

¢ A simple scheme to guarantee Atomicity &
Durability?

More on Steal and Force

« STEAL (why enforcing Atomicity is hard)
— To steal frame F: Current page in F (say P) is
written to disk; some Xact holds lock on P.
* What if the Xact with the lock on P aborts?

* Must remember the old value of P at steal time (to
support UNDQing the write to page P).

« NO FORCE (why enforcing Durability is hard)

— What if system crashes before a modified page is
written to disk?

— Write as little as possible, in a convenient place,

at commit time,to support REDOing modifications.

system restarts: T1 crash!
- T1L,T2& T3shouldbe |1y +— :
durable. T3 e— |
- T4 & T5 should be T4 1
aborted (effects not seen). | T5 L
Handling the Buffer Pool
* Force write to disk at commit?
— Poor response time (&
throughput) No Steal Steal
— But provides durability. E .
« Steal buffer-pool frames from oree | Trivial
uncommited Xacts?
— If not, poor throughput.
« Among other problems! No Force Desired
— If so, how can we ensure
atomicity?
Basic Idea: Logging Q)=

¢ Record REDO and UNDO information, for every
update, in a /og.
— Sequential writes to log (put it on a separate disk).
— Minimal info (diff) written to log, so multiple

updates fit in a single log page.

* Log: An ordered list of REDO/UNDO actions

— A simple (physical) log record contains:
<XID, pagelD, offset, length, old data, new data>

— and additional control info (which we'll see soon).

Write-Ahead Logging (WAL)

¢ The Write-Ahead Logging Protocol:

© Must force the log record for an update before
the corresponding data page gets to disk.

® Must write all log records for a Xact before
commit.

¢ #1 guarantees Atomicity.
¢ #2 guarantees Durability.

¢ Exactly how is logging (and recovery!) done?
— We'll study the ARIES protocol.

WAL & the Log LSNs pageLSNs flushedLSN

Each log record has a unique Log
Sequence Number (LSN).

— LSNs always increasing.
* Each data page contains a pageLSN.

— The LSN of the most recent log record
for an update to that page.

+ System keeps track of flushedLSN.
— The max LSN flushed so far.

e WAL: Cannot flush a data page
— pageLSN < flushedLSN pageLSN

»

Log records
flushed to disk

“Log tail”
in RAM

Log Records
Possible log record types:

LogRecord fields: * Update
prevLSN o Commit
XID e Abort
type ¢ End (signifies end of commit
pagelD or abort)
update | length o Compensation Log Records
recordsq offset (CLRSs)
only | before-image — for UNDO actions

after-image — (and some other tricks!)

Other Log-Related State

« Transaction Table:
— One entry per active Xact.

— Contains XID, status (running/commited/aborted),
and lastLSN.

* Dirty Page Table:
— One entry per dirty page in buffer pool.

— Contains recLSN -- the LSN of the log record which
first caused the page to be dirty.

Normal Execution of an Xact

¢ Series of reads & writes, followed by commit or
abort.

— We will assume that page write is atomic on disk.
e Strict 2PL.

« STEAL, NO-FORCE buffer management, with Write-
Ahead Logging.

Checkpointing

* Periodically, the DBMS creates a checkpoint, in order to
minimize the time taken to recover in the event of a system
crash. Write to log:

— begin_checkpoint record: Indicates when chkpt began.
— end_checkpoint record: Contains current Xact table and dirty
page table. This is a " fuzzy checkpoint’:

« Other Xacts continue to run; so these tables only known to reflect
some mix of state after the time of the begin_checkpoint record.

« No attempt to force dirty pages to disk; effectiveness of checkpoint
limited by oldest unwritten change to a dirty page. (So it’s a good idea
to periodically flush dirty pages to disk! Recall when we said that NO
STEAL had other problems? This is one.)

— Store LSN of chkpt record in a safe place (master record).

ﬁhe Big Picture: What's Stored Where

‘ RAM ‘
LogRecords Xact Table
LSN
?(rIeDV Data pages lastLSN
each status

tg;;em with a

length pageL.SN Dirty Page Table

offset recLSN

before-image master record

after-image flushedLSN

Simple Transaction Abort

* For now, consider an explicit abort of a Xact.
— No crash involved.
* We want to “play back” the log in reverse
order, UNDOing updates.
— Get lastLSN of Xact from Xact table.
— Can follow chain of log records backward via the
prevLSN field.
— Note: before starting UNDO, could write an Abort
log record.
* Why bother?

Abort, cont.

* To perform UNDO, must have a lock on data!
— No problem!
« Before restoring old value of a page, write a CLR:
— You continue logging while you UNDO!!
— CLR has one extra field: undonextLSN
« Points to the next LSN to undo (i.e. the prevLSN of the record we're
currently undoing).
— CLR contains REDO info
— CLRs never Undone
« Undo needn’t be idempotent (>1 UNDO won't happen)
« But they might be Redone when repeating history (=1 UNDO
guaranteed)

« At end of all UNDOs, write an “end” log record.

Transaction Commit

¢ Write commit record to log.
* All log records up to Xact's lastLSN are flushed.
— Guarantees that flushedLSN = lastLSN.
— Note that log flushes are sequential, synchronous
writes to disk.
— Many log records per log page.
* Make transaction visible
— Commit() returns, locks dropped, etc.
¢ Write end record to log.

Crash Recovery: Big Picture

Oldest log H
rec. of Xact 3 « Start from a checkpoint
active at crash : .
: (found via master record).
Smallest : « Three phases. Need to:
recLSN in .)
dirty page =~ - Figure out which Xacts
i‘bli after H committed since checkpoint,
natysis : which failed (Analysis).
: - REDO all actions.
Lastchkpt ~ —=— « (repeat history)
: l - UNDO effects of failed Xacts.
CRASH _—
AR U

Recovery: The Analysis Phase

* Reconstruct state at checkpoint.
— via end_checkpoint record.
* Scan log forward from begin_checkpoint.
— End record: Remove Xact from Xact table.
— Other records: Add Xact to Xact table, set lastLSN=LSN,
change Xact status on commit.
— Update record: If P not in Dirty Page Table,
e Add P to D.P.T., set its recLSN=LSN.
* Atend:
— the Xact table contains all “loser” xacts
— the DPT contains a superset of dirty data pages

Recovery: The REDO Phase

* We repeat History to reconstruct state at crash:

— Reapply all updates (even of aborted Xacts!), redo CLRs.

* Scan forward from log rec containing smallest recLSN in
D.P.T. For each CLR or update log rec LSN, REDO the action
unless:

— Affected page is not in the Dirty Page Table, or
— Affected page is in D.P.T., but has recLSN > LSN, or
— pageLSN (in DB) = LSN. (requires an I/O)
+ To REDO an action:
— Reapply logged action.
— Set pageLSN to LSN. No additional logging!

Recovery: The UNDO Phase

ToUndo={ /| / alastLSN of a “loser” Xact}
Repeat:
— Choose largest LSN among ToUndo.
— If this LSN is a CLR and undonextLSN==NULL
* Write an End record for this Xact.
— If this LSN is a CLR, and undonextLSN != NULL
¢ Add undonextLSN to ToUndo
* (note: we may have skipped a number of other CLRs!)

— Else this LSN is an update. Undo the update, write a CLR,
add prevLSN to ToUndo.

Until ToUndo is empty.

Note: could do this one xact at a time; the above is a minor
optimization that does them all at once.

Example of Recovery

LSN LOG
‘ RAM ‘ 00 —- begin_checkpoint
05 = end_checkpoint

Xact Table 10 "' update: T1 writes P5

lastLSN 20 _ update T2 writes P3
status H
Dirty Page Table 30 + T1 abort e
recLSN 40 == CLR: Undo]T1LSN 10
flushedLSN 45 == T1End
50 = update: T3 writes P1
ToUndo 60 + update: T2 writes P5

X CRASH, RESTART

Example: Crash During Restart!

LSN LOG
00,05 — begin_checkpoint, end_checkpoint
‘ RAM ‘ 10 = update: T1 writes P5
20 — update T2 writes P3 < \\ undonextLSN
Xact Table 30 —— T1 abort \
'if;'fs"‘ 4045 — CLR Undo T1 LSN 10, T1 End)
Dirty Page Table 50 —— update: T3 writes P1 “
recLSN 60 = update: T2 writes P5 /
flushedL.SN CRASH, RESTART V4
~ 70 = CLR: Undo T2 LSN 60
foUndo 80,85 — CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART
90 = CLR: Undo T2 LSN 20, T2 end

Additional Crash Issues

* What happens if system crashes during
Analysis? During REDO?
* How do you limit the amount of work in REDO?
— Flush asynchronously in the background.
— Watch “hot spots”!
¢ How do you limit the amount of work in UNDO?
— Avoid long-running Xacts.

Logical vs. Physical Logging

¢ Roughly, ARIES does:
— Physical REDO
— Logical UNDO

e Why?

Logical vs. Physical Logging, Cont.

+ Page-oriented REDO logging
— Independence of REDO (e.g. indexes & tables)
« Simplifies things enormously
* Allows for optimizations (reordering/parallelization in Recovery)
— Not quite physical, but close

« Can have logical operations like increment/decrement (“escrow
transactions”)

* Logical UNDO

— To allow for simple management of physical structures that
are invisible to users

— To allow for logical operations

Nested Top Actions

¢ Trick to support physical operations you do
not want to ever be undone

— Example?
¢ Basic idea
— At end of the nested actions, write a dummy CLR
* Nothing to REDO in this CLR

— Its UndoNextLSN points to the step before the
nested action.

Summary of Logging/Recovery

Recovery Manager guarantees Atomicity &
Durability.

e Use WAL to allow STEAL/NO-FORCE W/0
sacrificing correctness.

LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

¢ pageLSN allows comparison of data page and
log records.

Summary, Cont.

¢ Checkpointing: A quick way to limit the
amount of log to scan on recovery.

* Recovery works in 3 phases:
— Analysis: Forward from checkpoint.
— Redo: Forward from oldest recLSN.

— Undo: Backward from end to first LSN of oldest
Xact alive at crash.

* Upon Undo, write CLRs.
* Redo “repeats history”: Simplifies the logic!

