Lecture 25: Congestion Avoidance and Adversaries

Mothy Roscoe and Joe Hellerstein

November 22, 2005

Congestion Avoidance

Key idea: “conserve packets”. Appeals to a fluid flow model of the network —when
operating close to capacity, flow in == flow out.

1. Slow start (how to get close to capacity):
e add a second, “congestion” window (emphcwnd) and use the minimum
of this and the receiver’s window.

e cwndstarts out at 1 packet (segment), adds one for each (successful)
ack received.

e = each received ACK causes 2 packets to go out, since (1) a packet
has been received at the far end, and (2) our window is now bigger.

e After losing a packet (not ACKed), reduce/ndto 1 and start again.

2. Round-trip time estimator (how to stay roughly at capacity when you get
there)

¢ Need to incorporate RTT variance into the estimator. This is generally
a good thing (see paper for maths), but the variance goes up a lot during
congestion

e Underestimating variance is bad: causes retransmissions when packets
(or ACKSs) are still in flight=- violates conservation.

e Estimating the variance continuously (versus using a fixed value) helps
in low-variance but high-latency links, such as satellites.

¢ Need exponential backoff if retransmitting packets (c.f. Ethernet)

e Assumes a reasonably symmetric link. Systems like DirectPC (satel-
lite downlink at 25Mb/s, dialup uplink at 33.6kb/s) have “interesting”
interactions with TCP RTT estimation.



3. Packet losss congestion (detecting congestion)

e Only makes sense if you've got RTT estimation right (see point 2)
e Multiplicative decrease to rapidly return to stability

e Additive increase probes for extra bandwidth: produces characteristic
sawtooth graph under congestion-free conditions.

o Need additive increase whenewsynd < rxwnd

e Now a central tenet of TCP, but doesn’'t work well in environments
where a given loss is unlikely to be due to congestion (such as wireless)

e Alternative is to explicitly signal congestion in the ACK - see ELN,
ECN, etc. proposals. Unfortunately, seem to suffer “feature interac-
tion” with other parts of the Internet.

Strengths:

e Good practical solution to a pressing problem (prevented imminent conges-
tion collapse of the Internet)

¢ Nice mix of control theory intuition and Real Code
Flaws:

o Not totally clear about its assumptions (for example, doesn’t consider any
adversaries at all)

e While the control theory makes sense, a lot of the protocol design has “is-
sues” (see below)

Misbehaving receivers

e It's pretty clear that misbehaving senders can abuse congestion control by
sending too much data

e Perhaps surprising that receivers can abuse it by inducing an innocent sender
to send too much data

e This is an attack on the TCP spec, not any particular implementation!
e = all valid implementations vulnerable
e Receivers have opportunity: source code readily available (and why not?)

e Receivers have motive: web surfing goes faster!



Question: | wonder how all those advertised “Internet accelerators” for Win-
dows work?

Abad and Needham principles:

1.

2.

3.

Every message should say what it means: the interpretation of the message
should depend only on its content

The conditions for a message to be acted upon should be clearly set out so
that someone reviewing a design may see whether they are acceptable or not

If the identity of a principal is essential to the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message

TCP Daytona

Note: name is a pun on TCP Tahoe, Reno, Vegas, etc. It's fast!
Almost no code for each of the three attacks
Evaluation: looks like they tried this againstn.com .

Linux has solution to first attack (even though the attack is on the spec, not
on particular implementations)

Windows NT not vulnerable to attack 2 because it never enters fast retransmit
anyway ...

Otherwise: Daytona seems widely applicable and show dramatic perfor-
mance improvements!

Attack 1: ACK division

Each ACK increases cwnd by 1 segment, even if you ACK part of a segment
(such as 1 byte)

Congestion window completely open in two RTTSs (for typical web browser)

Analysis: violates Principle 2 — spec assumes that ACKs occur at segment
boundaries, but message format allows arbitrary bits of sequence space.

Also: seems to be a confusion between congestion based on byte counts or
segment counts. Either seems reasonable, but both leads to ambiguity.

Solution 1: Operate entirely on a byte granularity (forces message format to
fit the spec better.



Solution 2: Wait till an entire segment has been ACKed before updating
cwnd(what Linux does) — doesn’t require protocol to be changed.

Attack 2: Duplicate ACK spoofing

Send multiple acks for the same sequence number, causing the sender to
enter “fast retransmit” and increase/nd

Fast recovery: not covered in the Van Jacobson Paper, but aim is to avoid
single losses slamming tleevndcompletely shut.

Under many conditions, turns out that without fast retransmit TCP would
make next to no progress due to over-zealous congestion avoidance.

Analysis: during fast retransmit / fast recovery, Principle 1 is violated — du-
plicate ACKs can mean different things: segment was lost, or some later
segment was received (thus, openawgndfurther). ACKs are being “over-
loaded”, and there’s no way for the sender to associate a given duplicate
ACK with a particular segment at the far end.

Solution: singular nonceo prove that packet was received. Only increment
window for each proven received packet. Note: Can't do this without chang-
ing protocol (to include nonce and nonce reply).

General lesson: nonce is “fresh” (i.e., unpredictable) information. You'll
see this general mechanism used a lot, not simply in “real” cryptographic
protocols.

Attack 3: Optimistic ACKs

ACK the data before you actually receive it.

Increases congestion window, and reduces the RTT estimate — both of which
overclock the sender!

You might ACK data the sender hasn't sent yet. Which is a bit embarassing,
but probably has no effect

You might ACK data that has been sent, but lost en route. TCP will not allow
you to recover this data

— One “solution” is an additional, application-level channel to fetch the
missing data (such as byte-ranges from web servers).



e Analysis: violates 3rd principle: the principal here is the segment to which
the ACK corresponds. It would be prudent if the ACK refered to it explicitly,
hence:

e Solution: cumulative noncensures all data has been received before it can
be acked.

Lessons

e The nature of the contract (and in particular, the trust) between sender and
receiver in TCP had not been clearly stated, or investigated.

e The “self-clocking” nature of TCP leads to problems: all that a node has to
go on is what the other side tells it.

e Nonces constrain what the other side can say, and when it can say it, so that
the best it can do is limit its performance.



