
Lecture 25: Congestion Avoidance and Adversaries

Mothy Roscoe and Joe Hellerstein

November 22, 2005

Congestion Avoidance

Key idea: “conserve packets”. Appeals to a fluid flow model of the network – when
operating close to capacity, flow in == flow out.

1. Slow start (how to get close to capacity):

• add a second, “congestion” window (emphcwnd) and use the minimum
of this and the receiver’s window.

• cwndstarts out at 1 packet (segment), adds one for each (successful)
ack received.

• ⇒ each received ACK causes 2 packets to go out, since (1) a packet
has been received at the far end, and (2) our window is now bigger.

• After losing a packet (not ACKed), reducecwndto 1 and start again.

2. Round-trip time estimator (how to stay roughly at capacity when you get
there)

• Need to incorporate RTT variance into the estimator. This is generally
a good thing (see paper for maths), but the variance goes up a lot during
congestion

• Underestimating variance is bad: causes retransmissions when packets
(or ACKs) are still in flight⇒ violates conservation.

• Estimating the variance continuously (versus using a fixed value) helps
in low-variance but high-latency links, such as satellites.

• Need exponential backoff if retransmitting packets (c.f. Ethernet)

• Assumes a reasonably symmetric link. Systems like DirectPC (satel-
lite downlink at 25Mb/s, dialup uplink at 33.6kb/s) have “interesting”
interactions with TCP RTT estimation.

1



3. Packet loss⇒ congestion (detecting congestion)

• Only makes sense if you’ve got RTT estimation right (see point 2)

• Multiplicative decrease to rapidly return to stability

• Additive increase probes for extra bandwidth: produces characteristic
sawtooth graph under congestion-free conditions.

• Need additive increase whenevercwnd< rxwnd.

• Now a central tenet of TCP, but doesn’t work well in environments
where a given loss is unlikely to be due to congestion (such as wireless)

• Alternative is to explicitly signal congestion in the ACK - see ELN,
ECN, etc. proposals. Unfortunately, seem to suffer “feature interac-
tion” with other parts of the Internet.

Strengths:

• Good practical solution to a pressing problem (prevented imminent conges-
tion collapse of the Internet)

• Nice mix of control theory intuition and Real Code

Flaws:

• Not totally clear about its assumptions (for example, doesn’t consider any
adversaries at all)

• While the control theory makes sense, a lot of the protocol design has “is-
sues” (see below)

Misbehaving receivers

• It’s pretty clear that misbehaving senders can abuse congestion control by
sending too much data

• Perhaps surprising that receivers can abuse it by inducing an innocent sender
to send too much data

• This is an attack on the TCP spec, not any particular implementation!

• ⇒ all valid implementations vulnerable

• Receivers have opportunity: source code readily available (and why not?)

• Receivers have motive: web surfing goes faster!



• Question: I wonder how all those advertised “Internet accelerators” for Win-
dows work?

Abad́ı and Needham principles:

1. Every message should say what it means: the interpretation of the message
should depend only on its content

2. The conditions for a message to be acted upon should be clearly set out so
that someone reviewing a design may see whether they are acceptable or not

3. If the identity of a principal is essential to the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message

TCP Daytona

• Note: name is a pun on TCP Tahoe, Reno, Vegas, etc. It’s fast!

• Almost no code for each of the three attacks

• Evaluation: looks like they tried this againstcnn.com .

• Linux has solution to first attack (even though the attack is on the spec, not
on particular implementations)

• Windows NT not vulnerable to attack 2 because it never enters fast retransmit
anyway . . .

• Otherwise: Daytona seems widely applicable and show dramatic perfor-
mance improvements!

Attack 1: ACK division

• Each ACK increases cwnd by 1 segment, even if you ACK part of a segment
(such as 1 byte)

• Congestion window completely open in two RTTs (for typical web browser)

• Analysis: violates Principle 2 – spec assumes that ACKs occur at segment
boundaries, but message format allows arbitrary bits of sequence space.

• Also: seems to be a confusion between congestion based on byte counts or
segment counts. Either seems reasonable, but both leads to ambiguity.

• Solution 1: Operate entirely on a byte granularity (forces message format to
fit the spec better.



• Solution 2: Wait till an entire segment has been ACKed before updating
cwnd(what Linux does) – doesn’t require protocol to be changed.

Attack 2: Duplicate ACK spoofing

• Send multiple acks for the same sequence number, causing the sender to
enter “fast retransmit” and increasecwnd.

• Fast recovery: not covered in the Van Jacobson Paper, but aim is to avoid
single losses slamming thecwndcompletely shut.

• Under many conditions, turns out that without fast retransmit TCP would
make next to no progress due to over-zealous congestion avoidance.

• Analysis: during fast retransmit / fast recovery, Principle 1 is violated – du-
plicate ACKs can mean different things: segment was lost, or some later
segment was received (thus, openingcwndfurther). ACKs are being “over-
loaded”, and there’s no way for the sender to associate a given duplicate
ACK with a particular segment at the far end.

• Solution:singular nonceto prove that packet was received. Only increment
window for each proven received packet. Note: Can’t do this without chang-
ing protocol (to include nonce and nonce reply).

• General lesson: nonce is “fresh” (i.e., unpredictable) information. You’ll
see this general mechanism used a lot, not simply in “real” cryptographic
protocols.

Attack 3: Optimistic ACKs

• ACK the data before you actually receive it.

• Increases congestion window, and reduces the RTT estimate – both of which
overclock the sender!

• You might ACK data the sender hasn’t sent yet. Which is a bit embarassing,
but probably has no effect

• You might ACK data that has been sent, but lost en route. TCP will not allow
you to recover this data

– One “solution” is an additional, application-level channel to fetch the
missing data (such as byte-ranges from web servers).



• Analysis: violates 3rd principle: the principal here is the segment to which
the ACK corresponds. It would be prudent if the ACK refered to it explicitly,
hence:

• Solution: cumulative nonceensures all data has been received before it can
be acked.

Lessons

• The nature of the contract (and in particular, the trust) between sender and
receiver in TCP had not been clearly stated, or investigated.

• The “self-clocking” nature of TCP leads to problems: all that a node has to
go on is what the other side tells it.

• Nonces constrain what the other side can say, and when it can say it, so that
the best it can do is limit its performance.


