
Lecture 24: Scheduler Activations and First-Class
User-Level Threads

Mothy Roscoe and Joe Hellerstein

November 21, 2005

Background

We saw last week that whether you use events or threads, you always hit problems:

• Events don’t solve the problem of long-running handlers, or dealing with
multiple processors.

• Threads are hard to synchronize or schedule - the only way to control which
thread is running is with locks and the like (which is not what they’re for),
or prodding the [kernel] scheduler.

• Neither events nor threads can deal effectively with split-phase operations.
These are not just blocking calls (though they are a problem with many op-
erating systems), but also reschedules (other things are running), and other
blocking events such as page faults.

The problem here is not the OS API to other operations, but that the scheduler
in the kernel is hidden from either threads or events.

Both papers are about making the scheduler visible. Interestingly, they ap-
peared at the same time in the same conference.

It’s clear you need threads to exploit multiprocessors where the model is fine-
grained parallelism model discussed: threads in a shared address space (others are
also possible).

Threads can be implemented in two different ways: kernel and user-space.
The case for user-space threads:

• Kernel threads are expensive: thread context switch involves crossing pro-
tection boundary to/from kernel.

• Inflexible: can’t easily customize the scheduling policy, since it’s in the ker-
nel and there’s typically one.

1



Fast user-level threads packages existed (CThreads, FastThreads, etc.):

• Create one kernel thread for each processor, just use these like an OS would
use processors to run the user-level threads.

• Implement user-level threads entirely at the user-level in the runtime system:
1) Any user thread can run on any kernel thread. 2) Very fast, both for
thread creation and context switch (no kernel calls in either case), and 3)
Synchronization between user threads can be handled entirely at user-level.
Can do things like spin-wait on locks.

• Result: much faster thread primitives can support much finer-grained paral-
lelism.

Problem is that the user-level scheduler is oblivious to scheduling decisions
being taken in the kernel, and vice versa

Solution: design a protocol for passing scheduling information back and forth
between the kernel and the runtime system.

The way the interface works:

• The kernel allocates physical processors to address spaces, can do this any
way it sees fit.

• Threads are implemented in user-space: an address space can run arbitrary
threads on arbitrary processors allocated to it.

• Kernelupcallsthe address space on scheduling events: processor allocation
/ deallocation, thread blocking / unblocking.

• User-space downcalls to the kernel to request change in the number of phys-
ical processors⇒ allows processors to be yielded to other address spaces.

Scheduler Activations

• Replaces the kernel notion of a thread.

• Created for each processor assigned to an address space.

• Provides space in the kernel for saving processor context of the currently
running user thread when the thread is stopped by the kernel (e.g. for I/O or
processor preemption to another application).

Kernel creates a new activation and does an upcall for one of the following
reasons:



• New processor available. Runtime picks a user thread to run on it.

• Existing activation blocked (e.g. for I/O or page fault). Runtime picks an-
other user thread to run on the new activation.

• Activation unblocked and is now runnable. New activation includes proces-
sor context for two old activations: the newly unblocked one and the one that
was preempted in order to make this notification. Why was it necessary to
preempt a second activation?

– To obtain a processor to run on. See fig 1 in paper, where black spots
represent processors.

• Activation lost its processor (to another application). Similar to unblocked
activation case: new activation contains processor contexts for two old ac-
tivations: the one whose processor was allocated to another application and
the one whose processor is being used to run the new activation.

Runtime informs the kernel when the number of runnable threads = number of
allocated processors +- 1.

• Tells the kernel about transitions from needing another processor to not need-
ing another processor and vice-versa.

• Don’t need to tell kernel about greater disparities between the two because
that won’t change the kernel’s behavior.

• All other runtime thread operations are strictly user-level.

Result: get the performance of user-level threads with the consistent behavior
of kernel threads.

Above this is built a user-level thread scheduler with the same interface as the
existing Topaz threads package⇒ mechanism completely transparent to applica-
tions.

Some details:

• User-level priority scheduling: may need to pull a lower priority user thread
off of another activation. This is done by having the runtime tell the kernel to
preempt the processor running the low priority user thread (only the kernel
can preempt a processor). The preempted processor is used to do an upcall
back to the application.

• Dealing with preempted activations running in critical sections:



– Runtime checks during an upcall whether the preempted/unblocked
user thread was running in a critical section. Continues the user thread
out of the critical section if so. Then puts the user thread on the appro-
priate queue.

– Critical sections are detected by keeping a hash table of section be-
gin/end addresses that are computed by placing special assembly in-
structions around critical sections in the object code and then post-
processing the object code.

3 key features about this paper:

• Goal is to get user-level threads performance with the scheduling consistency
provided by kernel-level threads in a multiprogramming environment.

• The problem to solve: coordinating two independent thread schedulers: the
kernel and the application runtime.

• Scheduler activations used as a vessel to transmit information between the
two as well as to provide virtual processors for running user-level threads.

Some flaws:

• Authors wave their hands regarding the 5x slower upcall than kernel thread
performance.

• Only one application was tested. How would “ordinary” user-level threads
perform relative to scheduler activations on other applications? Does the
kernel’s scheduling policy affect the relative performance in any interesting
ways?

Also, while one might think scheduler activations replaces kernel threads, ves-
tiges still remain - for example, the notion of a user-level thread “blocking” in the
kernel and creating a new activation.

Psyche

So how is Psyche different from Scheduler Activations? Why?

• Psyche adopts arguably a more radical approach: write a new operating sys-
tem to push the idea further.

• Also explore further implications of moving threads out of the kernel: what
they calledmultimodal thread programming.



• Allow lots of different thread and synchronization models, which can still
interoperate.

Implementation:

• shared-memory structures (read-only for kernelrightarrow user-space, read/write
for userrightarrow kernel).

• virtual processor abstraction

– software interrupts for predefined set of kernel events

– dedicated stack for handling upcalls

– upcalls also used for inter process communication (PPC)

Major difference:

• Scheduler activations treats the kernel and user-space thrads package as an
integrated whole

• Psyche is much more concerned about general purpose interfaces:

– between the kernel and the user-level thread scheduler

– between hetergeneous ULS’s in different address spaces

Q. Is the inter-ULS interface general enough for synchronisation between app-
plications?

A note on blocking system calls: reading between the lines in the Psyche paper,
it’s clear that a “blocking system call” is used in a different sense to that in systems
like Unix. It refers to anything that make take some time (such as reading a disk
block). If that kind of functionality is built into the kernel, it’s inevitable that such
split-phase operations occur.

Afterword: uniprocessors

Interestingly, this way of implementing threads was not limited to multiprocessor
systems. Nemesis adopted a uniprocessor variant of this. Why?

• Remove all blocking from the kernel - even on page faults or interrupts. In
fact, remove all threads from the kernel.

• Applications given explicit feedback on both their progress and their CPU
application (for adaptive multimedia).



• Policy for multiplexing all resources (in this case, CPU) moved into the ap-
plication and out of the kernel.

On a uniprocessor, you want something different:

• Don’t upcall on deschedules, since you don’t have a spare processor.

• Single upcall stack: kernel knows if an upcall is in progress and simply
resumes the domain

• The ULS sets pointers to the “context slot” to save the processor state when
the domain is descheduled. These slots act as a cache for thread state.

• From personal experience, this so dramatically simplifies the implementation
of a threads package that it justifies itself.

• Achilles heel: need to (1) atomically resume a thread context, and (2) clear
the “in activation” bit

– On an Alpha: PAL call costing 1 pipeline drain :-)

– On an iA32: System call costing the earth :-(

A Lesson

Expose physical resources to applications as much as possible without sacrificing
kernel-enforced isolation and protection. Hide the complexity this creates by user-
level abstractions rather than kernel-level ones. Avoid the “semantic bottleneck”
of the kernel interface.


